Semaglutide from Bench to Bedside: The Experimental Journey Towards a Transformative Therapy for Diabetes, Obesity and Metabolic Liver Disorders
Abstract
1. Introduction
1.1. The Global Burden of Type 2 Diabetes and Obesity
1.2. Incretin-Based Therapies: GLP-1 Receptor Agonists in Context
1.3. Objectives and Scope of the Present Review
2. Molecular Design and Rationale
2.1. Native GLP-1: Pharmacological Promise and Limitations
2.2. Chemical Engineering of Semaglutide
2.3. Expected Benefits: Extended Half-Life, Once-Weekly Dosing
- Extended exposure: The mean elimination half-life of approximately 160 h allowing for convenient OW sc or once-daily oral regimens.
- Stable receptor stimulation: The prolonged, yet still glucose-dependent insulinotropic action minimizes the risk of hypoglycemia.
- Improved patient adherence: The less frequent injections result in higher compliance compared to daily GLP-1 analogues.
- Manufacturing scalability: The site-specific chemical conjugation after yeast fermentation ensures high product purity at commercial scale.
3. Preclinical Development
3.1. In Vitro Receptor-Binding and Signaling Assays
3.2. Pharmacokinetics and Metabolic Stability in Animal Models
3.3. Rodent Efficacy Studies: Glycemic Control and Weight Reduction
3.4. Safety Pharmacology and Toxicology Packages
3.4.1. Genotoxicity
3.4.2. Cardiovascular and Pancreatic Safety
3.4.3. Chronic Dosing Studies
4. First-in-Human (Phase I) Trials
4.1. Study Design: Single-Ascending and Multiple-Ascending Doses
4.2. Pharmacokinetic Profile in Healthy Volunteers vs. Patients with T2D
4.3. Tolerability, Adverse Events, and Dose-Limiting Factors
4.4. Actions on Gluco-Lipidic Metabolism and Gastric Emptying
5. Proof-of-Concept (Phase II) Programs
5.1. Dose–Response Exploration and Optimal Dosing Frequency
5.2. Comparative Efficacy of Liraglutide, Dulaglutide, and Tirzepatide
5.3. Early Signals in Weight Loss and Cardiometabolic Markers
5.4. Safety Monitoring: Gastrointestinal Events, Hypoglycemia, Thyroid C-Cell Concerns
6. Pivotal Phase III Trials: The SUSTAIN Series
6.1. Trial Architecture and Global Patient Demographics
6.2. Glycemic Endpoints: HbA1c Reduction
6.3. Weight-Related Outcomes and Adiposity Metrics
6.4. Cardiovascular Outcome Trial (SUSTAIN-6): Major Adverse CV Events
6.5. Safety and Tolerability Overview Across the SUSTAIN and PIONEER Phase IIIa Clinical Trial Programs
7. Post-Marketing Evidence and Expansion of Indications
7.1. Real-World Effectiveness Studies (Registry and Claims Data)
7.2. STEP Trials and Formal Obesity Indication
7.3. Ongoing Investigations: Metabolic Dysfunction-Associated Steatohepatitis (MASH), Cardiovascular Prevention, Chronic Kidney Disease
7.3.1. MASH
7.3.2. Protection Against Cardiovascular and Renal Disease
7.4. Pharmacovigilance and Long-Term Safety Signals
8. Translational Insights and Mechanistic Updates
8.1. Central Nervous System Pathways Underlying Appetite Suppression
8.2. β-Cell Preservation and Insulin Secretory Dynamics
8.3. Anti-Inflammatory and Cardio-Renal Protective Mechanisms
9. Future Directions
9.1. Oral Formulations and Next-Generation Analogues
9.2. Combination Therapies
9.3. Precision Medicine: Biomarkers to Predict Responders
9.4. The Role of Personalized Medicine
10. Conclusions
- Rational molecular tailoring can overcome intrinsic limitations of endogenous peptides.
- Early alignment of pre-clinical endpoints with clinically meaningful outcomes accelerates translation.
- Cardiovascular outcome trials, once considered ancillary, can strategically reposition metabolic drugs as cardioprotective agents.
- Long-term safety surveillance remains essential, especially for agents that modulate appetite and body weight.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACC | acetyl-CoA carboxylase |
| AER | adverse event report |
| AEs | adverse events |
| ALT | alanine transaminase |
| AST | aspartate transaminase |
| APRI | aspartate aminotransferase to platelet ratio index |
| AUDIT-C | alcohol use disorders-concise score |
| BMI | body mass index |
| CKD | chronic kidney disease |
| CRP | c-reactive protein |
| CT | computed tomography |
| CV | cardiovascular |
| DPP-4 | dipeptidyl-peptidase-4 |
| EMA | European Medical Agency |
| FAERS | FDA Adverse Events Reporting System |
| FDA | Food and drug administration |
| FXR | farnesoid X receptor |
| GLP-1 RA | glucagon-like peptide 1 receptor agonist |
| GI | gastrointestinal |
| GIP | gastrointestinal peptide |
| HbA1c | glycated hemoglobin |
| HU | hounsfield unit |
| kPa | kilopascal |
| LFC | liver fat content |
| LSM | liver stiffness measurement |
| MALO | major adverse liver outcome |
| MASH | metabolic dysfunction-associated steatohepatitis |
| ML | machine learning |
| MRE | magnetic resonance elastography |
| MRI-PDFF | magnetic resonance imaging-proton density fat fraction |
| NAFLD | nonalcoholic fatty liver disease |
| NAION | non-arteritic anterior ischemic optic neuropathy |
| NASH | nonalcoholic steatohepatitis |
| NITs | Non-invasive tests |
| OTTES | observational target trial emulation study |
| OD | once daily |
| OW | once weekly |
| PRAC | Pharmacovigilance Risk Assessment Committee |
| RCT | randomized controlled trial |
| sc | subcutaneous |
| SELECT | semaglutide effects on cardiovascular outcomes in people with overweight or obesity |
| SH | steatohepatitis |
| SLD | steatotic liver disease |
| STOP | semaglutide treatment effect on coronary atherosclerosis progression |
| SUSTAIN | semaglutide unabated sustainability in treatment of type 2 diabetes |
| T2D | type 2 diabetes |
References
- Goyal, R.; Singhal, M.; Jialal, I. Type 2 Diabetes. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK513253/ (accessed on 25 October 2025).
