Leukocyte Ratios Predict Metastasis, Recurrence, and Mortality in Breast Cancer Patients Receiving Cytotoxic Chemotherapy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Hemogram Data Collection
2.3. Collection of Clinical-Pathological Data
2.4. Receiver Operating Characteristic (ROC) Curves
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Breast Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed on 10 September 2024).
- Truffi, M.; Sottotetti, F.; Gafni, N.; Albasini, S.; Piccotti, F.; Morasso, C.; Tibollo, V.; Mocchi, M.; Zanella, V.; Corsi, F. Prognostic Potential of Immune Inflammatory Biomarkers in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Cancers 2022, 14, 5287. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, Y.; Dou, H.; Chen, X.; Wang, J.; Xiao, M. Association of Immune Inflammatory Biomarkers with Pathological Complete Response and Clinical Prognosis in Young Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy. Front. Oncol. 2024, 14, 1349021. [Google Scholar] [CrossRef] [PubMed]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, Inflammation, and Cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Cellular and Molecular Immunology, 10th ed.; GEN|Grupo Editorial Nacional S.A.: Rio de Janeiro, Brazil, 2021; ISBN 978-0-323-75748-5. [Google Scholar]
- Pinho, S.; Frenette, P.S. Haematopoietic Stem Cell Activity and Interactions with the Niche. Nat. Rev. Mol. Cell Biol. 2019, 20, 303–320. [Google Scholar] [CrossRef]
- Bozhilov, Y.K.; Hsu, I.; Brown, E.J.; Wilkinson, A.C. In Vitro Human Haematopoietic Stem Cell Expansion and Differentiation. Cells 2023, 12, 896. [Google Scholar] [CrossRef]
- Coradi, C.; Panis, C. Harnessing Hematological Ratios: Prognostic Insights for Breast Cancer Management. Clin. Transl. Oncol. 2024, 27, 2041–2053. [Google Scholar] [CrossRef]
- Guthrie, G.J.K.; Charles, K.A.; Roxburgh, C.S.D.; Horgan, P.G.; McMillan, D.C.; Clarke, S.J. The Systemic Inflammation-Based Neutrophil–Lymphocyte Ratio: Experience in Patients with Cancer. Crit. Rev. Oncol./Hematol. 2013, 88, 218–230. [Google Scholar] [CrossRef]
- Truffi, M.; Piccotti, F.; Albasini, S.; Tibollo, V.; Morasso, C.F.; Sottotetti, F.; Corsi, F. Preoperative Systemic Inflammatory Biomarkers Are Independent Predictors of Disease Recurrence in ER+ HER2- Early Breast Cancer. Front. Oncol. 2021, 11, 773078. [Google Scholar] [CrossRef]
- Jalali, A.; Miresse, D.; Fahey, M.R.; Ni Mhaonaigh, N.; McGuire, A.; Bourke, E.; Kerin, M.J.; Brown, J.A.L. Peripheral Blood Cell Ratios as Prognostic Indicators in a Neoadjuvant Chemotherapy-Treated Breast Cancer Cohort. Curr. Oncol. 2022, 29, 7512–7523. [Google Scholar] [CrossRef]
- NIH Dictionary of Cancer Terms. Available online: https://www.cancer.gov/widgets/termdictionarywidgetenglish (accessed on 13 April 2024).
- Li, Y.; Fei, Y. The Predictive Value of Serum NLR, SII, and OPNI for Lymph Node Metastasis in Breast Cancer Patients with Internal Mammary Lymph Nodes after Thoracoscopic Surgery. Open Life Sci. 2024, 19, 20220763. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network NCCN Guidelines—Breast Cancer. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1419 (accessed on 2 October 2024).
