Brain Activations and Functional Connectivity Patterns Associated with Insight-Based and Analytical Anagram Solving
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and fMRI Acquisition Parameters
- age of 18–55 years;
- normal or corrected-to-normal vision;
- Exclusion criteria;
- MRI contraindications, e.g., implanted cardiac devices, claustrophobia, pregnancy, and others according to the guidelines [27];
- intake of drugs acting on the central nervous system;
- history of neurologic or psychiatric disorders;
- severe chronic diseases.
2.2. fMRI Paradigm
2.3. Data Analysis
3. Results
3.1. Behavioral Statistics of Insight-Based and Analytical Anagram Solving
3.2. Brain Activations During Insight-Based and Analytical Anagram Solving
3.3. Functional Connectivity Associated with the Rate of Insight Solutions
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Aldous, C.R. Creativity, problem solving and innovative science: Insights from history, cognitive psychology and neuroscience. J. Stud. Int. Educ. 2007, 8, 176–186. [Google Scholar]
- Boccia, M.; Piccardi, L.; Palermo, L.; Nori, R.; Palmiero, M. Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Front Psychol 2015, 6, 1–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaty, R.E.; Benedek, M.; Silvia, P.J.; Schacter, D.L. Creative Cognition and Brain Network Dynamics. Trends Cogn. Sci. 2016, 20, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietrich, A.; Haider, H. A Neurocognitive Framework for Human Creative Thought. Front. Psychol. 2017, 7, 2078. [Google Scholar] [CrossRef] [Green Version]
- Bartley, J.E.; Boeving, E.R.; Riedel, M.C.; Bottenhorn, K.L.; Salo, T.; Eickhoff, S.B.; Brewe, E.; Sutherland, M.T.; Laird, A.R. Meta-analytic evidence for a core problem solving network across multiple representational domains. Neurosci. Biobehav. Rev. 2018, 92, 318–337. [Google Scholar] [CrossRef] [Green Version]
- Bowden, E.M.; Jung-Beeman, M.; Fleck, J.; Kounios, J. New approaches to demystifying insight. Trends Cogn. Sci. 2005, 9, 322–328. [Google Scholar] [CrossRef]
- Bowden, E.M.; Jung-Beeman, M. Methods for investigating the neural components of insight. Methods 2007, 42, 87–99. [Google Scholar] [CrossRef]
- Kounios, J.; Beeman, M. The Cognitive Neuroscience of Insight. Annu. Rev. Psychol. 2014, 65, 71–93. [Google Scholar] [CrossRef] [Green Version]
- Novick, L.R.; Sherman, S.J. On the Nature of Insight Solutions: Evidence from Skill Differences in Anagram Solution. Q. J. Exp. Psychol. Sect. A 2003, 56, 351–382. [Google Scholar] [CrossRef]
- Jarman, M. Quantifying the Qualitative: Measuring the Insight Experience. Creativity Res. J. 2014, 26, 276–288. [Google Scholar] [CrossRef]
- Ovington, L.; Saliba, A.J.; Moran, C.C.; Goldring, J.; Macdonald, J.B. Do People Really Have Insights in the Shower? The When, Where and Who of the Aha! Moment. J. Creative Behav. 2015, 52, 21–34. [Google Scholar] [CrossRef]
- Sprugnoli, G.; Rossi, S.; Emmendorfer, A.; Rossi, A.; Liew, S.-L.; Tatti, E.; Di Lorenzo, G.; Pascual-Leone, A.; Santarnecchi, E. Neural correlates of Eureka moment. Intell. 2017, 62, 99–118. [Google Scholar] [CrossRef]
