Exploring the Cardiovascular Impacts of Agmatine: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Registration
2.2. Eligibility Criteria
2.3. Quality Assessment and Risk of Bias
3. Cardiovascular Effects of AG
3.1. The “Clonidine-Displacing Substance”-like Cardiovascular Activity of AG
3.2. The Vascular Effects of AG
3.3. Hemodynamic and Vascular Actions of AG
3.4. Electrophysiological Actions of AG
3.5. The Cardioprotective Effects of AG
3.6. The Effects on Endothelial Dysfunction and Atherosclerosis of AG
3.7. The Effects of AG at the Cardiomyocytes Level
3.8. Strengths, Limitations, and Future Directions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Kossel, A. Über das Agmatin. Zeitschrift für Physiologische Chemie. Biol. Chem. 1910, 66, 251–257. [Google Scholar] [CrossRef]
- Kotagale, N.; Dixit, M.; Garmelwar, H.; Bhondekar, S.; Umekar, M.; Taksande, B. Agmatine reverses memory deficits induced by Aβ1-42 peptide in mice: A key role of imidazoline receptors. Pharmacol. Biochem. Behav. 2020, 196, 172976. [Google Scholar] [CrossRef]
- Gawali, N.B.; Bulani, V.P.; Gursahani, M.S.; Deshpande, P.S.; Kothavade, P.S.; Archana RJuvekar, A.R. Agmatine attenuates chronic unpredictible mild stress-induced anxiety, depression-like behaviours and cognitive impairment by modulating nitrergic signaling pathway. Brain Res. 2017, 1663, 66–77. [Google Scholar] [CrossRef]
- Benítez, J.; García, D.; Romero, N.; González, A.; Martínez-Oyanedel, J.; Figueroa, M.; Salas, M.; López, V.; García-Robles, M.; Dodd, P.R.; et al. Metabolic strategies for the degradation of the neuromodulator agmatine in mammals. Metab. Clin. Exp. 2018, 81, 35–44. [Google Scholar] [CrossRef]
- Barua, S.; Kim, J.Y.; Kim, J.Y.; Kim, J.H.; Lee, J.E. Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors. Neurochem. Res. 2019, 44, 735–750. [Google Scholar] [CrossRef]
- Ozden, A.; Angelos, H.; Feyza, A.; Elizabeth, W.; John, P. Altered plasma levels of arginine metabolites in depression. J. Psychiatr. Res. 2020, 120, 21–28. [Google Scholar] [CrossRef]
- Kotagale, N.; Deshmukh, R.; Dixit, M.; Fating, R.; Umekar, M.; Taksande, B. Agmatine ameliorates manifestation of depression-like behavior and hippocampal neuroinflammation in mouse model of Alzheimer’s disease. Brain Res. Bull. 2020, 160, 56–64. [Google Scholar] [CrossRef]
- Cigdem, B.; Bolayir, A.; Celik, V.K.; Kapancik, S.; Kilicgun, H.; Gokce, S.F.; Gulunay, A. The Role of Reduced Polyamine Synthesis in Ischemic Stroke. Neurochem. J. 2020, 14, 243–250. [Google Scholar] [CrossRef]
- Dixit, M.P.; Rahmatkar, S.N.; Raut, P.; Umekar, M.J.; Taksande, B.G.; Kotagale, N.R. Evidences for agmatine alterations in Aβ1-42induced memory impairment in mice. Neurosci. Lett. 2021, 740, 135447. [Google Scholar] [CrossRef]
- Kotagale, N.R.; Taksande, B.G.; Inamdar, N.N. Neuroprotective offerings by agmatine. Neurotoxicology 2019, 73, 228–245. [Google Scholar] [CrossRef]
- Chen, Z.D.; Chen, W.Q.; Wang, Z.Y.; Cao, D.N.; Wu, N.; Li, J. Antidepressant-like action of agmatine in the acute and sub-acute mouse models of depression: A receptor mechanism study. Metab. Brain Dis. 2018, 33, 1721–1731. [Google Scholar] [CrossRef]
