Do Sex Differences in Respiratory Burst Enzyme Activities Exist in Human Immunodeficiency Virus-1 Infection?
Abstract
:1. Introduction
2. Patients and Methods
2.1. Selection of Study Participants
2.2. Inclusion and Exclusion Criteria
2.3. Ethical Consideration
2.4. Specimen Collection and Analytical Methods
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Klein, S.L. Sex influences immune responses to viruses, and efficacy of prophylaxis and treatments for viral diseases. Bioessays 2012, 34, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Addo, M.M.; Alfred, M. Sex-based differences in HIV-type 1 pathogenesis. J. Infect. Dis. 2014, 209, S86–S92. [Google Scholar] [CrossRef] [PubMed]
- Mann, H.J. Drug-associated disease: Cytochrome P450 interactions. Crit. Care Clin. 2006, 22, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Szyf, M. The dynamic epigenome and its implications in toxicology. Toxicol. Sci. 2007, 100, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Delmas, M.C.; Jadand, C.; De Vincenzi, I.; Deveau, C.; Persoz, A.; Sobel, A.; Kazatchkine, M.; Brunet, J.B.; Meyer, L. Gender difference in CD4+ cell counts persist after HIV-1 infection. SEROCO Study Group. AIDS 1997, 11, 1071–1073. [Google Scholar] [PubMed]
- Touloumi, G.; Pantazis, N.; Babiker, A.G.; Walker, S.A.; Katsarou, O.; Karafoulidou, A.; Hatzakis, A.; Porter, K.; CASCADE Collaboration. Differences in HIV RNA levels before the initiation of antiretroviral therapy among 1864 individuals with known HIV-1 seroconversion dates. AIDS 2004, 18, 1697–1705. [Google Scholar] [CrossRef] [PubMed]
- Sterling, T.R.; Vlahov, D.; Astemborski, J.; Hoover, D.R.; Margolick, J.B.; Quinn, T.C. Initial plasma HIV-1 RNA levels and progression to AIDS in women and men. N. Engl. J. Med. 2001, 344, 720–345. [Google Scholar] [CrossRef] [PubMed]
- Sterling, T.R.; Lyles, C.M.; Vlahov, D.; Astemborski, J.; Margolick, J.B.; Quinn, T.C. Sex differences in longitudinal human immunodeficiency virus type 1 RNA levels among seroconverters. J. Infect. Dis. 1999, 180, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Angele, M.K.; Schwacha, M.G.; Ayala, A.; Chaudry, I.H. Effect of gender and sex hormones on immune responses following shock. Shock 2000, 14, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Bouman, A.; Schipper, M.; Heineman, M.J.; Faas, M.M. Gender difference in the non-specific and specific immune response in humans. Am. J. Reprod. Immununol. 2004, 52, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Deitch, E.A.; Ananthakrishnan, P.; Cohen, D.B.; Xu, D.Z.; Feketeova, E.; Hanser, C.J. Neutrophil activation is modulated by sex hormones after trauma-hemorrhagic shock and burn injuries. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H1456–H1465. [Google Scholar] [CrossRef] [PubMed]
- Diodata, M.D.; Knoferl, M.W.; Schwacha, M.G.; Bland, K.I.; Chaudry, I.H. Gender differences in the inflammatory response and survival following haemorrhage and subsequent sepsis. Cytokine 2001, 14, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Imahara, S.D.; Jelacic, S.; Junker, C.E.; O’Keefe, G.E. The influences of gender on human innate immunity. Surgery 2005, 138, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Logsdon, C.D.; Li, B. The role of protein synthesis and digestive enzymes in acinar cell injury. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Schroder, M.; Kaufman, R.J. The mammalian unfold protein response. Annu. Rev. Biochem. 2005, 74, 739–789. [Google Scholar] [CrossRef] [PubMed]