- Chu, Y.; MacGregor, J.N. Human Performance on Insight Problem Solving: A Review. J. Probl. Solving 2011, 3, 6. [Google Scholar] [CrossRef]
- Kershaw, T.C.; Ohlsson, S. Multiple Causes of Difficulty in Insight: The Case of the Nine-Dot Problem. J. Exp. Psychol. Learn. Mem. Cogn. 2004, 30, 3–13. [Google Scholar] [CrossRef]
- Webb, M.E.; Little, D.R.; Cropper, S.J. Once more with feeling: Normative data for the aha experience in insight and noninsight problems. Behav. Res. Methods 2017, 50, 2035–2056. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, A.; Kanso, R. A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychol. Bull. 2010, 136, 822–848. [Google Scholar] [CrossRef]
- Jung-Beeman, M.; Bowden, E.M.; Haberman, J.; Frymiare, J.L.; Arambel-Liu, S.; Greenblatt, R.; Reber, P.J.; Kounios, J. Neural Activity When People Solve Verbal Problems with Insight. PLoS Biol. 2004, 2, e97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz-Zadeh, L.; Kaplan, J.T.; Iacoboni, M. “Aha!”: The neural correlates of verbal insight solutions. Hum. Brain Mapp. 2009, 30, 908–916. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.M.; Vidaurre, D.; Beckmann, C.F.; Glasser, M.F.; Jenkinson, M.; Miller, K.L.; Nichols, T.E.; Robinson, E.C.; Salimi-Khorshidi, G.; Woolrich, M.W.; et al. Functional connectomics from resting-state fMRI. Trends Cogn. Sci. 2013, 17, 666–682. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Azeez, A.; Chen, D.Y.; Biswal, B.B. Resting-State Functional Connectivity: Signal Origins and Analytic Methods. Neuroimaging Clin. North Am. 2020, 30, 15–23. [Google Scholar] [CrossRef]
- Yang, J.; Gohel, S.; Vachha, B. Current methods and new directions in resting state fMRI. Clin. Imaging 2020, 65, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Cui, X.; Dai, X.; Chen, Y.; Mo, L. Neural correlates of creative insight: Amplitude of low-frequency fluctuation of resting-state brain activity predicts creative insight. PLOS ONE 2018, 13, e0203071. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Aihara, T.; Shimokawa, T.; Yamashita, O. Large-scale brain network associated with creative insight: Combined voxel-based morphometry and resting-state functional connectivity analyses. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kounios, J.; Fleck, J.I.; Green, D.L.; Payne, L.; Stevenson, J.L.; Bowden, E.M.; Jung-Beeman, M. The origins of insight in resting-state brain activity. Neuropsychologia 2008, 46, 281–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.C.; Jung, M.; Lock, D.; Chao, E.; Swartz, J.; Jung, T.-P. Resting State and Task-Related Brain Dynamics Supporting Insight. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014. [Google Scholar]
- Erickson, B.; Truelove-Hill, M.; Oh, Y.; Anderson, J.; Zhang, F.Z.; Kounios, J. Resting-state brain oscillations predict trait-like cognitive styles. Neuropsychologia 2018, 120, 1–8. [Google Scholar] [CrossRef]
- Kanal, E.; Barkovich, A.J.; Bell, C.; Borgstede, J.P.; Bradley, W.G.; Froelich, J.W.; Gimbel, J.R.; Gosbee, J.W.; Kuhni-Kaminski, E.; Larson, P.A.; et al. ACR guidance document on MR safe practices: 2013. J. Magn. Reson. Imaging 2013, 37, 501–530. [Google Scholar] [CrossRef] [Green Version]