- World Health Organization. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes#:~:text=Factors%20that%20contribute%20to%20developing%20type%202,and%20blood%20tests%20with%20a%20healthcare%20provider (accessed on 25 October 2025).
- Rodriguez-Gutierrez, R.; Gonzalez-Gonzalez, J.G.; A Zuñiga-Hernandez, J.; McCoy, R.G. Benefits and harms of intensive glycemic control in patients with type 2 diabetes. BMJ 2019, 367, l5887. [Google Scholar] [CrossRef]
- Wu, C.; Targher, G.; Byrne, C.D.; Mao, Y.; Cheung, T.T.; Yilmaz, Y.; Valenti, L.; Méndez-Sánchez, N.; Sookoian, S.; Chan, W.K.; et al. Global, Regional, and National Burden of Primary Liver Cancer Attributable to Metabolic Risks: An Analysis of the Global Burden of Disease Study 1990–2021. Am. J. Gastroenterol. 2025, 120, 2280–2290. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Sindhwani, R.; Bora, K.S.; Hazra, S. The dual challenge of diabesity: Pathophysiology, management, and future directions. Naunyn-Schmiedeberg's Arch. Pharmacol. 2025, 398, 4891–4912. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Weiskirchen, R. Liver and obesity: A narrative review. Explor. Med. 2025, 6, 1001334. [Google Scholar] [CrossRef]
- Chandrasekaran, P.; Weiskirchen, R. The signaling pathways in obesity-related complications. J. Cell Commun. Signal. 2024, 18, e12039. [Google Scholar] [CrossRef]
- Wentworth, B.J. Metabolic dysfunction-associated steatotic liver disease throughout the liver transplant cycle: A comprehensive review. Metab. Target Organ. Damag. 2025, 5, 2. [Google Scholar] [CrossRef]
- Lonardo, A. Association of NAFLD/NASH, and MAFLD/MASLD with chronic kidney disease: An updated narrative review. Metab. Target Organ Damage 2024, 4, 16. [Google Scholar] [CrossRef]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. American Heart Association Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Epidemiology and Prevention; and Stroke Council. Obesity and cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef]
- Ylli, D.; Sidhu, S.; Parikh, T.; Burman, K.D. Endocrine Changes in Obesity. In Endotext [Internet]; Ylli, D., Sidhu, S., Parikh, T., Burman, K.D., Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279053 (accessed on 25 October 2025).
- Zhou, X.-D.; Chen, Q.-F.; Yang, W.; Zuluaga, M.; Targher, G.; Byrne, C.D.; Valenti, L.; Luo, F.; Katsouras, C.S.; Thaher, O.; et al. Burden of disease attributable to high body mass index: An analysis of data from the Global Burden of Disease Study 2021. eClinicalMedicine 2024, 76, 102848, Erratum in eClinicalMedicine 2024, 78, 102958. [Google Scholar] [CrossRef]
- Arroyo-Johnson, C.; Mincey, K.D. Obesity epidemiology worldwide. Gastroenterol. Clin. N. Am. 2016, 45, 571–579. [Google Scholar] [CrossRef]
- Apovian, C.M. Obesity: Definition, comorbidities, causes, and burden. Am. J. Manag. Care 2016, 22 (Suppl. 7), s176–s185. [Google Scholar] [PubMed]
- Zhang, H.; Zhou, X.D.; Shapiro, M.D.; Lip, G.Y.H.; Tilg, H.; Valenti, L.; Somers, V.K.; Byrne, C.D.; Targher, G.; Yang, W.; et al. Global burden of metabolic diseases, 1990–2021. Metabolism 2024, 160, 155999. [Google Scholar] [CrossRef]
- Holst, J.H. The physiology of glucagon-like peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef]
- Moiz, A.; Filion, K.B.; Tsoukas, M.A.; Yu, O.H.; Peters, T.M.; Eisenberg, M.J. Mechanisms of GLP-1 receptor agonist-induced weight loss: A review of central and peripheral pathways in appetite and energy regulation. Am. J. Med. 2025, 138, 934–940. [Google Scholar] [CrossRef]
- Shilleh, A.H.; Viloria, K.; Broichhagen, J.; Campbell, J.E.; Hodson, D.J. GLP1R and GIPR expression and signaling in pancreatic alpha cells, beta cells and delta cells. Peptides 2024, 175, 171179. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, M.; Wen, Z.; Lu, Z.; Cui, L.; Fu, C.; Xue, H.; Liu, Y.; Zhang, Y. GLP-1 receptor agonists: Beyond their pancreatic effects. Front. Endocrinol. 2021, 12, 721135. [Google Scholar] [CrossRef]
- Friedman, J.M. The discovery and development of GLP-1 based drugs that have revolutionized the treatment of obesity. Proc. Natl. Acad. Sci. USA 2024, 121, e2415550121. [Google Scholar] [CrossRef] [PubMed]
- Collins, L.; Costello, R.A. Glucagon-like peptide-1 receptor agonists. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK551568/ (accessed on 25 October 2025).
