Inhibitory Performance in Smokers Relative to Nonsmokers When Exposed to Neutral, Smoking- and Money-Related Pictures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Materials and Procedure
2.2.1. Tobacco Craving Questionnaire (TCQ)
2.2.2. Go/No-Go Task
2.3. Procedure
2.4. Statistical Analyses
3. Results
3.1. Smoking Status and Inhibitory Control across Conditions
3.2. Inhibitory Performance and Response Speed in the Neutral, Smoking and Money Contexts as a Function of Craving in Smokers: An Ad Hoc Exploratory Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Report on Global Tobacco Epidemic. World Health Organization. 2019. Available online: https://apps.who.int/iris/bitstream/handle/10665/326043/9789241516204-eng.pdf?ua=1&ua=1 (accessed on 21 June 2020).
- Anokhin, A.P.; Golosheykin, S. Neural Correlates of Response Inhibition in Adolescents Prospectively Predict Regular Tobacco Smoking. Dev. Neuropsychol. 2016, 41, 22–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luijten, M.; Littel, M.; Franken, I. Deficits in Inhibitory Control in Smokers During a Go/NoGo Task: An Investigation Using Event-Related Brain Potentials. PLoS ONE 2011, 6, e18898. [Google Scholar] [CrossRef] [Green Version]
- Logemann, H.; Böcker, K.; Deschamps, P.; Kemner, C.; Kenemans, J. Differences between nicotine-abstinent smokers and non-smokers in terms of visuospatial attention and inhibition before and after single-blind nicotine administration. Neuroscience 2014, 277, 375–382. [Google Scholar] [CrossRef]
- de Jong, R.; Coles, M.G.H.; Logan, G.D.; Gratton, G. In search of the point of no return: The control of response processes. J. Exp. Psychol. Hum. Percept. Perform. 1990, 16, 164–182. [Google Scholar] [CrossRef]
- Wessel, J.R. Prepotent motor activity and inhibitory control demands in different variants of the go/no-go paradigm. Psychophysiology 2017, 55, e12871. [Google Scholar] [CrossRef] [PubMed]
- Fillmore, M.T.; Rush, C.R. Impaired inhibitory control of behavior in chronic cocaine users. Drug Alcohol Depend. 2001, 66, 265–273. [Google Scholar] [CrossRef]
- Charles-Walsh, K.; Furlong, L.; Munro, D.G.; Hester, R. Inhibitory control dysfunction in nicotine dependence and the influence of short-term abstinence. Drug Alcohol Depend. 2014, 143, 81–86. [Google Scholar] [CrossRef]
- Li, C.-S.R.; Luo, X.; Yan, P.; Bergquist, K.; Sinha, R. Altered Impulse Control in Alcohol Dependence: Neural Measures of Stop Signal Performance. Alcohol. Clin. Exp. Res. 2009, 33, 740–750. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, A.J.; Luty, J.; Bogdan, N.A.; Sahakian, B.J.; Clark, L. Impulsivity and response inhibition in alcohol dependence and problem gambling. Psychopharmacology 2009, 207, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Kreusch, F.; Vilenne, A.; Quertemont, E. Response inhibition toward alcohol-related cues using an alcohol go/no-go task in problem and non-problem drinkers. Addict. Behav. 2013, 38, 2520–2528. [Google Scholar] [CrossRef]
- Monterosso, J.R.; Aron, A.R.; Cordova, X.; Xu, J.; London, E.D. Deficits in response inhibition associated with chronic methamphetamine abuse. Drug Alcohol Depend. 2005, 79, 273–277. [Google Scholar] [CrossRef]