- Kotagale, N.R.; Ali, M.T.; Chopde, C.T.; Umekar, M.J.; Taksande, B.G. Agmatine inhibits nicotine withdrawal induced cognitive deficits in inhibitory avoidance task in rats: Contribution of α2-adrenoceptors. Pharmacol. Biochem. Behav. 2018, 167, 42–49. [Google Scholar] [CrossRef]
- Taksande, B.G.; Nambiar, S.; Patil, S.; Umekar, M.J.; Aglawe, M.M.; Kotagale, N.R. Agmatine reverses ethanol consumption in rats: Evidences for an interaction with imidazoline receptors. Pharmacol. Biochem. Behav. 2019, 186, 172779. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, G.Y.; Chen, W.Q.; Li, Y.F.; Wu, N.; Li, J. Agmatine inhibits chronic morphine exposure-induced impairment of hippocampal neural progenitor proliferation in adult rats. Eur. J. Pharmacol. 2017, 818, 50–56. [Google Scholar] [CrossRef]
- Bousquet, P.; Feldman, J.; Schwartz, J. Central cardiovascular effects of alpha adrenergic drugs: Differences between catecholamines and imidazolines. J. Pharmacol. Exp. Ther. 1984, 230, 232–236. [Google Scholar] [CrossRef]
- Ernsberger, P.; Meeley, M.P.; Mann, J.J.; Reis, D.J. Clonidine binds to imidazole binding sites as well as alpha 2-adrenoceptors in the ventrolateral medulla. Eur. J. Pharmacol. 1987, 134, 1–13. [Google Scholar] [CrossRef]
- Li, G.; Regunathan, S.; Barrow, C.J.; Eshraghi, J.; Cooper, R.; Reis, D.J. Agmatine: An endogenous clonidine-displacing substance in the brain. Science 1994, 263, 966–969. [Google Scholar] [CrossRef]
- Regunathan, S.; Youngson, C.; Raasch, W.; Wang, H.; Reis, D.J. Imidazoline receptors and agmatine in blood vessels: A novel system inhibiting vascular smooth muscle proliferation. J. Pharmacol. Exp. Ther. 1996, 276, 1272–1282. [Google Scholar] [CrossRef]
- Molderings, G.J.; Göthert, M. Imidazoline binding sites and receptors in cardiovascular tissue. General. Pharmacol. 1999, 32, 17–22. [Google Scholar] [CrossRef]
- Yang, X.C.; Reis, D.J. Agmatine selectively blocks the N-methyl-D-aspartate subclass of glutamate receptor channels in rat hippocampal neurons. J. Pharmacol. Exp. Ther. 1999, 288, 544–549. [Google Scholar] [CrossRef]
- Raasch, W.; Regunathan, S.; Li, G.; Reis, D.J. Agmatine, the bacterial amine, is widely distributed in mammalian tissues. Life Sci. 1995, 56, 2319–2330. [Google Scholar] [CrossRef]
- Cobos-Puc, L.; Aguayo-Morales, H. Cardiovascular Effects Mediated by Imidazoline Drugs: An Update. Cardiovasc. Hematol. Disord. Drug Targets 2019, 19, 95–108. [Google Scholar] [CrossRef]
- Serban, D.N.; Nechifor, M.; Slătineanu, S.M. Implications of imidazolines and imidazoline receptors role at the vascular level. Rev. Med. Chir. Soc. Med. Nat. Iasi 2000, 104, 37–44. [Google Scholar]
- Briaud, S.; Zhang, B.L.; Sannajust, F. Central actions of agmatine in conscious spontaneously hypertensive rats. Clin. Exp. Hypertens. 2005, 27, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, S.A.; Dikshit, M. Vascular regulation by the L-arginine metabolites, nitric oxide and agmatine. Pharmacol. Res. 2004, 49, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Berkels, R.; Taubert, D.; Gründemann, D.; Schömig, E. Agmatine signaling: Odds and threads. Cardiovasc. Drug Rev. 2004, 22, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Popolo, A.; Adesso, S.; Pinto, A.; Autore, G.; Marzocco, S. L-Arginine and its metabolites in kidney and cardiovascular disease. Amino Acids 2014, 46, 2271–2286. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Larissa Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2020, 12, 55–61. [Google Scholar] [CrossRef]