- Won, H.; Cho, J.Y.; Lee, S. Clinical development of oral semaglutide for the treatment of type 2 diabetes mellitus: Focusing on early phase clinical trials. Transl. Clin. Pharmacol. 2025, 33, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Yoo, H.J. Exploring the side effects of GLP-1 receptor agonist: To ensure its optimal positioning. Diabetes Metab. J. 2025, 49, 525–541. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, M.; Chela, H.; Amin, N.; Hunter, R.; Anwar, J.; Tahan, V.; Daglilar, E. Pancreatitis risk associated with GLP-1 receptor agonists, considered as a single class, in a comorbidity-free subgroup of type 2 diabetes patients in the United States: A propensity score-matched analysis. J. Clin. Med. 2025, 14, 944. [Google Scholar] [CrossRef] [PubMed]
- Weiskirchen, R.; Lonardo, A. How ‘miracle’ weight-loss semaglutide promises to change medicine but can we afford the expense? Br. J. Pharmacol. 2025, 182, 1651–1670. [Google Scholar] [CrossRef] [PubMed]
- Dawwas, G.K.; Samuels, J.M.; Stein, C.M. Shifting obesity treatment paradigms: Trends of glucagon-like peptide-1 receptor agonists and bariatric surgery in the United States. Diabetes Obes. Metab. 2025, 27, 6023–6026. [Google Scholar] [CrossRef]
- Barrett, T.S.; Hafermann, J.O.; Richards, S.; LeJeune, K.; Eid, G.M. Obesity treatment with bariatric surgery vs. GLP-1 receptor agonists. JAMA Surg. 2025, e253590. [Google Scholar] [CrossRef]
- Knudsen, L.B.; Lau, J. The Discovery and Development of Liraglutide and Semaglutide. Front. Endocrinol. 2019, 10, 155. [Google Scholar] [CrossRef]
- Tamayo-Trujillo, R.; Ruiz-Pozo, V.A.; Cadena-Ullauri, S.; Guevara-Ramírez, P.; Paz-Cruz, E.; Zambrano-Villacres, R.; Simancas-Racines, D.; Zambrano, A.K. Molecular mechanisms of semaglutide and liraglutide as a therapeutic option for obesity. Front. Nutr. 2024, 11, 1398059. [Google Scholar] [CrossRef]
- Tan, H.C.; Dampil, O.A.; Marquez, M.M. Efficacy and Safety of Semaglutide for Weight Loss in Obesity Without Diabetes: A Systematic Review and Meta-Analysis. J. ASEAN Fed. Endocr. Soc. 2022, 37, 65–72. [Google Scholar] [CrossRef]
- Lau, J.; Bloch, P.; Schäffer, L.; Pettersson, I.; Spetzler, J.; Kofoed, J.; Madsen, K.; Knudsen, L.B.; McGuire, J.; Steensgaard, D.B.; et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J. Med. Chem. 2015, 58, 7370–7380. [Google Scholar] [CrossRef]
- Granhall, C.; Donsmark, M.; Blicher, T.M.; Golor, G.; Søndergaard, F.L.; Thomsen, M.; Bækdal, T.A. Safety and pharmacokinetics of single and multiple ascending doses of the novel oral human GLP-1 analogue, oral semaglutide, in healthy subjects and subjects with type 2 diabetes. Clin. Pharmacokinet. 2019, 58, 781–791. [Google Scholar] [CrossRef]
- Nauck, M.A.; Petrie, J.R.; Sesti, G.; Mannucci, E.; Courrèges, J.P.; Lindegaard, M.L.; Jensen, C.B.; Atkin, S.L. A phase 2, randomized, dose-finding study of the novel once-weekly human GLP-1 analog, semaglutide, compared with placebo and open-label liraglutide in patients with type 2 diabetes. Diabetes Care 2016, 39, 231–241. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.E.; Kushner, R.F.; et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N. Engl. J. Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef]
- Perkovic, V.; Tuttle, K.R.; Rossing, P.; Mahaffey, K.W.; Mann, J.F.; Bakris, G.; Baeres, F.M.; Idorn, T.; Bosch-Traberg, H.; Lausvig, N.L.; et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N. Engl. J. Med. 2024, 391, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.J.; Newsome, P.N.; Kliers, I.; Østergaard, L.H.; Long, M.T.; Kjær, M.S.; Cali, A.M.; Bugianesi, E.; Rinella, M.E.; Roden, M.; et al. Phase 3 trial of semaglutide in metabolic dysfunction-associated steatohepatitis. N. Engl. J. Med. 2025, 392, 2089–2099. [Google Scholar] [CrossRef] [PubMed]
- Melson, E.; Ashraf, U.; Papamargaritis, D.; Davies, M.J. What is the pipeline for future medications for obesity? Int. J. Obes. 2025, 49, 433–451. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.; Burade, V.; Akalestou, E.; Manchanda, Y.; Ramchunder, Z.; Carrat, G.; Nguyen-Tu, M.S.; Marchetti, P.; Piemonti, L.; Leclerc, I.; et al. In vivo and in vitro characterization of GL0034, a novel long-acting glucagon-like peptide-1 receptor agonist. Diabetes Obes. Metab. 2022, 24, 2090–2101. [Google Scholar] [CrossRef]
- Lucey, M.; Pickford, P.; Bitsi, S.; Minnion, J.; Ungewiss, J.; Schoeneberg, K.; Rutter, G.A.; Bloom, S.R.; Tomas, A.; Jones, B. Disconnect between signalling potency and in vivo efficacy of pharmacokinetically optimised biased glucagon-like peptide-1 receptor agonists. Mol. Metab. 2020, 37, 100991. [Google Scholar] [CrossRef]
- Gabery, S.; Salinas, C.G.; Paulsen, S.J.; Ahnfelt-Rønne, J.; Alanentalo, T.; Baquero, A.F.; Buckley, S.T.; Farkas, E.; Fekete, C.; Frederiksen, K.S.; et al. Semaglutide lowers body weight in rodents via distributed neural pathways. J. Clin. Investig. 2020, 5, e133429. [Google Scholar] [CrossRef]
- Jensen, M.H.; Sanni, S.J.; Riber, D.; Holst, J.J.; Rosenkilde, M.M.; Sparre-Ulrich, A.H. AT-7687, a novel GIPR peptide antagonist, combined with a GLP-1 agonist, leads to enhanced weight loss and metabolic improvements in cynomolgus monkeys. Mol. Metab. 2024, 88, 102006. [Google Scholar] [CrossRef]
- Papakonstantinou, I.; Tsioufis, K.; Katsi, V. Spotlight on the Mechanism of Action of Semaglutide. Curr. Issues Mol. Biol. 2024, 46, 14514–14541. [Google Scholar] [CrossRef]
- Wasilewska, B.; Petruczynik, A. Semaglutide—Properties, action and chromatographic analysis. J. Diabetes Metab. Disord. 2025, 24, 197. [Google Scholar] [CrossRef]
- Mao, T.; Zhang, C.; Yang, S.; Bi, Y.; Li, M.; Yu, J. Semaglutide alters gut microbiota and improves NAFLD in db/db mice. Biochem. Biophys. Res. Commun. 2024, 710, 149882. [Google Scholar] [CrossRef]
- Highlights of Prescribing Information. Ozempic Safety and Effectively. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209637lbl.pdf (accessed on 25 October 2025).