- Smith, J.L.; Mattick, R.P.; Jamadar, S.D.; Iredale, J.M. Deficits in behavioural inhibition in substance abuse and addiction: A meta-analysis. Drug Alcohol Depend. 2014, 145, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Batterink, L.; Yokum, S.; Stice, E. Body mass correlates inversely with inhibitory control in response to food among adolescent girls: An fMRI study. NeuroImage 2010, 52, 1696–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartholdy, S.; Dalton, B.; O’Daly, O.G.; Campbell, I.C.; Schmidt, U. A systematic review of the relationship between eating, weight and inhibitory control using the stop signal task. Neurosci. Biobehav. Rev. 2016, 64, 35–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavagnino, L.; Arnone, D.; Cao, B.; Soares, J.C.; Selvaraj, S. Inhibitory control in obesity and binge eating disorder: A systematic review and meta-analysis of neurocognitive and neuroimaging studies. Neurosci. Biobehav. Rev. 2016, 68, 714–726. [Google Scholar] [CrossRef] [Green Version]
- Volkow, N.D.; Wise, R.A.; Baler, R. The dopamine motive system: Implications for drug and food addiction. Nat. Rev. Neurosci. 2017, 18, 741–752. [Google Scholar] [CrossRef]
- Robinson, M.J.F.; Fischer, A.M.; Ahuja, A.; Lesser, E.N.; Maniates, H. Roles of “Wanting” and “Liking” in Motivating Behavior: Gambling, Food, and Drug Addictions. Curr. Top. Behav. Neurosci. 2015, 27, 105–136. [Google Scholar] [CrossRef]
- Tsegaye, A.; Kökönyei, G.; Baldacchino, A.; Urbán, R.; Demetrovics, Z.; Logemann, H.A. Chapter 4-The Psychological Basis of Obesity. In Obesity and obstetrics, 2nd ed.; Mahmood, T.A., Arulkumaran, S., Chervenak, F.A.B.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 37–44. [Google Scholar] [CrossRef]
- Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 2016, 3, 760–773. [Google Scholar] [CrossRef]
- Logemann, H.; Böcker, K.B.; Deschamps, P.K.; Van Harten, P.N.; Koning, J.; Kemner, C.; Logemann-Molnár, Z.; Kenemans, J.L. Haloperidol 2 mg impairs inhibition but not visuospatial attention. Psychopharmacology 2016, 234, 235–244. [Google Scholar] [CrossRef]
- Kalman, D.; Morissette, S.B.; George, T.P. Co-Morbidity of Smoking in Patients with Psychiatric and Substance Use Disorders. Am. J. Addict. 2005, 14, 106–123. [Google Scholar] [CrossRef]
- Mashhoon, Y.; Betts, J.; Farmer, S.L.; Lukas, S.E. Early onset tobacco cigarette smokers exhibit deficits in response inhibition and sustained attention. Drug Alcohol Depend. 2018, 184, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Houben, K.; Nederkoorn, C.; Jansen, A. Eating on impulse: The relation between overweight and food-specific inhibitory control. Obes. Silver Spring 2013, 22, E6–E8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashare, R.L.; Hawk, L. Effects of smoking abstinence on impulsive behavior among smokers high and low in ADHD-like symptoms. Psychopharmacology 2011, 219, 537–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, J.; Tait, S.; Lessiter, J. Cigarette smoking and attention to signals of reward and threat in the Stroop paradigm. Addiction 2002, 97, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Potter, A.S.; Bucci, D.J.; Newhouse, P.A. Manipulation of nicotinic acetylcholine receptors differentially affects behavioral inhibition in human subjects with and without disordered baseline impulsivity. Psychopharmacology 2011, 220, 331–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heishman, S.J.; Singleton, E.G.; Pickworth, W.B. Reliability and validity of a Short Form of the Tobacco Craving Questionnaire. Nicotine Tob. Res. 2008, 10, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Stoet, G. PsyToolkit: A software package for programming psychological experiments using Linux. Behav. Res. Methods 2010, 42, 1096–1104. [Google Scholar] [CrossRef]