- Bousquet, P.; Hudson, A.; García-Sevilla, J.A.; Li, J.X. Imidazoline Receptor System: The Past, the Present, and the Future. Pharmacol. Rev. 2020, 72, 50–79. [Google Scholar] [CrossRef]
- Atlas, D.; Burstein, Y. Isolation of an endogenous clonidine-displacing substance from rat brain. FEBS Lett. 1984, 170, 387–390. [Google Scholar] [CrossRef]
- Gao, Y.; Gumusel, B.; Koves, G.; Prasad, A.; Hao, Q.; Hyman, A.; Lippton, H. Agmatine: A novel endogenous vasodilator substance. Life Sci. 1995, 57, PL83–PL86. [Google Scholar] [CrossRef]
- Head, G.A. Importance of imidazoline receptors in the cardiovascular actions of centrally acting antihypertensive agents. Ann. N. Y. Acad. Sci. 1995, 763, 531–540. [Google Scholar] [CrossRef]
- Head, G.A.; Chan, C.K.; Godwin, S.J. Central cardiovascular actions of agmatine, a putative clonidine-displacing substance, in conscious rabbits. Neurochem. Int. 1997, 30, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Szabo, B.; Urban, R.; Limberger, N.; Starke, K. Cardiovascular effects of agmatine, a “clonidine-displacing substance”, in conscious rabbits. Naunyn Schmiedebergs Arch. Pharmacol. 1995, 351, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.K.; Regunathan, S.; Reis, D.J. Cardiovascular responses to agmatine, a clonidine-displacing substance, in anesthetized rat. Clin. Exp. Hypertens. 1995, 17, 115–128. [Google Scholar] [CrossRef]
- Smyth, D.D.; Penner, S.B. Renal I1-imidazoline receptor-selective compounds mediate natriuresis in the rat. J. Cardiovasc. Pharmacol. 1995, 26 (Suppl. 2), S63. [Google Scholar] [CrossRef]
- Schäfer, U.; Raasch, W.; Qadri, F.; Chun, J.; Dominiak, P. Effects of agmatine on the cardiovascular system of spontaneously hypertensive rats. Ann. N. Y. Acad. Sci. 1999, 881, 97–101. [Google Scholar] [CrossRef]
- Raasch, W.; Schäfer, U.; Qadri, F.; Dominiak, P. Agmatine, an endogenous ligand at imidazoline binding sites, does not antagonize the clonidine-mediated blood pressure reaction. Br. J. Pharmacol. 2002, 135, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Auguet, M.; Viossat, I.; Marin, J.G.; Chabrier, P.E. Selective inhibition of inducible nitric oxide synthase by agmatine. Jpn. J. Pharmacol. 1995, 69, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Galea, E.; Regunathan, S.; Eliopoulos, V.; Feinstein, D.L.; Reis, D.J. Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginine. Biochem. J. 1996, 316 Pt 1, 247–249. [Google Scholar] [CrossRef]
- González, C.; Regunathan, S.; Reis, D.J.; Estrada, C. Agmatine, an endogenous modulator of noradrenergic neurotransmission in the rat tail artery. Br. J. Pharmacol. 1996, 119, 677–684. [Google Scholar] [CrossRef]
- Haulică, I.; Bild, W.; Iliescu, R.; Georgescu, R.; Frunză, F. Preliminary research on possible relationship of NO with agmatine at the vascular level. Rom. J. Physiol. 1999, 36, 67–79. [Google Scholar]
- Li, Q.; Fan, Z.Z.; Wang, Y.H.; He, R.R. Differential responses of regional vascular beds to local injection of agmatine in rats. Sheng Li Xue Bao 2001, 53, 451–455. [Google Scholar] [PubMed]