- Gotfredsen, C.F.; Mølck, A.M.; Thorup, I.; Nyborg, N.C.; Salanti, Z.; Knudsen, L.B.; Larsen, M.O. The human GLP-1 analogs liraglutide and semaglutide: Absence of histopathological effects on the pancreas in nonhuman primates. Diabetes 2014, 63, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- Feier, C.V.I.; Vonica, R.C.; Faur, A.M.; Streinu, D.R.; Muntean, C. Assessment of thyroid carcinogenic risk and safety profile of GLP1-RA semaglutide (Ozempic) therapy for diabetes mellitus and obesity: A systematic literature review. Int. J. Mol. Sci. 2024, 25, 4346. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Abildlund, M.T.; Bækdal, T.A.; He, X.; Lyauk, Y.K.; Patted, U.R.H.; Ning, Z.; Shi, A. A phase 1, randomized, double-blind, placebo-controlled trial investigating the pharmacokinetics, pharmacodynamics, safety and tolerability of oral semaglutide in healthy Chinese subjects. Diabetes Obes. Metab. 2024, 26, 3068–3077. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.D.; Yang, Y.Y. Clinical pharmacokinetics of semaglutide: A systematic review. Drug Des. Devel Ther. 2024, 18, 2555–2570. [Google Scholar] [CrossRef]
- Overgaard, R.V.; Delff, P.H.; Petri, K.C.C.; Anderson, T.W.; Flint, A.; Ingwersen, S.H. Population pharmacokinetics of semaglutide for type 2 diabetes. Diabetes Ther. 2019, 10, 649–662. [Google Scholar] [CrossRef]
- Shi, A.; Xie, P.; Nielsen, L.L.; Skjøth, T.V.; He, X.; Haugaard, S.P. Pharmacokinetics, safety and tolerability of once-weekly subcutaneous semaglutide in healthy Chinese subjects: A double-blind, phase 1, randomized controlled trial. Adv. Ther. 2021, 38, 550–561. [Google Scholar] [CrossRef]
- Wharton, S.; Calanna, S.; Davies, M.; Dicker, D.; Goldman, B.; Lingvay, I.; Mosenzon, O.; Rubino, D.M.; Thomsen, M.; Wadden, T.A.; et al. Gastrointestinal tolerability of once-weekly semaglutide 2.4 mg in adults with overweight or obesity, and the relationship between gastrointestinal AE and weight loss. Diabetes Obes. Metab. 2022, 24, 94–105. [Google Scholar] [CrossRef]
- Hjerpsted, J.B.; Flint, A.; Brooks, A.; Axelsen, M.B.; Kvist, T.; Blundell, J. Semaglutide improves postprandial glucose and lipid metabolism, and delays first-hour gastric emptying in subjects with obesity. Diabetes Obes. Metab. 2018, 20, 610–619. [Google Scholar] [CrossRef]
- O’Neil, P.M.; Birkenfeld, A.L.; McGowan, B.; Mosenzon, O.; Pedersen, S.D.; Wharton, S.; Carson, C.G.; Jepsen, C.H.; Kabisch, M.; Wilding, J.P.H. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: A randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet 2018, 392, 637–649. [Google Scholar] [CrossRef]
- Karimi, M.A.; Gholami Chahkand, M.S.; Dadkhah, P.A.; Sheikhzadeh, F.; Yaghoubi, S.; Esmaeilpour Moallem, F.; Deyhimi, M.S.; Arab Bafrani, M.; Shahrokhi, M.; Nasrollahizadeh, A. Comparative effectiveness of semaglutide versus liraglutide, dulaglutide or tirzepatide: A systematic review and meta-analysis. Front. Pharmacol. 2025, 16, 1438318. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Davies, M.; Van Gaal, L.F.; Kandler, K.; Konakli, K.; Lingvay, I.; McGowan, B.M.; Oral, T.K.; Rosenstock, J.; et al. Weight regain and cardiometabolic effects after withdrawal of semaglutide: The STEP 1 trial extension. Diabetes Obes. Metab. 2022, 24, 1553–1564. [Google Scholar] [CrossRef]
- medwireNews. A Quick Guide to the SUSTAIN Trials. Available online: https://www.medwirenews.com/showcase/a-quick-guide-to-the-sustain-trials/#:~:text=The%20SUSTAIN%2010%20findings%20favor,SUSTAIN%20%E2%80%93%20CHINA%20MRCT:%20Published (accessed on 25 October 2025).
