An Assessment of Oxidative Damage and Non-Enzymatic Antioxidants Status Alteration in Relation to Disease Progression in Breast Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Patients and Control Cases
2.2. Analytical Methods
2.2.1. Reagents
2.2.2. Estimation of 8-Hydroxy-2-deoxyguanosine
2.2.3. Assay of Non-Enzymatic Antioxidants
2.2.4. Assay of Total Antioxidant Status
2.2.5. Cell Proliferation Assay
2.3. Statistical Analysis
3. Results
3.1. Clinical Profile of Breast Disease Patients
3.2. Characteristics of the Patients
3.3. Level of Oxidative Stress Markersand Cell Proliferation Index in Benign and Malignant Breast Disease Cases and Controls
3.4. Levels of Oxidative Stress Markers and Cell Proliferation Index in Breast Carcinoma Patientsin Relation to Their Pathological Stages
3.5. Interrelationship between Cell Proliferation Activity and Oxidative Stress Markers
3.6. The Level of 8-OHdG, Non-Enzymatic Antioxidants, the Cell Proliferation Index and the Assessment of Risk of Breast Cancer
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Murray, C.J.L.; Lopez, A.D. Mortality by cause for eight regions of the world: Global burden of disease study. Lancet 1997, 349, 1269–1276. [Google Scholar] [CrossRef]
- Schuerch, C., 3rd; Rosen, P.P.; Hirota, T.; Itabashi, M.; Yamamoto, H.; Kinne, D.W.; Beattie, E.J., Jr. A pathologic study of benign breast diseases in Tokyo and New York. Cancer 1982, 50, 1899–1903. [Google Scholar] [CrossRef]
- Klaunig, J.E.; Kamendulis, L.M. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 239–267. [Google Scholar] [CrossRef] [PubMed]
- Klaunig, J.E.; Kamendulis, L.M.; Hocevar, B.A. Oxidative stress and oxidative damage in carcinogenesis. Toxicol. Pathol. 2010, 38, 96–109. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Int. 2006, 160, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Pande, D.; Negi, R.; Karki, K.; Khanna, S.; Khanna, R.S.; Khanna, H.D. Oxidative damage markers as possible discriminatory biomarkers in breast carcinoma. Trans. Res. 2012, 160, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Pani, G.; Galeotti, T.; Chiarugi, P. Metastasis: Cancer cell's escape from oxidative stress. Cancer Metastasis Rev. 2010, 29, 351–378. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.A.; Laskin, D.L.; Smith, C.V.; Robertson, F.M.; Allen, E.M.; Doorn, J.A.; Slikker, W. Nitrative and oxidative stress in toxicology and disease. Toxicol. Sci. 2010, 112, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Meirow, D.; Schenker, J.G. European Society for Human Reproduction and Embryology The link between female infertility and cancer: epidemiology and possible aetiologies. Human Reproduction Update 1996, 2, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Kolonel, L.N.; Altshuler, D.; Henderson, B.E. The multiethnic cohort study: exploring genes, lifestyle and cancer risk. Nature Reviews Cancer 2004, 4, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Surakasula, A.; Nagarjunapu, G.C.; Raghavaiah, K.V. A comparative study of pre- and post-menopausal breast cancer: Risk factors, presentation, characteristics and management. J. Res. Pharm. Pract. 2014, 3, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Gönenç, A.; Erten, D.; Aslan, S.; Akinci, M.; Simşek, B.; Torun, M. Lipid peroxidation and antioxidant status in blood and tissue of malignant breast tumor and benign breast disease. Cell Biol. Int. 2006, 30, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Zarrini, A.S.; Moslemi, D.; Mahmood, H.P.; Mosapour, V.A.; Kelagari, Z.S. The status of antioxidants, malondialdehyde and some trace elements in serum of patients with breast cancer. Caspian J. Intern. Med. 2016, 7, 31–36. [Google Scholar]