- Molderings, G.J.; Menzel, S.; Kathmann, M.; Schlicker, E.; Göthert, M. Dual interaction of agmatine with the rat alpha(2D)-adrenoceptor: Competitive antagonism and allosteric activation. Br. J. Pharmacol. 2000, 130, 1706–1712. [Google Scholar] [CrossRef]
- Zhao, D.; Ren, L.M. Electrophysiological responses to imidazoline/alpha2-receptor agonists in rabbit sinoatrial node pacemaker cells. Acta Pharmacol. Sin. 2003, 24, 1217–1223. [Google Scholar]
- Musgrave, I.F.; Van Der Zypp, A.; Grigg, M.; Barrow, C.J. Endogenous imidazoline receptor ligands relax rat aorta by an endothelium-dependent mechanism. Ann. N. Y. Acad Sci. 2003, 1009, 222–227. [Google Scholar] [CrossRef]
- Zhao, D.; Ren, L.M. Non-adrenergic inhibition at prejunctional sites by agmatine of purinergic vasoconstriction in rabbit saphenous artery. Neuropharmacology 2005, 48, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Santhanam, A.V.; Viswanathan, S.; Dikshit, M. Activation of protein kinase B/Akt and endothelial nitric oxide synthase mediates agmatine-induced endothelium-dependent relaxation. Eur. J. Pharmacol. 2007, 572, 189–196. [Google Scholar] [CrossRef]
- Gadkari, T.V.; Cortes, N.; Madrasi, K.; Tsoukias, N.M.; Joshi, M.S. Agmatine induced NO dependent rat mesenteric artery relaxation and its impairment in salt-sensitive hypertension. Nitric Oxide Biol. Chem. 2013, 35, 65–71. [Google Scholar] [CrossRef]
- Mar, G.Y.; Chou, M.T.; Chung, H.H.; Chiu, N.H.; Chen, M.F.; Cheng, J.T. Changes of imidazoline receptors in spontaneously hypertensive rats. Int. J. Exp. Pathol. 2013, 94, 17–24. [Google Scholar] [CrossRef]
- Chen, M.F.; Tsai, J.T.; Chen, L.J.; Wu, T.P.; Yang, J.J.; Yin, L.T.; Yang, Y.L.; Chiang, T.A.; Lu, H.L.; Wu, M.C. Characterization of imidazoline receptors in blood vessels for the development of antihypertensive agents. BioMed Res. Int. 2014, 2014, 182846. [Google Scholar] [CrossRef]
- Gerová, M.; Török, J. Hypotensive effect of agmatine, arginine metabolite, is affected by NO synthase. Physiol. Res. 2004, 53, 357–363. [Google Scholar] [CrossRef]
- Yang, J.; Wang, W.Z.; Shen, F.M.; Su, D.F. Cardiovascular effects of agmatine within the rostral ventrolateral medulla are similar to those of clonidine in anesthetized rats. Exp. Brain Res. 2005, 160, 467–472. [Google Scholar] [CrossRef]
- Qin, X.M.; He, R.R. Agmatine inhibits carotid sinus baroreflex in anesthetized rats. Acta Pharmacol. Sin. 2001, 22, 264–268. [Google Scholar] [PubMed]
- Li, Q.; He, R.R. Hemodynamic effects of agmatine in Dahl salt-sensitive hypertensive and Dahl salt-resistant rats. Sheng Li Xue Bao 2001, 53, 355–360. [Google Scholar] [PubMed]
- Monroy-Ordoñez, E.B.; Villalón, C.M.; Cobos-Puc, L.E.; Márquez-Conde, J.A.; Sánchez-López, A.; Centurión, D. Evidence that some imidazoline derivatives inhibit peripherally the vasopressor sympathetic outflow in pithed rats. Auton. Neurosci. 2008, 143, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Li, X.T.; Fan, Z.Z.; He, R.R. Electrophysiologic effects of agmatine on pacemaker cells in sinoatrial node of rabbits. Zhongguo Yao Li Xue Bao 1999, 20, 897–901. [Google Scholar]
- Li, X.T.; Duan, H.R.; He, R.R. Inhibition by agmatine on spontaneous activity of rabbit atrioventricular node cells. Acta Pharmacol. Sin. 2000, 21, 931–935. [Google Scholar]