- DeVries, J.H.; Desouza, C.; Bellary, S.; Unger, J.; Hansen, O.K.H.; Zacho, J.; Woo, V. Achieving glycaemic control without weight gain, hypoglycaemia, or gastrointestinal adverse events in type 2 diabetes in the SUSTAIN clinical trial programme. Diabetes Obes. Metab. 2018, 20, 2426–2434. [Google Scholar] [CrossRef]
- Alenzi, S.; Alzahrani, A.; Aljaloud, A.; Alanazi, K.; Alarfaj, S.J. The effectiveness of 0.5 mg and 1mg of semaglutide in patients with type two diabetes and predictors of response: A retrospective cohort study. Front. Endocrinol. 2024, 15, 1395651. [Google Scholar] [CrossRef]
- Ryan, D.H.; Lingvay, I.; Deanfield, J.; Kahn, S.E.; Barros, E.; Burguera, B.; Colhoun, H.M.; Cercato, C.; Dicker, D.; Horn, D.B.; et al. Long-term weight loss effects of semaglutide in obesity without diabetes in the SELECT trial. Nat. Med. 2024, 30, 2049–2057. [Google Scholar] [CrossRef]
- Rodbard, H.W.; Lingvay, I.; Reed, J.; de la Rosa, R.; Rose, L.; Sugimoto, D.; Araki, E.; Chu, P.L.; Wijayasinghe, N.; Norwood, P. Semaglutide added to basal insulin in type 2 diabetes (SUSTAIN 5): A randomized, controlled trial. J. Clin. Endocrinol. Metab. 2018, 103, 2291–2301. [Google Scholar] [CrossRef]
- Leiter, L.A.; Bain, S.C.; Hramiak, I.; Jódar, E.; Madsbad, S.; Gondolf, T.; Hansen, T.; Holst, I.; Lingvay, I. Cardiovascular risk reduction with once-weekly semaglutide in subjects with type 2 diabetes: A post hoc analysis of gender, age, and baseline CV risk profile in the SUSTAIN 6 trial. Cardiovasc. Diabetol. 2019, 18, 73. [Google Scholar] [CrossRef] [PubMed]
- Aroda, V.R.; Erhan, U.; Jelnes, P.; Meier, J.J.; Abildlund, M.T.; Pratley, R.; Vilsbøll, T.; Husain, M. Safety and tolerability of semaglutide across the SUSTAIN and PIONEER phase IIIa clinical trial programmes. Diabetes Obes. Metab. 2023, 25, 1385–1397. [Google Scholar] [CrossRef] [PubMed]
- Ruseva A, Wojcich M, Fabbricatore A, Hartaigh BO, Wang BJ, Zhao Z1733-P: Two-year real-world effectiveness of semaglutide in patients with obesity or overweight. Diabetes 2025, 74 (Suppl. 1), 1733-P. [CrossRef]
- Bergmann, N.C.; Davies, M.J.; Lingvay, I.; Knop, F.K. Semaglutide for the treatment of overweight and obesity: A review. Diabetes Obes. Metab. 2023, 25, 18–35. [Google Scholar] [CrossRef]
- Singh, S.; Allen, A.M.; Wang, Z.; Prokop, L.J.; Murad, M.H.; Loomba, R. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: A systematic review and meta-analysis of paired-biopsy studies. Clin. Gastroenterol. Hepatol. 2015, 13, 643–654.e9. [Google Scholar] [CrossRef]
- Girish, V.; John, S. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK541033/ (accessed on 25 October 2025).
- Younossi, Z.M.; Mangla, K.K.; Chandramouli, A.S.; Lazarus, J.V. Estimating the economic impact of comorbidities in patients with MASH and defining high-cost burden in patients with noncirrhotic MASH. Hepatol. Commun. 2024, 8, e0488. [Google Scholar] [CrossRef]
- Vilar-Gomez, E.; Martinez-Perez, Y.; Calzadilla-Bertot, L.; Torres-Gonzalez, A.; Gra-Oramas, B.; Gonzalez-Fabian, L.; Friedman, S.L.; Diago, M.; Romero-Gomez, M. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 2015, 149, 367–378.e5. [Google Scholar] [CrossRef]
- Lonardo, A. Resmetirom: Finally, the light at the end of the NASH tunnel? Livers 2024, 4, 138–141. [Google Scholar] [CrossRef]
- FDAUS Food & Drug Administration. FDA Approves Treatment for Serious Liver Disease Known as ‘MASH’. Action Will Proide New Therapy for Growing Public Health Issue. Available online: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-treatment-serious-liver-disease-known-mash (accessed on 25 October 2025).
- Katrevula, A.; Kalapala, R.; Agrawal, S.; Jagtap, N.; Chhabra, P.; Kulkarni, A.V.; Merugu, C.; Katukuri, G.R.; Duvvur, N.R. Oral semaglutide for weight loss and liver fibrosis in overweight and obesity: A randomized controlled trial. Indian J. Gastroenterol. 2025. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Nitze, L.M.; Ratziu, V.; Sanyal, A.J.; Wong, V.W.; Balendran, C.; Fleckner, J.; Skalshøi Kjær, M.; Krarup, N.; Anstee, Q.M. Exploration of multiple non-invasive tests for assessing response to treatment in a semaglutide phase 2b trial in patients with MASH. Aliment Pharmacol Ther. 2025. [Google Scholar] [CrossRef] [PubMed]
- John, B.V.; Bastaich, D.; Marchetti, D.; Perumalswami, P.; Mustafa, M.Z.; Dahman, B. Veterans Analysis of Liver Disease (VALID) Group of Investigators. Association of glucagon-like peptide-1 receptor agonists with liver-related outcomes and all-cause mortality in patients with harmful alcohol use: A target trial emulation study. Am. J. Gastroenterol. 2025, 2022, 10-14309. [Google Scholar] [CrossRef]
- Golub, I.S.; Manubolu, V.S.; Aldana-Bitar, J.; Dahal, S.; Verghese, D.; Alalawi, L.; Krishnan, S.; Kianoush, S.; Benzing, T.; Ichikawa, K.; et al. The impact of semaglutide on liver fat assessed by serial cardiac CT scans in patients with type 2 diabetes: Results from STOP trial. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 104036. [Google Scholar] [CrossRef]
- Ratziu, V.; Francque, S.; Behling, C.A.; Cejvanovic, V.; Cortez-Pinto, H.; Iyer, J.S.; Krarup, N.; Le, Q.; Sejling, A.S.; Tiniakos, D.; et al. Artificial intelligence scoring of liver biopsies in a phase II trial of semaglutide in nonalcoholic steatohepatitis. Hepatology 2023, 80, 173–185. [Google Scholar] [CrossRef]
- Loomba, R.; Abdelmalek, M.F.; Armstrong, M.J.; Jara, M.; Kjær, M.S.; Krarup, N.; Lawitz, E.; Ratziu, V.; Sanyal, A.J.; Schattenberg, J.M.; et al. Semaglutide 2·4 mg once weekly in patients with non-alcoholic steatohepatitis-related cirrhosis: A randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 2023, 8, 511–522. [Google Scholar] [CrossRef]