- Lapteva, E.M.; Bondarenko, Y.A.; Ushakov, D.V. Theories of consciousness and anagrams solution. Peterburgskij Psihologičeskij žurnal 2016, 17, 48–68. (In Russian) [Google Scholar]
- Brett, M.; Anton, J.L.; Valabregue, R.; Poline, J.B. Region of interest analysis using an SPM toolbox. In Proceedings of the 8th International Conference on Functional Mapping of the Human Brain, Sendai, Japan, 2–6 June 2002. abstract 497. [Google Scholar]
- Whitfield-Gabrieli, S.; Nieto-Castanon, A. Conn: A Functional Connectivity Toolbox for Correlated and Anticorrelated Brain Networks. Brain Connect. 2012, 2, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Metcalfe, J.; Wiebe, D. Intuition in insight and noninsight problem solving. Mem. Cogn. 1987, 15, 238–246. [Google Scholar] [CrossRef]
- Danek, A.H.; Wiley, J. What about False Insights? Deconstructing the Aha! Experience along Its Multiple Dimensions for Correct and Incorrect Solutions Separately. Front. Psychol. 2017, 7, 2077. [Google Scholar] [CrossRef] [Green Version]
- Danek, A.H.; Wiley, J.; Ollinger, M. Solving Classical Insight Problems Without Aha! Experience: 9 Dot, 8 Coin, and Matchstick Arithmetic Problems. J. Probl. Solving 2016, 9, 4. [Google Scholar] [CrossRef] [Green Version]
- Laukkonen, R.E.; Tangen, J.M. How to Detect Insight Moments in Problem Solving Experiments. Front. Psychol. 2018, 9, 1–282. [Google Scholar] [CrossRef] [Green Version]
- Hedne, M.R.; Norman, E.; Metcalfe, J. Intuitive Feelings of Warmth and Confidence in Insight and Noninsight Problem Solving of Magic Tricks. Front. Psychol. 2016, 7, 1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vartanian, O.; Egoel, V. Task constraints modulate activation in right ventral lateral prefrontal cortex. NeuroImage 2005, 27, 927–933. [Google Scholar] [CrossRef]
- Wu, L.; Knoblich, G.; Luo, J. The role of chunk tightness and chunk familiarity in problem solving: Evidence from ERPs and fMRI. Hum. Brain Mapp. 2012, 34, 1173–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavez-Eakle, R.A.; Graff-Guerrero, A.; García-Reyna, J.-C.; Vaugier, V.; Cruz-Fuentes, C. Cerebral blood flow associated with creative performance: A comparative study. NeuroImage 2007, 38, 519–528. [Google Scholar] [CrossRef]
- Fink, A.; Graif, B.; Neubauer, A.C. Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. NeuroImage 2009, 46, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Kowatari, Y.; Lee, S.H.; Yamamura, H.; Nagamori, Y.; Levy, P.; Yamane, S.; Yamamoto, M. Neural networks involved in artistic creativity. Hum. Brain Mapp. 2009, 30, 1678–1690. [Google Scholar] [CrossRef]
- Gonen-Yaacovi, G.; De Souza, L.C.; Levy, R.; Urbanski, M.; Josse, G.; Volle, E. Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Front. Hum. Neurosci. 2013, 7, 465. [Google Scholar] [CrossRef] [Green Version]
- Cisek, P.; Kalaska, J.F. Neural Correlates of Reaching Decisions in Dorsal Premotor Cortex: Specification of Multiple Direction Choices and Final Selection of Action. Neuron 2005, 45, 801–814. [Google Scholar] [CrossRef] [Green Version]