- Li, Q.; He, R.R. Action of agmatine on tension of isolated aortic artery and its receptor mechanism in rats. Sheng Li Xue Bao 1999, 53, 133–136. (In Chinese) [Google Scholar]
- Raasch, W.; Chun, K.R.J.; Dendorfer, A.; Dominiak, P. Positive inotropic effects of imidazoline derivatives are not mediated via imidazoline binding sites but alpha1-adrenergic receptors. Jpn. J. Pharmacol. 2000, 84, 1–6. [Google Scholar] [CrossRef]
- Berkan, O.; Yildirim, M.K.; Bağcivan, I.; Yildirim, S.; Saraç, B.; Doğan, K.; Sarioğlu, Y. Agmatine facilitates sympathetic neurotransmission in frog myocardium via an action on alfa 2-adrenergic receptors. Anadolu Kardiyol. Derg. 2006, 6, 34–38. [Google Scholar]
- Radwanska, A.; Dlugokecka, J.; Wasilewski, R.; Kaliszan, R. Testing conception of engagement of imidazoline receptors in imidazoline drugs effects on isolated rat heart atria. J. Physiol. Pharmacol. 2009, 60, 131–142. [Google Scholar]
- Cobos-Puc, L.E.; Villalón, C.M.; Ramírez-Rosas, M.B.; Sánchez-López, A.; Lozano-Cuenca, J.; Gómez-Díaz, B.; MaassenVanDenBrink, A.; Centurión, D. Pharmacological characterization of the inhibition by moxonidine and agmatine on the cardioaccelerator sympathetic outflow in pithed rats. Eur. J. Pharmacol. 2009, 616, 175–182. [Google Scholar] [CrossRef]
- Cobos-Puc, L.E.; Sánchez-López, A.; Centurión, D. Pharmacological analysis of the cardiac sympatho-inhibitory actions of moxonidine and agmatine in pithed spontaneously hypertensive rats. Eur. J. Pharmacol. 2016, 791, 25–36. [Google Scholar] [CrossRef]
- Cobos-Puc, L.; Aguayo-Morales, H.; Ventura-Sobrevilla, J.; Luque-Contreras, D.; Chin-Chan, M. Further analysis of the inhibition by agmatine on the cardiac sympathetic outflow: Role of the α2-adrenoceptor subtypes. Eur. J. Pharmacol. 2017, 805, 75–83. [Google Scholar] [CrossRef]
- Kim, Y.H.; Jeong, J.H.; Ahn, D.S.; Chung, S. Agmatine suppresses peripheral sympathetic tone by inhibiting N-type Ca(2+) channel activity via imidazoline I2 receptor activation. Biochem. Biophys. Res. Commun. 2016, 477, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Beltrán, E.; Labastida-Ramírez, A.; Hernández-Abreu, O.; MaassenVanDenBrink, A.; Villalón, C.M. Pharmacological analysis of the inhibition produced by moxonidine and agmatine on the vasodepressor sensory CGRPergic outflow in pithed rats. Eur. J. Pharmacol. 2017, 812, 97–103. [Google Scholar] [CrossRef]
- Nakipova, O.V.; Averin, A.S.; Tarlachkov, S.V.; Kokoz, Y.M. The effect of agmatine on the rhythmoinotropic properties of the cardiac papillary muscle of hibernating animals. Dokl. Biol. Sci. 2013, 451, 203–208. [Google Scholar] [CrossRef]
- Li, X.T.; He, R.R.; Liu, S.; Liu, L.L.; Zhang, W.L.; Zhao, H.; Duan, H.R. Electrophysiological effects of agmatine on human atrial fibers. Life Sci. 2000, 66, 2351–2356. [Google Scholar] [CrossRef]
- Greenberg, S.; Finkelstein, A.; Gurevich, J.; Brazowski, E.; Rosenfeld, F.; Shapira, I.I.; George, J.; Laniado, S.; Keren, G. The Effect of Agmatine on Ischemic and Nonischemic Isolated Rat Heart. J. Cardiovasc. Pharmacol. Ther. 1999, 4, 151–158. [Google Scholar] [CrossRef]
- Greenberg, S.; George, J.; Wollman, Y.; Shapira, I.; Laniado, S.; Keren, G. The effect of agmatine administration on ischemic-reperfused isolated rat heart. J. Cardiovasc. Pharmacol. Ther. 2001, 6, 37–45. [Google Scholar] [CrossRef]