- Alimonti, J.B.; Blake, B.T.; Fowke, K.R. Mechanism of CD4+ T lymphocyte cell death in human immunodeficiency virus infection and AIDS. J. Gen. Virol. 2003, 7, 1649–1661. [Google Scholar] [CrossRef] [PubMed]
- Ibeh, B.O.; Eze, S.E.; Habu, J.B. Discordant levels of Superoxide Dismutase and catalase observed in ART Naïve and Experienced HIV patients in south eastern Nigeria. J. Infect. Dis. Ther. 2013, 1, 8–16. [Google Scholar]
- Welubo, A.; Smith, P.J. Oxidative stress during antituberculosis therapy in young and elderly patients. Biomed. Environ. Sci. 1995, 8, 106–110. [Google Scholar]
- Guven, F.M.K.; Aydin, H.; Yildiz, G.; Engin, A.; Celik, V.K.; Bakir, D.; Deveci, K. The importance of myeloperoxidase enzyme activity in the pathogenesis of Crimean-Congo haemorrhagic fever. J. Med. Microbiol. 2013, 64, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Olufunsho, A.; Sunday, O.; Joseph, N.; Titilope, A. Investigation of the levels of oxidative stress parameters in HIV and HIV-TB co-infected patients. J. Infect. Dev. Ctries. 2012, 6, 79–85. [Google Scholar]
- Pace, G.W.; Leaf, C.D. The role of oxidative stress in HIV disease. Free Radic. Biol. Med. 1995, 19, 523–528. [Google Scholar] [CrossRef]
- Chanock, S.; Saran, M.; Beck-Speier, I.; Fellerhoff, B.; Bauer, G. Phagocytic killing of microorganism by radical processes: Consequences of the reaction of hydroxyl radicals with chloride yielding chlorine atoms. Free Radic. Biol. Med. 1999, 26, 482–490. [Google Scholar]
- Roilides, E.; Merlins, S.; Eddy, J.; Walsh, T.J.; Pizzo, P.A.; Rubin, M. Impairment of neutrophil chemotactic and bactericidal function in children infected with human immunodeficiency virus type 1 and partial reversal after in vitro exposure to granulocyte-microphage colony-stimulating factor. J. Pediatr. 1990, 117, 531–540. [Google Scholar] [CrossRef]
- Chen, T.P.; Roberts, R.L.; Wu, K.G.; Auk, B.J.; Stiehm, E.R. Decreased superoxide anion and hydrogen peroxide production by neutrophils and monocytes in human immunodeficiency virus-infected children and adults. Pediatr. Res. 1993, 34, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H.; Kharazmi, A.; Faber, V. Blood monocyte and neutrophil functions in the acquired immunodeficiency syndrome. Scand. J. Immunol. 1986, 24, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Gabrilovich, D.; Ivanova, L.; Serebrovskaya, L.; Shepeleva, G.; Pokrovsky, V. Clinical significance of neutrophil functional activity in HIV infection. Scand. J. Infect. Dis. 1994, 26, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C.; Armentrout, R.; O’Riordan, M.A.; Storer, N.; Rizk, N.; Harriu, D.; El-Bejjani, D.; McComsey, G.A. Endothelia activation markers are linked to HIV status and are independent of antiretroviral therapy and lipoatrophy-1. J. Acquir. Immune Defic. Syndr. 2008, 49, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Syed, S.S.; Balluz, R.S.; Kabagambe, E.K.; Meyer, W.A.; Lukas, S.; Wilson, C.M.; Kapogiannis, B.G.; Nachman, S.A.; Sleasman, J.W. Assessment of biomarkers of cardiovascular risk among HIV type 1-infected Adolescents: Roel of soluble vascular cell adhesion molecule as an early indicator of endothelia inflammation. AIDS Res. Hum. Retrovir. 2013, 29, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Molloy, E.J.; O’Neil, A.J.; Grantham, J.J.; Sheridan-Pereira, M.; Fitz-Patrick, J.M.; Webb, D.W.; Watson, R.W. Sex-specific alterations in neutrophil apoptosis; the role of estradiol and progesterone. Blood 2003, 102, 2653–2659. [Google Scholar] [CrossRef] [PubMed]