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New Response Evaluation Criteria in Solid Tumours: Revised RECIST Guideline (Version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Burstein, H.J.; Curigliano, G.; Thürlimann, B.; Weber, W.P.; Poortmans, P.; Regan, M.M.; Senn, H.J.; Winer, E.P.; Gnant, M.; Aebi, S.; et al. Customizing Local and Systemic Therapies for Women with Early Breast Cancer: The St. Gallen International Consensus Guidelines for Treatment of Early Breast Cancer 2021. Ann. Oncol. 2021, 32, 1216–1235. [Google Scholar] [CrossRef]
- Martínez-Camblor, P.; Pardo-Fernández, J.C. The Youden Index in the Generalized Receiver Operating Characteristic Curve Context. Int. J. Biostat. 2019, 15, 20180060. [Google Scholar] [CrossRef] [PubMed]
- Lyman, G.H. Impact of Chemotherapy Dose Intensity on Cancer Patient Outcomes. J. Natl. Compr. Cancer Netw. 2009, 7, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Dogan, E.; Kara, H.G.; Kosova, B.; Cetintas, V.B. Targeting Apoptosis to Overcome Chemotherapy Resistance. In Metastasis; Sergi, C.M., Ed.; Exon Publications: Brisbane, Australia, 2022; ISBN 978-0-645-33202-5. [Google Scholar]
- Hirata, E.; Sahai, E. Tumor Microenvironment and Differential Responses to Therapy. Cold Spring Harb. Perspect. Med. 2017, 7, a026781. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, L.; Mijacika, A.; Osorio, J.C. Targeting Myeloid Cells for Cancer Immunotherapy. Cancer Immunol. Res. 2025, 13, 1700–1715. [Google Scholar] [CrossRef]
- Zamarron, B.F.; Chen, W. Dual Roles of Immune Cells and Their Factors in Cancer Development and Progression. Int. J. Biol. Sci. 2011, 7, 651–658. [Google Scholar] [CrossRef]
- Ugel, S.; Canè, S.; Sanctis, F.D.; Bronte, V. Monocytes in the Tumor Microenvironment. Annu. Rev. Pathol. Mech. Dis. 2021, 16, 93–122. [Google Scholar] [CrossRef]
- Veglia, F.; Perego, M.; Gabrilovich, D. Myeloid-Derived Suppressor Cells Coming of Age. Nat. Immunol. 2018, 19, 108–119. [Google Scholar] [CrossRef]
- Kumar, V.; Patel, S.; Tcyganov, E.; Gabrilovich, D.I. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol. 2016, 37, 208–220. [Google Scholar] [CrossRef]
- Tietscher, S.; Wagner, J.; Anzeneder, T.; Langwieder, C.; Rees, M.; Sobottka, B.; de Souza, N.; Bodenmiller, B. A Comprehensive Single-Cell Map of T Cell Exhaustion-Associated Immune Environments in Human Breast Cancer. Nat. Commun. 2023, 14, 98. [Google Scholar] [CrossRef]
- Gay, L.J.; Felding-Habermann, B. Contribution of Platelets to Tumour Metastasis. Nat. Rev. Cancer 2011, 11, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Kuter, D.J. Treatment of Chemotherapy-Induced Thrombocytopenia in Patients with Non-Hematologic Malignancies. Haematologica 2022, 107, 1243–1263. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Harris, J.; Ware, J. Platelets: Linking Hemostasis and Cancer. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2362–2367. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Suh, Y.; Jung, K. Context Drives Diversification of Monocytes and Neutrophils in Orchestrating the Tumor Microenvironment. Front. Immunol. 2019, 10, 1817. [Google Scholar] [CrossRef]
- Bracci, L.; Schiavoni, G.; Sistigu, A.; Belardelli, F. Immune-Based Mechanisms of Cytotoxic Chemotherapy: Implications for the Design of Novel and Rationale-Based Combined Treatments against Cancer. Cell Death Differ. 2014, 21, 15–25. [Google Scholar] [CrossRef]