- Beurze, S.M.; De Lange, F.P.; Toni, I.; Medendorp, W.P. Integration of Target and Effector Information in the Human Brain During Reach Planning. J. Neurophysiol. 2007, 97, 188–199. [Google Scholar] [CrossRef]
- Brass, M.; Derrfuss, J.; Forstmann, B.; Von Cramon, D.Y. The role of the inferior frontal junction area in cognitive control. Trends Cogn. Sci. 2005, 9, 314–316. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, Q.; Tang, C.; Cao, G.; Hou, Y.; Qiu, J. Brain structure links everyday creativity to creative achievement. Brain Cogn. 2016, 103, 70–76. [Google Scholar] [CrossRef]
- Goll, Y.; Atlan, G.; Citri, A. Attention: The claustrum. Trends Neurosci. 2015, 38, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Kurada, L.; Bayat, A.; Joshi, S.; Koubeissi, M.Z. The Claustrum in Relation to Seizures and Electrical Stimulation. Front. Neuroanat. 2019, 13, 8. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J.; Smith, J.B.; Lee, A.K. The Anatomy and Physiology of Claustrum-Cortex Interactions. Annu. Rev. Neurosci. 2020, 43, 231–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, M.G.; Mu, C.; Qadir, H.; Madden, M.B.; Zeng, H.; Mathur, B.N. The Mouse Claustrum Is Required for Optimal Behavioral Performance Under High Cognitive Demand. Biol. Psychiatry 2020, 88, 719–726. [Google Scholar] [CrossRef]
- Smith, J.B.; Liang, Z.; Watson, G.D.R.; Alloway, K.D.; Zhang, N. Interhemispheric resting-state functional connectivity of the claustrum in the awake and anesthetized states. Brain Structure and Function 2017, 222, 2041–2058. [Google Scholar] [CrossRef]
- Smith, J.B.; Watson, G.D.R.; Liang, Z.; Liu, Y.; Zhang, N.; Alloway, K.D. A Role for the Claustrum in Salience Processing? Front. Neuroanat. 2019, 13, 64. [Google Scholar] [CrossRef]
- Luo, J.; Niki, K.; Phillips, S. The function of the anterior cingulate cortex (ACC) in the insightful solving of puzzles: The ACC is activated less when the structure of the puzzle is known. J Psychol Chinese Soc 2004, 5, 195–213. [Google Scholar]
- Qiu, J.; Li, H.; Jou, J.; Liu, J.; Luo, Y.; Feng, T.; Wu, Z.; Zhang, Q. Neural correlates of the “Aha” experiences: Evidence from an fMRI study of insight problem solving. Cortex 2010, 46, 397–403. [Google Scholar] [CrossRef]
- Takeuchi, H.; Taki, Y.; Sassa, Y.; Hashizume, H.; Sekiguchi, A.; Fukushima, A.; Kawashima, R. Regional gray matter volume of dopaminergic system associate with creativity: Evidence from voxel-based morphometry. NeuroImage 2010, 51, 578–585. [Google Scholar] [CrossRef]
- Benedek, M.; Beaty, R.; Jauk, E.; Koschutnig, K.; Fink, A.; Silvia, P.J.; Dunst, B.; Neubauer, A.C. Creating metaphors: The neural basis of figurative language production. NeuroImage 2014, 90, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Jauk, E.; Neubauer, A.C.; Dunst, B.; Fink, A.; Benedek, M. Gray matter correlates of creative potential: A latent variable voxel-based morphometry study. NeuroImage 2015, 111, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuys, R. The insular cortex. Progress in Brain Research 2012, 195, 123–163. [Google Scholar] [CrossRef]