- Greene, F.L.; Page, D.L.; Fleming, I.D.; Fritz, A.G.; Balch, C.M.; Haller, D.G.; Morrow, M. AJCC Cancer Staging Handbook. TNM Classification of Malignant Tumors, 6th ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Shen, J.; Deininger, P.; Hunt, J.D.; Zhao, H. 8-hydroxy-2’-deoxyguanosine as a potential survival biomarker in patients with non-small-cell lung cancer. Cancer 2007, 109, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Paterson, J.C.; Wiggins, H.S. An estimation of plasma vitamin A and the vitamin A absorption test. J. Clin. Pathol. 1954, 7, 6–60. [Google Scholar] [CrossRef]
- Quaife, M.L.; Dju, M.Y. Chemical estimation of vitamin E in tissue and the tocopherol content of some normal human tissues. J. Biol. Chem. 1949, 180, 263–272. [Google Scholar] [PubMed]
- Gowenlock, A.H. Varley’s Practical Clinical Biochemistry, 6th ed.; Heinemann Medical Books: London, UK, 1988. [Google Scholar]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci (Lond). 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Pande, D.; Negi, R.; Karki, K.; Dwivedi, U.S.; Khanna, R.S.; Khanna, H.D. Simultaneous progression of oxidative stress, angiogenesis, and cell proliferation in prostate carcinoma. Urol. Oncol. 2013, 31, 1561–1566. [Google Scholar] [CrossRef] [PubMed]
- Marnett, L.J. Oxyradicals and DNA damage. Carcinogenesis 2000, 21, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Diakowska, D.; Lewandowski, A.; Kopec, W.; Diakowski, W.; Chrzanowska, T. Oxidative DNA damage and total antioxidant status in serum of patients with esophageal squamous cell carcinoma. Hepatogastroenterology 2007, 54, 1701–1704. [Google Scholar] [PubMed]
- Tanaka, H.; Fujita, N.; Sugimoto, R.; Urawa, N.; Horiike, S.; Kobayashi, Y.; Iwasa, M.; Ma, N.; Kawanishi, S.; Watanabe, S.; et al. Hepatic oxidative DNA damage is associated with increased risk for hepatocellular carcinoma in chronic hepatitis C. Br. J. Cancer 2008, 98, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Karihtala, P.; Kauppila, S.; Puistola, U.; Jukkola-Vuorinen, A. Divergent behaviour of oxidative stress markers 8-hydroxydeoxyguanosine (8-OHdG) and 4-hydroxy-2-nonenal (HNE) in breast carcinogenesis. Histopathology 2011, 58, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Karki, K.; Pande, D.; Negi, R.; Khanna, S.; Khanna, R.S.; Khanna, H.D. Association between biomarkers of oxidative stress, trace elements and cell proliferation index in the patients of benign and malignant breast diseases. J. Environ. Pathol. Toxicol. Oncol. 2015, 34, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Karki, K.; Pande, D.; Negi, R.; Khanna, S.; Khanna, R.S.; Khanna, H.D. Expression of serum toll-like receptor 9 and oxidative damage markers in benign and malignant breast diseases. DNA Cell Biol. 2014, 33, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Aymelek, G.; Darya, E.; Sabahattin, A.; Melih, A.; Bolkan, Ş.; Meral, T. Lipid peroxidation and antioxidant status in blood and tissue of malignant breast tumor and benign breast disease. Cell Biol. Int. 2006, 30, 376–380. [Google Scholar]
- Karihtala, P.; Soini, Y. Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. APMIS 2007, 115, 81–103. [Google Scholar] [CrossRef] [PubMed]