- Zhang, Z.; Lang, J. The Prognostic and Clinical Value of Neutrophil-to-Lymphocyte Ratio (NLR) in Ovarian Cancer: A Systematic Review and Meta-Analysis. J. Med. Biochem. 2024, 43, 323–333. [Google Scholar] [CrossRef]
- Tan, S.; Zheng, Q.; Zhang, W.; Zhou, M.; Xia, C.; Feng, W. Prognostic Value of Inflammatory Markers NLR, PLR, and LMR in Gastric Cancer Patients Treated with Immune Checkpoint Inhibitors: A Meta-Analysis and Systematic Review. Front. Immunol. 2024, 15, 1408700. [Google Scholar] [CrossRef]
- Park, Y.H.; Lal, S.; Lee, J.E.; Choi, Y.-L.; Wen, J.; Ram, S.; Ding, Y.; Lee, S.-H.; Powell, E.; Lee, S.K.; et al. Chemotherapy Induces Dynamic Immune Responses in Breast Cancers That Impact Treatment Outcome. Nat. Commun. 2020, 11, 6175. [Google Scholar] [CrossRef]
- Kuninaka, S.; Yano, T.; Yokoyama, H.; Fukuyama, Y.; Terazaki, Y.; Uehara, T.; Kanematsu, T.; Asoh, H.; Ichinose, Y. Direct influences of pro-inflammatory cytokines (IL-1β, TNF-α, IL-6) on the proliferation and cell-surface antigen expression of cancer cells. Cytokine 2000, 12, 8–11. [Google Scholar] [CrossRef]
- Rodríguez, I.J.; Bernal-Estévez, D.A.; Llano-León, M.; Bonilla, C.E.; Parra-López, C.A. Neoadjuvant Chemotherapy Modulates Exhaustion of T Cells in Breast Cancer Patients. PLoS ONE 2023, 18, e0280851. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.-T.; Li, Z.-L.; He, Z.-X.; Qiu, J.-X.; Zhou, S.-F. Molecular Mechanisms for Tumour Resistance to Chemotherapy. Clin. Exp. Pharmacol. Physiol. 2016, 43, 723–737. [Google Scholar] [CrossRef]
- Dialani, V.; Chadashvili, T.; Slanetz, P.J. Role of Imaging in Neoadjuvant Therapy for Breast Cancer. Ann. Surg. Oncol. 2015, 22, 1416–1424. [Google Scholar] [CrossRef]
- Lucas, D.; Scheiermann, C.; Chow, A.; Kunisaki, Y.; Bruns, I.; Barrick, C.; Tessarollo, L.; Frenette, P.S. Chemotherapy-Induced Bone Marrow Nerve Injury Impairs Hematopoietic Regeneration. Nat. Med. 2013, 19, 695–703. [Google Scholar] [CrossRef]
- Crawford, J.; Herndon, D.; Gmitter, K.; Weiss, J. The Impact of Myelosuppression on Quality of Life of Patients Treated with Chemotherapy. Future Oncol. 2024, 20, 1515–1530. [Google Scholar] [CrossRef]
- Ramadori, G.; Cameron, S. Effects of Systemic Chemotherapy on the Liver. Ann. Hepatol. 2010, 9, 133–143. [Google Scholar] [CrossRef]
- Zaheed, M.; Wilcken, N.; Willson, M.L.; O’Connell, D.L.; Goodwin, A. Sequencing of anthracyclines and taxanes in neoadjuvant and adjuvant therapy for early breast cancer. Cochrane Database Syst. Rev. 2019, 2019, CD012873. [Google Scholar] [CrossRef]
- Tayal, R.; Mannan, A.; Singh, S.; Dhiman, S.; Singh, T.G. Unveiling the Complexities: Exploring Mechanisms of Anthracyclineinduced Cardiotoxicity. Curr. Cardiol. Rev. 2025, 21, 42–77. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Qiao, P.; Ying, Y.; Lin, S.; Lu, F.; Gao, C.; Li, M.; Yang, B.; Zhou, H. Mechanisms of Cisplatin-Induced Acute Kidney Injury: The Role of NRF2 in Mitochondrial Dysfunction and Metabolic Reprogramming. Antioxidants 2025, 14, 775. [Google Scholar] [CrossRef] [PubMed]