- Flint, A.; Andersen, G.; Hockings, P.; Johansson, L.; Morsing, A.; Sundby Palle, M.; Vogl, T.; Loomba, R.; Plum-Mörschel, L. Randomised clinical trial: Semaglutide versus placebo reduced liver steatosis but not liver stiffness in subjects with non-alcoholic fatty liver disease assessed by magnetic resonance imaging. Aliment. Pharmacol. Ther. 2021, 54, 1150–1161. [Google Scholar] [CrossRef]
- Newsome, P.N.; Buchholtz, K.; Cusi, K.; Linder, M.; Okanoue, T.; Ratziu, V.; Sanyal, A.J.; Sejling, A.-S.; Harrison, S.A. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med. 2021, 384, 1113–1124. [Google Scholar] [CrossRef]
- MacIsaac, R.J. Semaglutide: A key medication for managing cardiovascular-kidney-metabolic syndrome. Future Cardiol. 2025, 21, 663–683. [Google Scholar] [CrossRef] [PubMed]
- Shaman, A.M.; Bain, S.C.; Bakris, G.L.; Buse, J.B.; Idorn, T.; Mahaffey, K.W.; Mann, J.F.E.; Nauck, M.A.; Rasmussen, S.; Rossing, P.; et al. Effect of the glucagon-like peptide-1 receptor agonists semaglutide and liraglutide on kidney outcomes in patients with type 2 diabetes: Pooled analysis of SUSTAIN 6 and LEADER. Circulation 2022, 145, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Kosiborod, M.N.; Abildstrøm, S.Z.; Borlaug, B.A.; Butler, J.; Rasmussen, S.; Davies, M.; Hovingh, G.K.; Kitzman, D.W.; Lindegaard, M.L.; Møller, D.V.; et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N. Engl. J. Med. 2023, 389, 1069–1084. [Google Scholar] [CrossRef]
- Kushner, R.F.; Ryan, D.H.; Deanfield, J.; Kokkinos, A.; Cercato, C.; Wilding, J.; Burguera, B.; Wu, C.C.; Craciun, A.E.; Pall, D.; et al. Safety profile of semaglutide versus placebo in the SELECT study: A randomized controlled trial. Obesity 2025, 33, 452–462. [Google Scholar] [CrossRef]
- Chiappini, S.; D’andrea, G.; Cavallotto Mosca, A.; Carlo, F.D.; Pettorruso, M.; Martinotti, G.; Schifano, F. Pharmacovigilance signals of semaglutide and other GLP-1 receptor agonists: An analysis of the food and drug administration (FDA) adverse events reporting system (FAERS) datasets. Int. J. Neuropsychopharmacol. 2025, 28 (Suppl. 1), i300. [Google Scholar] [CrossRef]
- European Medicines Agency. PRAC Concludes Eye Condition NAION Is a Very Rare Side Effect of Semaglutide Medicines Ozempic, Rybelsus and Wegovy. Available online: https://www.ema.europa.eu/en/news/prac-concludes-eye-condition-naion-very-rare-side-effect-semaglutide-medicines-ozempic-rybelsus-wegovy (accessed on 25 October 2025).
- Kapitza, C.; Dahl, K.; Jacobsen, J.B.; Axelsen, M.B.; Flint, A. Effects of semaglutide on beta cell function and glycaemic control in participants with type 2 diabetes: A randomised, double-blind, placebo-controlled trial. Diabetologia 2017, 60, 1390–1399. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Maleki, M.; Jamialahmadi, T.; Sahebkar, A. Anti-inflammatory benefits of semaglutide: State of the art. J. Clin. Transl. Endocrinol. 2024, 36, 100340. [Google Scholar] [CrossRef]
- Wu, R.; Xing, B.; Zhou, Z.; Yu, L.; Wang, H. Effect of semaglutide on arrhythmic, major cardiovascular, and renal outcomes in patients with overweight or obesity: A systematic review and meta-analysis. Eur. J. Med Res. 2025, 30, 835. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Apperloo, E.; Davies, M.; Dicker, D.; Kandler, K.; Rosenstock, J.; Sørrig, R.; Lawson, J.; Zeuthen, N.; Cherney, D. Effects of semaglutide on albuminuria and kidney function in people with overweight or obesity with or without type 2 diabetes: Exploratory analysis from the STEP 1, 2, and 3 trials. Diabetes Care 2023, 46, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Alfaris, N.; Waldrop, S.; Johnson, V.; Boaventura, B.; Kendrick, K.; Stanford, F.C. GLP-1 single, dual, and triple receptor agonists for treating type 2 diabetes and obesity: A narrative review. eClinicalMedicine 2024, 75, 102782. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Ma, J.; Cui, X.; Lin, J.; Zheng, Z.; Cheng, L.; Cui, T.; Lin, X.; Zhu, J.; Ran, X.; et al. AI-driven de novo design of ultra long-acting GLP-1 receptor agonists. Adv. Sci. 2025, 12, e07044. [Google Scholar] [CrossRef] [PubMed]
- D’Ascanio, A.M.; Mullally, J.A.; Frishman, W.H. Cagrilintide: A long-acting amylin analog for the treatment of obesity. Cardiol. Rev. 2024, 32, 83–90. [Google Scholar] [CrossRef]
- Hales, C.M. Expanding the treat-to-target toolbox for obesity and diabetes care. N. Engl. J. Med. 2025, 393, 712–714. [Google Scholar] [CrossRef]
- Alkhouri, N.; Herring, R.; Kabler, H.; Kayali, Z.; Hassanein, T.; Kohli, A.; Huss, R.S.; Zhu, Y.; Billin, A.N.; Damgaard, L.H.; et al. Safety and efficacy of combination therapy with semaglutide, cilofexor and firsocostat in patients with non-alcoholic steatohepatitis: A randomised, open-label phase II trial. J. Hepatol. 2022, 77, 607–618. [Google Scholar] [CrossRef]
- Weiskirchen, S.; Weiskirchen, R. Unraveling the future: Hot topics shaping molecular diagnostics today. Expert. Rev. Mol. Diagn. 2025, 25, 111–116. [Google Scholar] [CrossRef]
- Bhagavathula, A.S. Artificial intelligence and natural language processing of patient narratives to evaluate semaglutide for weight loss. Ann. Epidemiol. 2025, 111, 9–13. [Google Scholar] [CrossRef]

| Drug | Brand Name | FDA-Approved Indication | Modality of Administration |
|---|---|---|---|
| Exenatide | Byetta | T2D | Sc TD |
| Bydureon | T2D | Sc OW | |
| Liraglutide | Victoza | T2D | Sc OW |
| Saxenda | Obesity | ||
| Dulaglutide | Trulicity | T2D | Sc OW |
| Lixisenatide | Adlixyn | T2D | Sc OD |