- Malorni, W.; Campesi, I.; Straface, E.; Vella, S.; Franconi, F. Redox features of the cell: A gender perspective. Antioxid. Redox Signal. 2007, 9, 1779–1801. [Google Scholar] [CrossRef] [PubMed]
- Wassmann, K.; Wassman, S.; Nickenig, G. Progesterone antagonizes the vasoprotective effect of estrogen on antioxidant enzymes expression and function. Circ. Res. 2005, 97, 1046–1054. [Google Scholar] [CrossRef] [PubMed]
- Borras, C.; Sastre, J.; Garcia-Sala, D.; Lloret, A.; Pallardo, F.V.; Vina, J. Mitochondrial from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radic. Biol. Med. 2003, 34, 546–552. [Google Scholar] [CrossRef]
- Saraymen, R.; Kilic, E.; Yazar, S.; Cetin, M. Influence of sex and age on the activity of antioxidant enzymes of polymorphonuclear leukocytes in healthy subjects. Yonsei Med. J. 2003, 44, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Hazen, S.L. Myeloperoxidase and plaque vulnerability. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1143–1146. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, S.; Kugiyama, K.; Aikawa, M.; Nakamura, S.; Ogawa, H.; Libby, P. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression. Involvement of myeloperoxidase mediated oxidant in plaque erosion and thrombogenesis. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Horvathova, M.; Zitnanova, A.; Kralovicova, Z.; Balis, P.; Puzserova, A.; Muchova, J.; Klukhavsky, M.; Durackova, Z.; Bernatova, I. Sex differences in blood antioxidant defense system in juvenile rats with various genetic predispositions to hypertension. Hypertens. Res. 2016, 39, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, Y.; Hong, H.; Chang, C.W.; Guo, L.W.; Lyn-Cook, B.; Shi, L.; Ning, B. Sex differences in the expression of drug metabolizing and transporter genes in human liver. Drug Metab. Toxicol. 2012, 3, 3. [Google Scholar] [CrossRef]
- Liu, J.; Ji, H.; Zheng, W.; Wu, X.; Zhu, J.J.; Arnold, A.P.; Sanberg, K. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent. Biol. Sex Diff. 2010, 1, 6. [Google Scholar] [CrossRef] [PubMed]
- Carrel, L.; Willard, H.F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 2005, 434, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Itoh, Y.; Melamed, E.; Yang, X.; Kampf, K.; Wang, S.; Yehya, N.; Van Nas, A.; Replogle, K.; Band, M.R.; Clayton, D.F.; et al. Dosage compensation is less effective in birds than in mammals. J. Biol. 2007, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Davies, W.; Isles, A.R.; Burgoyne, P.S.; Wilkinson, L.S. X-linked imprinting: Effects on brain and behaviour. Bioessays 2006, 28, 35–44. [Google Scholar] [CrossRef] [PubMed]
- McClelland, E.E.; Smith, J.M. Gender specific differences in the immune response to infection. Arch. Immunol. Ther. Exp. (Warsz) 2011, 59, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Marriott, I.; Huet-Hudson, Y.M. Sex dimorphism in innate immune responses to infectious organisms. Immunol. Res. 2006, 34, 177–192. [Google Scholar] [CrossRef]