- Vernet, M.; Quentin, R.; Chanes, L.; Mitsumasu, A.; Valero-Cabre, A. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Front. Integr. Neurosci. 2014, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Matheson, H.E.; Kenett, Y.N. The role of the motor system in generating creative thoughts. NeuroImage 2020, 213, 116697. [Google Scholar] [CrossRef] [PubMed]
- Chi, R.P.; Snyder, A.W. Facilitate Insight by Non-Invasive Brain Stimulation. PLOS ONE 2011, 6, e16655. [Google Scholar] [CrossRef] [PubMed]
- Aihara, T.; Ogawa, T.; Shimokawa, T.; Yamashita, O. Anodal transcranial direct current stimulation of the right anterior temporal lobe did not significantly affect verbal insight. PLOS ONE 2017, 12, e0184749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvi, C.; Beeman, M.; Bikson, M.; McKinley, R.; Grafman, J. TDCS to the right anterior temporal lobe facilitates insight problem-solving. Sci. Rep. 2020, 10, 946. [Google Scholar] [CrossRef] [Green Version]
Gyrus/Region of the Peak | Peak MNI Coordinates (mm) | Peak t (28) | Number of Voxels | p (FWE, Cluster Level) | ||
---|---|---|---|---|---|---|
x | y | z | ||||
Contrast “insight > rest” | ||||||
Left inferior occipital gyrus | −26 | −96 | −2 | 14.78 | 2235 | <0.001 |
Right inferior occipital gyrus | 34 | −94 | 0 | 12.97 | 1456 | <0.001 |
Left precentral gyrus | −44 | 6 | 30 | 12.83 | 15,446 | <0.001 |
Right cerebellum exterior | 24 | −66 | −50 | 11.09 | 1085 | <0.001 |
Left superior parietal lobule | −32 | −46 | 48 | 10.63 | 2598 | <0.001 |
Right precentral gyrus | 46 | 6 | 28 | 5.37 | 622 | <0.001 |
Contrast “analytical > rest” | ||||||
Right inferior occipital gyrus | 34 | −94 | 0 | 13.80 | 1475 | <0.001 |
Left precentral gyrus | −44 | 6 | 30 | 13.77 | 15,512 | <0.001 |
Left inferior occipital gyrus | −26 | −96 | −2 | 13.55 | 2259 | <0.001 |
Right cerebellum exterior | 24 | −70 | −50 | 10.47 | 859 | <0.001 |
Left superior parietal lobule | −28 | −48 | 50 | 9.50 | 3006 | <0.001 |
Right superior parietal lobule | 30 | −60 | 36 | 8.69 | 1951 | <0.001 |
Right precentral gyrus | 46 | 2 | 28 | 6.00 | 1019 | <0.001 |
Contrast “insight > analytical” | ||||||
Right precentral gyrus | 40 | −20 | 54 | 5.49995 | 259 | 0.017 |
ROI # | Gyrus/Region | Volume (mm3) | Weighted Center, MNI Coordinates (mm) | ||
---|---|---|---|---|---|
x | y | z | |||
1 | Left premotor cortex | 2112 | −44.58 | 3.96 | 29.38 |
2 | Left middle temporal gyrus, left precuneus | 1728 | −28.52 | −65.42 | 31.45 |
3 | Right superior frontal gyrus, left cingulate gyrus | 1608 | 3.59 | 14.64 | 45.72 |
4 | Left claustrum | 1384 | −33.41 | 17.68 | −2.27 |
5 | Left middle temporal gyrus, left middle occipital gyrus | 976 | −49.05 | −58.3 | −3.19 |
6 | Left uvula | 440 | −5.33 | −79.75 | −32.55 |
7 | Left frontal eye field | 440 | −27.08 | −0.93 | 55.99 |
8 | Right insula | 368 | 39.29 | 7.35 | 13.77 |
9 | Left insula | 328 | −39.29 | 12.46 | 10.63 |
10 | Right precuneus | 328 | 26.97 | −69.03 | 47.44 |
11 | Right middle temporal gyrus | 312 | 52.13 | −56.13 | −9.21 |
ROI # | Gyrus/Region | Insight > Rest | Analytical > Rest | Insight > Analytical | |||
---|---|---|---|---|---|---|---|
t (28) | qFDR | t (28) | qFDR | t (28) | qFDR | ||