| Semaglutide | Ozempic | T2D | Sc OW |
| Ribelsus | T2D | Oral, OD | |
| Wegovy | Obesity; MASH | Sc OW | |
| Tirzepatide | Mounjaro | T2D | Sc OW |
| Zepbound | Obesity |
| Year | Milestone Category | Key Study/Regulatory Event | Principal Outcome or Significance |
|---|---|---|---|
| 2008–2014 | Target identification & lead optimization | GLP-1 receptor biology clarified; iterative peptide engineering (Aib8 substitution, C18 di-acid side-chain, Lys26 conjugation) | Established DPP-4 resistance and albumin binding, enabling ~160 h half-life and once-weekly dosing. |
| 2015 | Molecule discovery | First disclosure of semaglutide structure [32] | Publication of rational design that preserved full GLP-1 activity with markedly prolonged pharmacokinetics |
| 2015 | IND-enabling package | GLP-compliant pharmacology & toxicology studies in rodents/primates | Demonstrated glucose lowering, weight loss, β-cell protection and acceptable safety margin, supporting first-in-human trials |
| 2015–2016 | Phase I (FIH) | Single- and multiple-ascending-dose trials [33] | Confirmed ~1 week half-life, dose-proportional exposure, and good tolerability; supported once-weekly sc and once-daily oral regimens |
| 2016 | Phase II dose-finding | 12-week RCT in T2D [34] | Identified optimal 0.5 mg and 1.0 mg sc once-weekly doses with robust HbA1c and weight reductions |
| 2017 | First regulatory approval | FDA approval of sc semaglutide (Ozempic) for T2D | Marked entry into clinical practice for glycaemic control |
| 2016–2018 | Pivotal glycaemic efficacy (SUSTAIN 1-5, 7) | >12,000 patients with T2D | Superior HbA1c lowering (up to −1.8%) and significant weight loss compared to comparators |
| 2016 (reported)/2018 | Cardiovascular outcome | SUSTAIN-6 CVOT | 26% relative risk reduction in MACE, confirming CV safety and benefit |
| 2019 | First oral GLP-1RA | PIONEER program resulting in FDA approval of oral semaglutide (Rybelsus) for T2D | Demonstrated efficacy of peptide in tablet form; expanded patient options |
| 2021 | Weight-management efficacy | STEP 1-4 trials; FDA approval of 2.4 mg sc semaglutide (Wegovy) | ≈15% mean body-weight reduction; first GLP-1RA approved specifically for obesity |
| 2023 | Cardiovascular benefit in non-diabetic obesity | SELECT trial [35] | 20% reduction in MACE in people with obesity and CV disease but without diabetes |
| 2024 | Renal outcomes | FLOW trial [36] | 24% reduction |
| 2025 | Liver indication & expanded safety monitoring | Phase III MASH trial [37] resulting in FDA approval for fibrosing MASH; EMA PRAC adds NAION as “very rare” side effect | Positions semaglutide as second approved drug for MASH; continued vigilance for ocular safety |
| Author, Year [Ref] | Method | Findings | Conclusion |
|---|---|---|---|
| Katrevula et al., 2025 [73] | An open-label, RCT recruiting 116 adults with a BMI ≥ 30 or ≥27 with comorbidities (pre-diabetes, hypertension, dyslipidemia, obstructive sleep apnea or cardiovascular disease) randomized into two groups (n = 58 per group), both receiving counselling on hypocaloric diet and increased physical activity. Group 1 also received 3 to 14 mg/day of oral semaglutide. | At 28 weeks, semaglutide administration induced a higher mean percentage weight reduction compared to controls. There were significantly higher improvements in BMI, WC, HbA1c, fasting insulin, CRP, and total fat mass decrease, as well as improved ALT and GPT levels, reductions in the APRI score, LFC and liver stiffness. | In non-diabetic adults living with overweight or obesity, oral semaglutide combined with dietary and lifestyle modifications compared to lifestyle modifications alone led to statistically significant and clinically meaningful loss of body weight and metabolic improvements. |
| Nitze et al., 2025 [74] | Retrospective study exploring NITs for assessing the response to semaglutide treatment in 268 patients with MASH randomised in a phase 2b trial who remained on treatment throughout the trial and had liver biopsy and NIT results at baseline and week 72. | Treatment with Semaglutide, compared to placebo, was associated with significant reductions in all NIT scores. More patients exhibited MASH improvement and fewer had fibrosis progression. | NITs may be used to evaluate treatment responses in MASH patients submitted to semaglutide treatment. |
| John et al., 2025 [75] | A target trial was emulated using the electronic health records of 8040 US Veterans with positive AUDIT-C comparing new initiators of GLP-1 RA between 3 January 2017 and 30 September 2024, with 8040 non-initiator controls, with follow-up until outcomes (decompensation, hepatocellular carcinoma, liver-related death, and all-cause mortality) or study end. | GLP-1 RA use was associated with a lower risk of composite liver-related outcomes and death. A 1 mg/wk increase in semaglutide dose was associated with a reduced risk of composite liver-related outcomes, death, and lower odds of positive AUDIT-C during follow-up. | This OTTES shows that GLP-1 RA use protects from MALO adverse liver outcomes, death, and harmful alcohol use |
| Sanyal et al., 2025 [37] | Phase 3, multicenter, double-blind RCT assigning 1197 patients with biopsy-proven MASH and fibrosis stage 2 or 3 to receive OW sc 2.4 mg semaglutide or placebo for 240 weeks. | The proportions of SH resolution without worsening of fibrosis, reduced liver fibrosis without SH worsening, combined SH resolution and liver fibrosis reduction in liver fibrosis and mean decrease in body weight were all more elevated with semaglutide than with placebo (p < 0.001 for all). | Among MASH individuals with moderate-advanced liver fibrosis, OW 2.4 mg semaglutide improved liver histology outcomes and decreased body weight. |