- Nagini, S.; Saroja, M. Circulating lipid peroxides and antioxidants as biomarkers of tumor burden in patients with oral squamous cell carcinoma. J. Biochem. Mol. Biol. Biophys. 2001, 5, 55–59. [Google Scholar]
- Ray, G.; Batra, S.; Shukla, N.K.; Deo, S.; Raina, V.; Ashok, S.; Husain, S.A. Lipid peroxidation, free radical production and antioxidant status in breast cancer. Breast Cancer Res. Treat. 2000, 59, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Seven, A.; Erbil, Y.; Seven, R.; Inci, F.; Gülyaşar, T.; Barutçu, B.; Candan, G. Breast cancer and benign breast disease patients evaluated in relation to oxidative stress. Cancer Biochem. Biophys. 1998, 16, 333–345. [Google Scholar] [PubMed]
- Ramaswamy, G.; Krishnamoorthy, L. Serum carotene, vitamin, A.; and vitamin C levels in breast cancer and cancer of the uterine cervix. Nutr. Cancer 1996, 25, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Pande, D.; Karki, K.; Negi, R.; Khanna, S.; Khanna, R.S.; Khanna, H.D. NF-κB p65 subunit DNA-binding activity: Association with depleted antioxidant levels in breast carcinoma patients. Cell Biochem. Biophys. 2013, 67, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Steinemann, T.L. Vitamin A deficiency and the eye. Int. Ophthalmol. Clin. 2000, 40, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Groussard, C.; Rannou-Bekono, F.; Machefer, G.; Chevanne, M.; Vincent, S.; Sergent, O.; Cillard, J.; Gratas-Delamarche, A. Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur. J. Appl. Physiol. 2003, 89, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Frei, B.; England, L.; Ames, B.N. Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Natl. Acad. Sci. USA 1989, 86, 6377–6381. [Google Scholar] [CrossRef] [PubMed]
- Duarte, T.L.; Lunec, J. Review: When is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C. Free Radic. Res. 2005, 39, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Niki, E. Interaction of ascorbate and alpha-tocopherol. Ann. NY Acad. Sci. 1987, 498, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Abiaka, C.; Al-Awadi, F.; Gulshan, S.; Al-Sayer, H.; Behbehani, A.; Farghaly, M.; Simbeye, A. Plasma concentrations of alpha-tocopherol and urate in patients with different types of cancer. J. Clin. Pharm. Ther. 2001, 26, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Kolanjiappan, K.; Manoharan, S.; Kayalvizhi, M. Measurement of erythrocyte lipids, lipid peroxidation, antioxidants and osmotic fragility in cervical cancer patients. Clin. Chim. Acta 2002, 326, 143–149. [Google Scholar] [CrossRef]
- Slater, T.F. Free-radical mechanisms in tissue injury. Biochem. J. 1984, 222, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Erhola, M.; Kellokumpu-Lehtinen, P.; Metsa-Ketela, T.; Alanko, K.; Nieminen, M.M. Effects of anthracyclin-based chemotherapy on total plasma antioxidant capacity in small cell lung cancer patients. Free Radic. Biol. Med. 1996, 21, 383–390. [Google Scholar] [CrossRef]
- Yano, T.; Yajima, S.; Hagiwara, K.; Kumadaki, I.; Yano, Y.; Otani, S.; Uchida, M.; Ichikawa, T. Vitamin E inhibits cell proliferation and the activation of extracellular signal-regulated kinase during the promotion phase of lung tumorigenesis irrespective of antioxidative effect. Carcinogenesis 2000, 21, 2129–2133. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Harp, C.; Tharappel, J.C.; Spear, B.T.; Glauert, H.P. Effect of vitamin E on hepatic cell proliferation and apoptosis in mice deficient in the p50 subunit of NF-κB after treatment with phenobarbital. Food Chem. Toxicol. 2011, 49, 2706–2709. [Google Scholar] [CrossRef] [PubMed]