- Godiveau, M.; Jahanmohan, J.P.; Abrial, C.; Durando, X. Chemotherapy-induced Peripheral Neuropathy in Patients with Breast Cancer Treated with Taxanes (Review). Oncol. Lett. 2025, 30, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Han, S.; Hou, Z.; Yang, C.; Zhao, Y. Tumor-Associated Macrophages within the Immunological Milieu: An Emerging Focal Point for Therapeutic Intervention. Heliyon 2024, 10, e36839. [Google Scholar] [CrossRef]
- Marin-Acevedo, J.A.; Dholaria, B.; Soyano, A.E.; Knutson, K.L.; Chumsri, S.; Lou, Y. Next Generation of Immune Checkpoint Therapy in Cancer: New Developments and Challenges. J. Hematol. Oncol. 2018, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Xiao, H.; Xiang, Y.; Zhong, D.; Liu, Y.; Wang, Y.; Zhang, W. Strategies to Overcome PD-1/PD-L1 Blockade Resistance: Focusing on Combination with Immune Checkpoint Blockades. J. Cancer 2025, 16, 3425–3449. [Google Scholar] [CrossRef]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016, 39, 98. [Google Scholar] [CrossRef] [PubMed]
- Zelenay, S.; van der Veen, A.G.; Böttcher, J.P.; Snelgrove, K.J.; Rogers, N.; Acton, S.E.; Chakravarty, P.; Girotti, M.R.; Marais, R.; Quezada, S.A.; et al. Cyclooxygenase-Dependent Tumor Growth through Evasion of Immunity. Cell 2015, 162, 1257–1270. [Google Scholar] [CrossRef] [PubMed]
- Hailemichael, Y.; Johnson, D.H.; Abdel-Wahab, N.; Foo, W.C.; Bentebibel, S.-E.; Daher, M.; Haymaker, C.; Wani, K.; Saberian, C.; Ogata, D.; et al. Interleukin-6 Blockade Abrogates Immunotherapy Toxicity and Promotes Tumor Immunity. Cancer Cell 2022, 40, 509–523.e6. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Fletcher, R.; Yu, J.; Zhang, L. Immunogenic Effects of Chemotherapy-Induced Tumor Cell Death. Genes Dis. 2018, 5, 194–203. [Google Scholar] [CrossRef]
- Szwed, M.; Poczta-Krawczyk, A.; Bukowski, K.; Marczak, A. Nanoparticle-Mediated Ferroptosis for Cancer Therapy: Mechanisms and Therapeutic Strategies. Nanotechnol. Sci. Appl. 2025, 18, 445–470. [Google Scholar] [CrossRef]
- Merlano, M.C.; Denaro, N.; Galizia, D.; Ruatta, F.; Occelli, M.; Minei, S.; Abbona, A.; Paccagnella, M.; Ghidini, M.; Garrone, O. How Chemotherapy Affects the Tumor Immune Microenvironment: A Narrative Review. Biomedicines 2022, 10, 1822. [Google Scholar] [CrossRef]
- Bozzini, C.; Busti, F.; Marchi, G.; Vianello, A.; Cerchione, C.; Martinelli, G.; Girelli, D. Anemia in Patients Receiving Anticancer Treatments: Focus on Novel Therapeutic Approaches. Front. Oncol. 2024, 14, 1380358. [Google Scholar] [CrossRef]
- Natalucci, V.; Virgili, E.; Calcagnoli, F.; Valli, G.; Agostini, D.; Zeppa, S.D.; Barbieri, E.; Emili, R. Cancer Related Anemia: An Integrated Multitarget Approach and Lifestyle Interventions. Nutrients 2021, 13, 482. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Razeq, H.; Hashem, H. Recent Update in the Pathogenesis and Treatment of Chemotherapy and Cancer Induced Anemia. Crit. Rev. Oncol./Hematol. 2020, 145, 102837. [Google Scholar] [CrossRef] [PubMed]
- Badran, O.; Cohen, I.; Bar-Sela, G. The Impact of Iron on Cancer-Related Immune Functions in Oncology: Molecular Mechanisms and Clinical Evidence. Cancers 2024, 16, 4156. [Google Scholar] [CrossRef] [PubMed]
- Gale, R. peter Paraneoplastic Syndromes—Hematology and Oncology. Available online: https://www.msdmanuals.com/professional/hematology-and-oncology/overview-of-cancer/paraneoplastic-syndromes (accessed on 6 November 2025).