| Golub et al., 2025 [76] | 114 individuals were enrolled (59 in the semaglutide group and 55 in the placebo group) and followed for 12 months. Liver fat attenuation was quantified with non-contrast cardiac CT scanning at baseline and after 12 months. | In multivariable analysis adjusted for demographic and metabolic variables, smoking and baseline liver attenuation average liver attenuation measures improved by 4.4 HU in the semaglutide group vs. placebo (p = 0.002). | Among individuals with T2D semaglutide administration resulted in a significant reduction in SLD vs. placebo. |
| Ratziu et al., 2024 [77] | A post hoc analysis of 251 individuals with biopsy-proven NASH and fibrosis stage F1-F3 from a 72-week RCT of OD sc semaglutide (0.1, 0.2, or 0.4 mg). | Pathologist and ML-derived assessments detected a significantly higher proportion of individuals achieving NASH resolution without worsening of fibrosis with semaglutide 0.4 mg versus placebo (pathologists p < 0.0001; ML p = 0.0015). ML continuous scores detected significant treatment-associated quantitative reduction in fibrosis with semaglutide 0.4 mg versus placebo (p = 0.0099). | ML categorical assessments overlapped with pathologists’ results of histological improvement for steatosis and disease activity among those assigned to semaglutide. ML-based continuous scores demonstrated an antifibrotic effect not identified with conventional histopathology |
| Loomba et al., 2023 [78] | A double-blind, placebo-controlled multi-centre phase 2 trial enrolling 71 patients with biopsy-proven NASH- cirrhosis and BMI of 27 kg/m2. | After 48 weeks, there was no statistically significant difference between the two groups in the proportion of patients with an improvement in liver fibrosis of one stage or more without worsening of NASH nor between groups in the proportion of patients who achieved NASH resolution. Similar proportions of patients in each group reported adverse events and serious adverse events. Hepatic and renal function remained stable. There were no decompensating events or deaths. | In patients with compensated NASH-cirrhosis, semaglutide compared to placebo did not significantly improve fibrosis or achieve NASH resolution. No new safety concerns were raised. |
| Fint et al., 2021 [79] | An RCT of 67 subjects with LSM 2.50–4.63 kPa by MRE and liver steatosis ≥10% by MRI-PDFF randomised to OD sc semaglutide 0.4 mg (n = 34) or placebo (n = 33). | Reductions in liver steatosis were significantly greater with semaglutide (p < 0.0001) and more subjects achieved a ≥30% reduction in liver fat content with semaglutide at weeks 24, 48 and 72, (all p < 0.001). Decreases in liver enzymes, body weight and HbA1c were also observed with semaglutide. However, changes from baseline in LSM were not significantly different between semaglutide and placebo at week 24, 48, and 72. | Among NAFLD subjects, semaglutide administration was not associated with reduced LSM vs. placebo. However, compared to placebo semaglutide significantly reduced liver steatosis and improved liver enzymes and metabolic parameters. |
| Newsome et al., 2021 [80] | 72-week, double-blind phase 2 trial involving a total of 320 individuals with biopsy-proven NASH and liver fibrosis of stage F1, F2, or F3 randomized to receive semaglutide at a dose of 0.1 mg (80 patients), 0.2 mg (78 patients), or 0.4 mg (82 patients) or placebo (80 patients). | The proportion of individuals who achieved NASH resolution with no worsening of fibrosis was higher for semaglutide 0.4 mg vs. placebo (p < 0.001). Improved fibrosis stage occurred in statistically similar proportions of the patients in the 0.4 mg group compared to the placebo group. The mean percent weight loss was 13% in the 0.4-mg group and 1% in the placebo group. The incidence of GI side effects was higher in the 0.4-mg group vs. placebo. Cancers were diagnosed in 3 patients who received semaglutide vs. no patients assigned to placebo. Overall, benign, malignant, or unspecified neoplasms were identified in 15% of the subjects assigned to semaglutide vs. 8% of the placebo group, without any organ-specific pattern of occurrence. | Semaglutide resulted in a significantly higher proportion of NASH resolution compared to a placebo, with no significant difference between groups in the proportion of those achieving improved fibrosis stages. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiskirchen, R.; Lonardo, A. Semaglutide from Bench to Bedside: The Experimental Journey Towards a Transformative Therapy for Diabetes, Obesity and Metabolic Liver Disorders. Med. Sci. 2025, 13, 265. https://doi.org/10.3390/medsci13040265
Weiskirchen R, Lonardo A. Semaglutide from Bench to Bedside: The Experimental Journey Towards a Transformative Therapy for Diabetes, Obesity and Metabolic Liver Disorders. Medical Sciences. 2025; 13(4):265. https://doi.org/10.3390/medsci13040265
Chicago/Turabian StyleWeiskirchen, Ralf, and Amedeo Lonardo. 2025. "Semaglutide from Bench to Bedside: The Experimental Journey Towards a Transformative Therapy for Diabetes, Obesity and Metabolic Liver Disorders" Medical Sciences 13, no. 4: 265. https://doi.org/10.3390/medsci13040265
APA StyleWeiskirchen, R., & Lonardo, A. (2025). Semaglutide from Bench to Bedside: The Experimental Journey Towards a Transformative Therapy for Diabetes, Obesity and Metabolic Liver Disorders. Medical Sciences, 13(4), 265. https://doi.org/10.3390/medsci13040265