1 | Left premotor cortex | 12.7 | <0.001 | 14.1 | <0.001 | −1.04 | 0.93 |
2 | Left middle temporal gyrus, left precuneus | 5.33 | <0.001 | 5.89 | <0.001 | −1.51 | 0.93 |
3 | Right superior frontal gyrus, left cingulate gyrus | 7.31 | <0.001 | 8.4 | <0.001 | −1.24 | 0.93 |
4 | Left claustrum | 6.86 | <0.001 | 7.27 | <0.001 | −1.47 | 0.93 |
5 | Left middle temporal gyrus, left middle occipital gyrus | 2.85 | 0.006 | 3.14 | 0.003 | −1.04 | 0.93 |
6 | Left uvula | 0.667 | 0.28 | 0.303 | 0.41 | 0.4 | 0.93 |
7 | Left frontal eye field | 9.79 | <0.001 | 9.22 | <0.001 | −0.876 | 0.93 |
8 | Right insula | −0.248 | 0.6 | 0.228 | 0.41 | −0.698 | 0.93 |
9 | Left insula | 5.12 | <0.001 | 6.24 | <0.001 | −0.462 | 0.93 |
10 | Right precuneus | 3.5 | 0.001 | 3.88 | <0.001 | −1.31 | 0.93 |
11 | Right middle temporal gyrus | 1.79 | 0.051 | 2.08 | 0.028 | −1.25 | 0.93 |
Seed Area | Connected Area | Sign of Correlation Between Connectivity and Insight Rate | ||||||
---|---|---|---|---|---|---|---|---|
ROI # | Gyrus/Region | Gyrus/Region | Volume (mm3) | Peak MNI Coordinates (mm) | p(FWE) | |||
x | y | z | ||||||
1 | Left premotor cortex (Figure 6A) | Right superior parietal lobule (Figure 6B) | 2784 | 14 | −46 | 74 | 0.002 | + |
Right superior frontal gyrus (Figure 6B) | 1928 | 24 | −04 | 70 | 0.02 | + | ||
Right postcentral gyrus (Figure 6B) | 1808 | 40 | −32 | 62 | 0.03 | + | ||
4 | Left claustrum (Figure 7A) | Right superior and middle frontal gyri (Figure 7B) | 1552 | 30 | 56 | 26 | 0.04 | + |
7 | Left frontal eye field (Figure 8A) | Left lateral occipital cortex (Figure 8B) | 2056 | −30 | −74 | 10 | 0.009 | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinitsyn, D.O.; Bakulin, I.S.; Poydasheva, A.G.; Legostaeva, L.A.; Kremneva, E.I.; Lagoda, D.Y.; Chernyavskiy, A.Y.; Medyntsev, A.A.; Suponeva, N.A.; Piradov, M.A. Brain Activations and Functional Connectivity Patterns Associated with Insight-Based and Analytical Anagram Solving. Behav. Sci. 2020, 10, 170. https://doi.org/10.3390/bs10110170
Sinitsyn DO, Bakulin IS, Poydasheva AG, Legostaeva LA, Kremneva EI, Lagoda DY, Chernyavskiy AY, Medyntsev AA, Suponeva NA, Piradov MA. Brain Activations and Functional Connectivity Patterns Associated with Insight-Based and Analytical Anagram Solving. Behavioral Sciences. 2020; 10(11):170. https://doi.org/10.3390/bs10110170
Chicago/Turabian StyleSinitsyn, Dmitry O., Ilya S. Bakulin, Alexandra G. Poydasheva, Liudmila A. Legostaeva, Elena I. Kremneva, Dmitry Yu. Lagoda, Andrey Yu. Chernyavskiy, Alexey A. Medyntsev, Natalia A. Suponeva, and Michael A. Piradov. 2020. "Brain Activations and Functional Connectivity Patterns Associated with Insight-Based and Analytical Anagram Solving" Behavioral Sciences 10, no. 11: 170. https://doi.org/10.3390/bs10110170
APA StyleSinitsyn, D. O., Bakulin, I. S., Poydasheva, A. G., Legostaeva, L. A., Kremneva, E. I., Lagoda, D. Y., Chernyavskiy, A. Y., Medyntsev, A. A., Suponeva, N. A., & Piradov, M. A. (2020). Brain Activations and Functional Connectivity Patterns Associated with Insight-Based and Analytical Anagram Solving. Behavioral Sciences, 10(11), 170. https://doi.org/10.3390/bs10110170