- Gustafson, C.E.; Jadhav, R.; Cao, W.; Qi, Q.; Pegram, M.; Tian, L.; Weyand, C.M.; Goronzy, J.J. Immune Cell Repertoires in Breast Cancer Patients after Adjuvant Chemotherapy. JCI Insight 2020, 5, e134569. [Google Scholar] [CrossRef]
- Gill, S.; Carney, D.; Ritchie, D.; Wolf, M.; Westerman, D.; Prince, H.M.; Januszewicz, H.; Seymour, J.F. The Frequency, Manifestations, and Duration of Prolonged Cytopenias after First-Line Fludarabine Combination Chemotherapy. Ann. Oncol. 2010, 21, 331–334. [Google Scholar] [CrossRef]



| Clinical-Pathological Data | Total (n) | Total (%) |
|---|---|---|
| Age | ||
| Under 50 years old | 73 | 39.46% |
| Over 50 years old | 110 | 59.46% |
| Unknown | 0 | 0% |
| Molecular subtype | ||
| Luminal A | 53 | 28.65% |
| Luminal B | 69 | 37.30% |
| HER2 amplified | 22 | 11.89% |
| Triple Negative | 37 | 20.00% |
| Unknown | 04 | 2.16% |
| Risk stratification for death and recurrence | ||
| Low risk | 09 | 4.86% |
| Intermediate risk | 98 | 52.97% |
| High risk | 72 | 38.92% |
| Unknown | 06 | 3.24% |
| Chemoresistance | ||
| Absence | 111 | 60.00% |
| Presence | 44 | 23.78% |
| Unknown | 30 | 16.22% |
| Recurrence | ||
| Absence | 146 | 78.92% |
| Presence | 17 | 9.19% |
| Unknown | 22 | 11.89% |
| Metastasis | ||
| Absence | 80 | 43.24% |
| Presence | 78 | 42.16% |
| Unknown | 27 | 14.59% |
| Death | ||
| Absence | 172 | 92.97% |
| Presence | 11 | 5.95% |
| Unknown | 02 | 1.08% |
| Tukey’s Test | Bonferroni’s Test | ||||
|---|---|---|---|---|---|
| Hematological Ratios | Mean 1 | Mean 2 | Variation | 95% Confidence Interval; p-Value | 95% Confidence Interval; p-Value |
| MON/LYM D0 vs. MON/LYM D63 | 0.1528 | 0.2434 | 59% | −0.1756 to −0.005648 p = 0.0211 | −0.1781 to −0.003084 p = 0.029 |
| MON/NEU D0 vs. MON/NEU D63 | 0.08766 | 0.1759 | 101% | −0.1453 to −0.03128 p < 0.0001 | −0.1470 to −0.02956 p < 0.0001 |
| MON/NEU D0 vs. MON/NEU D84 | 0.08766 | 0.1485 | 69% | −0.1142 to −0.007543 p = 0.0072 | −0.1158 to −0.005933 p = 0.0089 |
| MON/PLT D0 vs. MON/PLT D126 | 0.001329 | 0.000647 | −51% | 4.656 × 10−5 to 0.001317 p = 0.0192 | 2.737× 10−5 to 0.001337 p = 0.0261 |
| NEU/PLT D0 vs. NEU/PLT D126 | 0.01616 | 0.00731 | −55% | 0.004264 to 0.01344 p < 0.0001 | 0.004125 to 0.01358 p < 0.0001 |
| PLT/NEU D0 vs. PLT/NEU D105 | 69.88 | 141 | 102% | −132.3 to −9.958 p = 0.0052 | −134.1 to −8.113 p = 0.0063 |
| Tukey’s Test | Bonferroni’s Test | ||||
|---|---|---|---|---|---|
| Hematological Ratios | Mean 1 | Mean 2 | Variation | 95% Confidence Interval; p-Value | 95% Confidence Interval; p-Value |
| LYM/PLT D0 vs. LYM/PLT D105 | 0.009684 | 0.004615 | −52% | 0.002784 to 0.007354 p < 0.0001 | 0.002713 to 0.007425 p < 0.0001 |
| MON/PLT D0 vs. MON/PLT D105 | 0.001573 | 0.0007034 | −55% | 0.0001606 to 0.001579 p = 0.0026 | 0.0001386 to 0.001601 p = 0.003 |
| Tukey’s Test | Bonferroni’s Test | ||||
|---|---|---|---|---|---|
| Hematological Ratios | Mean 1 | Mean 2 | Variation | 95% Confidence Interval; p-Value | 95% Confidence Interval; p-Value |
| MON/LYM D0 vs. MON/LYM D63 | 0.1588 | 0.2532 | 59% | −0.1819 to −0.006787 p = 0.02 | −0.1846 to −0.004074 p = 0.0266 |
| PLT/LYM D0 vs. PLT/LYM D42 | 125.6 | 207.8 | 65% | −141.2 to −23.20 p = 0.0002 | −143.0 to −21.37 p = 0.0002 |
| PLT/NEU D0 vs. PLT/NEU D21 | 68.93 | 145.2 | 111% | −138.3 to −14.27 p = 0.0025 | −140.3 to −12.34 p = 0.0029 |