- Zhai, P.; Zeng, J.; Tan, N.; Wang, J.; Huang, L.; She, W. Effects of vitamin C on A549 cell proliferation, apoptosis and expressions of Caspase, Survivin. Zhongguo Fei Ai Za Zhi 2010, 13, 89–93. [Google Scholar] [PubMed]
- Achkar, C.C.; Derguini, F.; Blumberg, B.; Langston, A.; Levin, A.A.; Speck, J.; Evans, R.M.; Bolado, J., Jr.; Nakanishi, K.; Buck, J.; Gudas, L.J. 4-Oxoretinol, a new natural ligand and transactivator of the retinoic acid receptors. Proc. Natl. Acad. Sci. USA 1996, 93, 4879–4884. [Google Scholar] [CrossRef] [PubMed]
- Beresford, M.J.; Wilson, G.D.; Makris, A. Measuring proliferation in breast cancer: Practicalities and applications. Breast Cancer Res. 2006, 8, 216. [Google Scholar] [CrossRef] [PubMed]
- Maalouf, S.; El-Sabban, M.; Darwiche, N.; Gali-Muhtasib, H. Protective effect of vitamin E on ultraviolet B light-induced damage in keratinocytes. Mol. Carcinog. 2002, 34, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Duarte, T.L.; Cooke, M.S.; Jones, G.D. Gene expression profiling reveals new protective roles for vitamin C in human skin cells. Free Radic. Biol. Med. 2009, 46, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, M.; Kuszynski, C.A.; Balmoori, J.; Joshi, S.S.; Stohs, S.J.; Bagchi, D. Protective effects of antioxidants against smokeless tobacco-induced oxidative stress and modulation of Bcl-2 and p53 genes in human oral keratinocytes. Free Radic. Res. 2001, 35, 181–194. [Google Scholar] [CrossRef] [PubMed]
Clinical Symptoms | Breast Carcinoma (n = 60) | Benign Breast Diseases (n = 60) |
---|---|---|
Lump | ||
No | 8 (13.33%) | 6 (10%) |
Yes | 52 (86.67%) | 54 (90%) |
Ulceration of skin/nipple | ||
No | 45 (75%) | 46 (76.7%) |
Yes | 15 (25%) | 14 (23.3%) |
Breast pain | ||
No | 13 (21.67%) | 12 (20%) |
Yes | 47 (78.33%) | 48 (80%) |
Nipple discharge | ||
No | 55 (91.67%) | 58 (96.7%) |
Yes | 5 (8.33%) | 2 (3.3%) |
Mass in axilla | ||
No | 56 (93.33%) | 57 (95%) |
Yes | 4 (6.67%) | 3 (5%) |
Parameters | Malignant (n = 60) | Benign (n = 60) | Control (n = 60) | χ2 value | p value |
---|---|---|---|---|---|
Age | |||||
≤45 years | 37 (61.67%) | 41 (68.33%) | 40 (66.67%) | 0.640 | 0.726* |
>45 years | 23 (38.33%) | 19 (31.67%) | 20 (33.33%) | ||
Menopausal status | |||||
Pre-menopausal | 21 (35%) | 15 (25%) | 18 (30%) | 1.429 | 0.490* |
Post-menopausal | 39 (65%) | 45 (75%) | 42 (70%) | ||
Parity | |||||
≤3 | 46 (76.67%) | 48 (80%) | 48 (80%) | 0.265 | 0.875* |
>3 | 14 (23.33%) | 12 (20%) | 12 (20%) | ||
Residence | |||||
Urban | 10 (16.67%) | 10 (16.67%) | 11 (18.33%) | 0.078 | 0.962* |
Rural | 50 (83.33%) | 50 (83.33%) | 49 (81.67%) | ||
Diet | |||||
Vegetarian | 52 (86.67%) | 48 (80%) | 51 (85%) | 1.069 | 0.586* |
Non-vegetarian | 8 (13.33%) | 12 (20%) | 9 (15%) |
Parameter | Serum Value | p value | ||||
---|---|---|---|---|---|---|
Malignant | Benign | Control | Malignant/Benign | Malignant/Control | Benign/Controls | |
8-OHdG (pg/mL) | 432.1 ± 15.6 | 242.2 ± 5.9 | 222.9 ± 6.4 | p < 0.001* | p < 0.001* | p = 0.037* |
Vitamin A (µg/dL) | 55.5 ± 2.9 | 77.69 ± 6.8 | 99.7 ± 8.6 | p = 0.003* | p < 0.001* | p = 0.047* |
Vitamin C (mg/dL) | 1.7 ± 0.1 | 3.2 ± 0.7 | 5.4 ± 0.7 | p = 0.022* | p < 0.001* | p = 0.032* |
Vitamin E (mg/L) | 10.9 ± 0.6 | 15.3 ± 0.6 | 17.8 ± 0.9 | p < 0.001* | p < 0.001* | p = 0.031* |
Cell proliferation index (ng/mL) | 1.4 ± 0.1 | 0.9 ± 0.1 | 0.7 ± 0.0 | p < 0.001* | p < 0.001* | p = 0.006* |
8-OHdG (pg/mL) | Vitamin A (µg/dL) | Vitamin C (mg/dL) | Vitamin E (mg/L) | TAS (mmol/L) | Cell Proliferation (ng/mL) | |