- Stoet, G. PsyToolkit: A Novel Web-Based Method for Running Online Questionnaires and Reaction-Time Experiments. Teach. Psychol. 2016, 44, 24–31. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsegaye, A.; Bjørne, J.; Winther, A.; Kökönyei, G.; Cserjési, R.; Logemann, H.A. Attentional bias and disengagement as a function of Body Mass Index in conditions that differ in anticipated reward. J. Behav. Addict. 2020, 9, 818–825. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.E.; Potts, G.F.; Burton, P.C.; Montague, P.R. Electrophysiological and hemodynamic responses to reward prediction violation. NeuroReport 2009, 20, 1140–1143. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.M.; Hsieh, S. Age-related post-error slowing and stimulus repetition effect in motor inhibition during a stop-signal task. Psychol. Res. 2021, 1–14. [Google Scholar] [CrossRef]
- Lin, M.-Y.; Cheng, C.-H. Effect of Age in Auditory Go/No-Go Tasks: A Magnetoencephalographic Study. Brain Sci. 2020, 10, 667. [Google Scholar] [CrossRef] [PubMed]
- Hilbig, B.E. Reaction time effects in lab- versus Web-based research: Experimental evidence. Behav. Res. Methods 2015, 48, 1718–1724. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Gabriel, U.; Gygax, P. Testing the effectiveness of the Internet-based instrument PsyToolkit: A comparison between web-based (PsyToolkit) and lab-based (E-Prime 3.0) measurements of response choice and response time in a complex psycholinguistic task. PLoS ONE 2019, 14, e0221802. [Google Scholar] [CrossRef]
Condition | Group | Mean | Std. Deviation |
---|---|---|---|
neutral | smokers | 0.85 | 0.19 |
nonsmokers | 0.69 | 0.24 | |
smoking | smokers | 0.45 | 0.27 |
nonsmokers | 0.70 | 0.18 | |
money | smokers | 0.56 | 0.24 |
nonsmokers | 0.64 | 0.25 |
Condition | Group | Mean | Std. Deviation |
---|---|---|---|
neutral | smokers | 570 | 165 |
nonsmokers | 390 | 68 | |
smoking | smokers | 355 | 74 |
nonsmokers | 422 | 65 | |
money | smokers | 373 | 71 |
nonsmokers | 423 | 74 |
Condition | Group | Mean | Std. Deviation |
---|---|---|---|
neutral | smokers | 0.02 | 0.04 |
nonsmokers | 0.02 | 0.05 | |
smoking | smokers | 0.03 | 0.05 |
nonsmokers | 0.03 | 0.08 | |
money | smokers | 0.02 | 0.04 |
nonsmokers | 0.02 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsegaye, A.; Guo, C.; Cserjési, R.; Kenemans, L.; Stoet, G.; Kökönyei, G.; Logemann, A. Inhibitory Performance in Smokers Relative to Nonsmokers When Exposed to Neutral, Smoking- and Money-Related Pictures. Behav. Sci. 2021, 11, 128. https://doi.org/10.3390/bs11100128
Tsegaye A, Guo C, Cserjési R, Kenemans L, Stoet G, Kökönyei G, Logemann A. Inhibitory Performance in Smokers Relative to Nonsmokers When Exposed to Neutral, Smoking- and Money-Related Pictures. Behavioral Sciences. 2021; 11(10):128. https://doi.org/10.3390/bs11100128
Chicago/Turabian StyleTsegaye, Afework, Cuiling Guo, Renáta Cserjési, Leon Kenemans, Gijsbert Stoet, Gyöngyi Kökönyei, and Alexander Logemann. 2021. "Inhibitory Performance in Smokers Relative to Nonsmokers When Exposed to Neutral, Smoking- and Money-Related Pictures" Behavioral Sciences 11, no. 10: 128. https://doi.org/10.3390/bs11100128
APA StyleTsegaye, A., Guo, C., Cserjési, R., Kenemans, L., Stoet, G., Kökönyei, G., & Logemann, A. (2021). Inhibitory Performance in Smokers Relative to Nonsmokers When Exposed to Neutral, Smoking- and Money-Related Pictures. Behavioral Sciences, 11(10), 128. https://doi.org/10.3390/bs11100128