| PLT/NEU D0 vs. PLT/NEU D126 | 68.93 | 142.6 | 107% | −138.8 to −8.449 p = 0.0102 | −140.8 to −6.429 p = 0.0128 |
| Tukey’s Test | Bonferroni’s Test | ||||
|---|---|---|---|---|---|
| Hematological Ratios | Mean 1 | Mean 2 | Variation | 95% Confidence Interval; p-Value | 95% Confidence Interval; p-Value |
| LYM/PLT D0 vs. LYM/PLT D105 | 0.00941 | 0.004423 | −53% | 0.0003443 to 0.009629 p = 0.0211 | 0.0002005 to 0.009772 p = 0.0281 |
| Ratio and Outcome | AUC (95% CI; p-Value) | Cut-Off Value | Sensitivity% (95% CI) | Specificity% (95% CI) | Likelihood Ratio |
|---|---|---|---|---|---|
| PLT/LYM D0 Metastasis | 0.6121 (0.5219 to 0.7023; p = 0.0182) | >107.7 | 65.33 (54.05% to 75.12%) | 55.41 (44.09% to 66.18%) | 1.465 |
| PLT/LYM D42 Metastasis | 0.6483 (0.5491 to 0.7475; p = 0.0055) | >130.4 | 85.48 (74.66% to 92.17%) | 42.86 (30.77% to 55.86%) | 1.496 |
| PLT/LYM D84 Recurrence | 0.6830 (0.5246 to 0.8414; p = 0.0363) | <181.7 | 83.33 (55.20% to 97.04%) | 59.23 (50.64% to 67.30%) | 2.044 |
| PLT/NEU D0 Risk stratification (low vs. intermediate) | 0.7266 (0.5876 to 0.8657; p = 0.0341) | <62.08 | 46.15 (36.28% to 56.34%) | 100.0 (67.56% to 100.0%) | - |
| PLT/NEU D0 Risk stratification (low vs. high) | 0.7764 (0.6374 to 0.9154; p = 0.0107) | <61.68 | 47.89 (36.68% to 59.31%) | 100.0 (67.56% to 100.0%) | - |
| PLT/NEU D126 Chemoresistance | 0.6522 (0.5159 to 0.7884; p = 0.0329) | <111.5 | 57.69 (38.95% to 74.46%) | 76.09 (62.06% to 86.09%) | 2.413 |
| PLT/NEU D126 Death | 0.7766 (0.5247 to 1.000; p = 0.0390) | >202.1 | 80.00 (37.55% to 98.97%) | 87.01 (77.72% to 92.79%) | 6.160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coradi, C.; Kawassaki, A.C.B.; Vieira, A.P.; Rossi, C.E.; Mazur, C.E.; Pascotto, C.R.; Buzanello, C.V.; Benvegnú, D.M.; Folador, F.A.C.; Vicentini, G.E.; et al. Leukocyte Ratios Predict Metastasis, Recurrence, and Mortality in Breast Cancer Patients Receiving Cytotoxic Chemotherapy. Med. Sci. 2025, 13, 285. https://doi.org/10.3390/medsci13040285
Coradi C, Kawassaki ACB, Vieira AP, Rossi CE, Mazur CE, Pascotto CR, Buzanello CV, Benvegnú DM, Folador FAC, Vicentini GE, et al. Leukocyte Ratios Predict Metastasis, Recurrence, and Mortality in Breast Cancer Patients Receiving Cytotoxic Chemotherapy. Medical Sciences. 2025; 13(4):285. https://doi.org/10.3390/medsci13040285
Chicago/Turabian StyleCoradi, Carolina, Aedra Carla Bufalo Kawassaki, Ana Paula Vieira, Camila Elizandra Rossi, Caryna Eurich Mazur, Claudiceia Risso Pascotto, Cleide Viviane Buzanello, Dalila Moter Benvegnú, Franciele Aní Caovilla Folador, Geraldo Emílio Vicentini, and et al. 2025. "Leukocyte Ratios Predict Metastasis, Recurrence, and Mortality in Breast Cancer Patients Receiving Cytotoxic Chemotherapy" Medical Sciences 13, no. 4: 285. https://doi.org/10.3390/medsci13040285
APA StyleCoradi, C., Kawassaki, A. C. B., Vieira, A. P., Rossi, C. E., Mazur, C. E., Pascotto, C. R., Buzanello, C. V., Benvegnú, D. M., Folador, F. A. C., Vicentini, G. E., Arruda, G., Welter Wendt, G., Casaril, K. B. P. B., Lucio, L. C., Defante Ferreto, L. E., Cavagnari, M. A. V., Fagundes, T. R., Rech, D., & Panis, C. (2025). Leukocyte Ratios Predict Metastasis, Recurrence, and Mortality in Breast Cancer Patients Receiving Cytotoxic Chemotherapy. Medical Sciences, 13(4), 285. https://doi.org/10.3390/medsci13040285