---|---|---|---|---|---|---|
Stages | ||||||
I/II (n = 30) | 339.9 ± 7.8 | 66.2 ± 4.0 | 2.0 ± 0.1 | 13.6 ± 0.7 | 0.2 ± 0.0 | 1.0 ± 0.0 |
III/IV (n = 30) | 511.9 ± 19.5 | 47.7 ± 3.4 | 1.3 ± 0.1 | 7.8 ± 0.7 | 0.1 ± 0.0 | 1.8 ± 0.1 |
p value | <0.001* | <0.001* | <0.001* | <0.001* | <0.001* | <0.001* |
Tumor Extension | ||||||
1–2 (n = 30) | 346.1 ± 8.5 | 65.8 ± 4.1 | 1.9 ± 0.1 | 12.9 ± 0.8 | 0.2 ± 0.0 | 1.1 ± 0.1 |
3–4 (n = 30) | 513.6 ± 21.0 | 43.0 ± 4.1 | 1.300 ± 0.093 | 8.6 ± 0.7 | 0.1 ± 0.0 | 1.7 ± 0.1 |
p value | <0.001* | <0.001* | <0.001* | <0.001* | <0.001* | <0.001* |
Lymph Node Metastasis | ||||||
0 (n = 39) | 352.7 ± 15.3 | 69.1 ± 4.7 | 2.1 ± 0.1 | 13.2 ± 0.8 | 0.2 ± 0.0 | 1.0 ± 0.1 |
1 (n = 21) | 469.3 ± 20.1 | 50.4 ± 3.1 | 1.3 ± 0.1 | 9.6 ± 0.8 | 0.1 ± 0.0 | 1.6 ± 0.1 |
p value | <0.001* | 0.001* | <0.001* | 0.003* | 0.010* | <0.001* |
Distant Metastasis | ||||||
0 (n = 54) | 402.8 ± 13.5 | 59.2 ± 3.0 | 1.7 ± 0.1 | 11.3 ± 0.6 | 0.2 ± 0.0 | 1.3 ± 0.1 |
1 (n = 6) | 634.5 ± 21.6 | 36.3 ± 2.1 | 0.8 ± 0.1 | 4.8 ± 0.7 | 0.1 ± 0.0 | 2.2 ± 0.2 |
p value | <0.001* | 0.015* | <0.001* | 0.001* | 0.001* | <0.001* |
Histology | ||||||
Ductal (n = 49) | 447.1 ± 18.0 | 63.7 ± 6.9 | 2.1 ± 0.1 | 13.2 ± 1.1 | 0.2 ± 0.0 | 1.4 ± 0.1 |
Others (n = 11) | 353.5 ± 15.2 | 55.6 ± 3.1 | 1.5 ± 0.1 | 10.3 ± 0.7 | 0.2 ± 0.1 | 1.1 ± 0.1 |
p value | 0.019* | 0.278 | 0.006* | 0.071 | 0.067 | 0.020* |
Cell Proliferation Index | 8-OHdG | |
---|---|---|
8-OHdG | r = 0.53 (p < 0.001*) | 1 |
Vitamin A | r = −0.52 (p < 0.001*) | r = −0.25 (p = 0.055) |
Vitamin C | r = −0.37 (p = 0.019*) | r = −0.63 (p < 0.001*) |
Vitamin E | r = −0.56 (p < 0.001*) | r = −0.60 (p < 0.001*) |
TAS | r = −0.73 (p < 0.001*) | r = −0.54 (p < 0.001*) |
With Malignancy and Without Any Breast Disease | With Malignancy and Benign Breast Disease | |||
---|---|---|---|---|
OR (95% CI) | p value | OR (95% CI) | p value | |
8-OHdG | 2.22 (3.33–14.82) | <0.001* | 5.73 (2.34–9.68) | <0.001* |
Vitamin A | 0.98 (0.98–0.99) | 0.025* | 0.98 (0.97–0.99) | <0.001* |
Vitamin C | 0.79 (0.67–0.92) | 0.034* | 0.72 (0.62–0.84) | <0.000* |
Vitamin E | 0.77 (0.69–0.86) | <0.001* | 0.72 (0.65–0.81) | <0.001* |
TAS | 1.89 (1.79–1.41) | <0.001* | 1.62 (1.57–1.99) | <0.001* |
Cell proliferation index | 2.78 (2.60–7.13) | <0.001* | 9.96 (3.45–11.54) | <0.001* |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karki, K.; Pande, D.; Negi, R.; Khanna, R.S.; Khanna, H.D. An Assessment of Oxidative Damage and Non-Enzymatic Antioxidants Status Alteration in Relation to Disease Progression in Breast Diseases. Med. Sci. 2016, 4, 17. https://doi.org/10.3390/medsci4040017
Karki K, Pande D, Negi R, Khanna RS, Khanna HD. An Assessment of Oxidative Damage and Non-Enzymatic Antioxidants Status Alteration in Relation to Disease Progression in Breast Diseases. Medical Sciences. 2016; 4(4):17. https://doi.org/10.3390/medsci4040017
Chicago/Turabian StyleKarki, Kanchan, Deepti Pande, Reena Negi, Ranjana S. Khanna, and H.D. Khanna. 2016. "An Assessment of Oxidative Damage and Non-Enzymatic Antioxidants Status Alteration in Relation to Disease Progression in Breast Diseases" Medical Sciences 4, no. 4: 17. https://doi.org/10.3390/medsci4040017
APA StyleKarki, K., Pande, D., Negi, R., Khanna, R. S., & Khanna, H. D. (2016). An Assessment of Oxidative Damage and Non-Enzymatic Antioxidants Status Alteration in Relation to Disease Progression in Breast Diseases. Medical Sciences, 4(4), 17. https://doi.org/10.3390/medsci4040017