- Everhardt Queen, A.; Moerdyk-Schauwecker, M.; Mckee, L.M.; Leamy, L.J.; Huet, Y.M. Differential expression of inflammatory cytokines and stress genes in male and female mice in response to a lipopolysaccharide challenge. PLoS ONE 2016, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cooley, M.; Bakalov, V.; Bondy, C.A. Lipid profiles in women with 45,X vs. 46,XX primary ovarian failure. JAMA 2003, 290, 2127–2128. [Google Scholar] [CrossRef] [PubMed]
- Meditz, A.L.; MaWhinney, S.; Allshouse, A.; Feser, W.; Markowitz, M.; Little, S.; Hecht, R.; Daar, E.S.; Collier, A.C.; Margolick, J.; et al. Sex, race, and geographic region influence clinical outcomes following primary HIV-1 infection. J. Infect. Dis. 2011, 203, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, A. The biological significance of malondialdehyde determination in the assessment of tissue oxidative stress. Life Sci. 1991, 48, 301–309. [Google Scholar] [CrossRef]
- Beignon, A.S.; McKenna, K.; Skoberne, M.; Manches, O.; DaSilva, I.; Kavanagh, D.G.; Larsson, M.; Gorelick, R.J.; Lifson, J.D.; Bhardwaj, N. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J. Clin. Investig. 2005, 115, 3265–3275. [Google Scholar] [CrossRef] [PubMed]
- Ruel, T.D.; Zanoni, B.C.; Ssewanyana, I.; Cao, H.; Havlir, D.; Kamya, M.; Achan, J.; Charlebois, E.D.; Feeney, M.E. Sex differences in HIV RNA level and CD4 cell percentage during childhood. Clin. Infect. Dis. 2011, 53, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, M.; Bacchetti, P.; Miotti, P.; Quinn, T.C.; Veronese, P.; Greenblatt, R.M. Does patients sex affect human immunodeficiency virus levels? Clin. Infect. Dis. 2002, 35, 313–322. [Google Scholar] [CrossRef] [PubMed]
Measured Parameters | Female n = 25 | Male n = 25 | p Value |
---|---|---|---|
CD4+ cell count (IU/mL) | 805.1 ± 9.2 | 774.6 ± 6.1 | p < 0.005 |
CAT (IU/L) | 12.19 ± 0.06 | 10.97 ± 0.07 | p < 0.001 |
SOD (ng/mL) | 1.87 ± 0.03 | 1.68 ± 0.04 | p < 0.001 |
MPO (ng/mL) | 10.10 ± 0.28 | 8.70 ± 0.23 | p < 0.001 |
Measured Parameters | Female n = 26 | Male n = 24 | p Value |
---|---|---|---|
CD4+ cell count (IU/mL) | 347.4 ± 17.7 | 245.7 ± 9.9 | p < 0.001 |
CAT (IU/L) | 15.44 ± 0.97 | 16.74 ± 1.92 | p = 0.10 |
SOD (ng/mL) | 1.56 ± 0.022 | 1.58 ± 0.045 | p = 0.50 |
MPO (ng/mL) | 8.06 ± 1.01 | 7.11 ± 1.72 | p = 0.50 |
Parameters | Female n = 100 | Male n = 20 | p Value |
---|---|---|---|
CD4+ cell count (IU/mL) | 510.5 ± 12.7 | 376 ± 17.3 | p < 0.001 |
CAT (IU/L) | 18.24 ± 1.15 | 18.44 ± 2.82 | p = 0.80 |
SOD (ng/mL) | 1.49 ± 0.02 | 1.45 ± 0.04 | p = 0.50 |
MPO (ng/mL) | 9.67 ± 1.34 | 9.50 ± 2.82 | p = 0.88 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emokpae, M.A.; Mrakpor, B.A. Do Sex Differences in Respiratory Burst Enzyme Activities Exist in Human Immunodeficiency Virus-1 Infection? Med. Sci. 2016, 4, 19. https://doi.org/10.3390/medsci4040019
Emokpae MA, Mrakpor BA. Do Sex Differences in Respiratory Burst Enzyme Activities Exist in Human Immunodeficiency Virus-1 Infection? Medical Sciences. 2016; 4(4):19. https://doi.org/10.3390/medsci4040019
Chicago/Turabian StyleEmokpae, Mathias Abiodun, and Beatrice Aghogho Mrakpor. 2016. "Do Sex Differences in Respiratory Burst Enzyme Activities Exist in Human Immunodeficiency Virus-1 Infection?" Medical Sciences 4, no. 4: 19. https://doi.org/10.3390/medsci4040019
APA StyleEmokpae, M. A., & Mrakpor, B. A. (2016). Do Sex Differences in Respiratory Burst Enzyme Activities Exist in Human Immunodeficiency Virus-1 Infection? Medical Sciences, 4(4), 19. https://doi.org/10.3390/medsci4040019