- Yang, M.Z.; Mun, C.H.; Choi, Y.J.; Baik, J.H.; Park, K.A.; Lee, W.T.; Lee, J.E. Agmatine inhibits matrix metalloproteinase-9 via endothelial nitric oxide synthase in cerebral endothelial cells. Neurol. Res. 2007, 29, 749–754. [Google Scholar] [CrossRef]
- Li, Q.; Yin, J.X.; He, R.R. Effect of agmatine on L-type calcium current in rat ventricular myocytes. Acta Pharmacol. Sin. 2002, 23, 219–224. [Google Scholar]
- Li, Q.; Shang, Z.L.; Yin, J.X.; Wang, Y.H.; He, R.R. Effect of agmatine on intracellular free calcium concentration in isolated rat ventricular myocytes. Sheng Li Xue Bao 2002, 54, 467–472. [Google Scholar]
- Yarmohmmadi, F.; Rahimi, N.; Faghir-Ghanesefat, H.; Javadian, N.; Abdollahi, A.; Pasalar, P.; Jazayeri, F.; Ejtemaeemehr, S.; Dehpour, A.R. Protective effects of agmatine on doxorubicin-induced chronic cardiotoxicity in rat. Eur. J. Pharmacol. 2017, 796, 39–44. [Google Scholar] [CrossRef]
- Elieh-Ali-Komi, D.; Yarmohammadi, F.; Nezamabadi, M.; Khirehgesh, M.R.; Kiani, M.; Rashidi, K.; Mohammadi-Noori, E.; Salehi, N.; Dehpour, A.R.; Kiani, A. Mitigating effects of agmatine on myocardial infarction in rats subjected to isoproterenol. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 398, 4279–4290. [Google Scholar] [CrossRef] [PubMed]
- El-Awady, M.S.; Suddek, G.M. Agmatine ameliorates atherosclerosis progression and endothelial dysfunction in high cholesterol-fed rabbits. J. Pharm. Pharmacol. 2014, 66, 835–843. [Google Scholar] [CrossRef]
- Wiśniewska, A.; Olszanecki, R.; Totoń-Żurańska, J.; Kuś, K.; Stachowicz, A.; Suski, M.; Gębska, A.; Gajda, M.; Jawień, J.; Korbut, R. Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice. Int. J. Mol. Sci. 2017, 18, 1706. [Google Scholar] [CrossRef] [PubMed]
- Ozyazgan, S.; Bicakci, B.; Ozaydin, A.; Denizbasi, A.; Unluer, E.E.; Akkan, A.G. The effect of agmatine on the vascular reactivity in streptozotocin-diabetic rats. Pharmacol. Res. 2003, 48, 133–138. [Google Scholar] [CrossRef]
- Zhang, D.; Li, J.; Li, T. Agmatine mitigates palmitate (PA)-induced mitochondrial and metabolic dysfunction in microvascular endothelial cells. Hum. Exp. Toxicol. 2022, 41, 9603271221110857. [Google Scholar] [CrossRef] [PubMed]
- Nader, M.A.; Gamiel, N.M.; El-Kashef, H.; Zaghloul, M.S. Effect of agmatine on experimental vascular endothelial dysfunction. Hum. Exp. Toxicol. 2016, 35, 573–582. [Google Scholar] [CrossRef]
- El-Awady, M.S.; Nader, M.A.; Sharawy, M.H. The inhibition of inducible nitric oxide synthase and oxidative stress by agmatine attenuates vascular dysfunction in rat acute endotoxemic model. Environ. Toxicol. Pharmacol. 2017, 55, 74–80. [Google Scholar] [CrossRef]
- Jo, I.; Han, C.; Ahn Jo, S.; Seo, J.A.; Park, M.H.; Kim, N.H. Low levels of plasma agmatine in the metabolic syndrome. Metab. Syndr. Relat. Disord. 2010, 8, 21–24. [Google Scholar] [CrossRef]
- Belin, M.A.F.; Vieira, T.A.; Grandini, N.A.; Siqueira, J.S.; Palacio, T.L.N.; Cruzeiro, J.; Sormani, L.E.; Tanganini, M.D.; Barbosa, G.S.; Gregolin, C.S.; et al. Cardiac biogenic amine profile and its relationship with parameters of cardiovascular disease in obesity. Vasc. Pharmacol. 2024, 156, 107412. [Google Scholar] [CrossRef]
- Maltsev, A.V.; Kokoz, Y.M.; Evdokimovskii, E.V.; Pimenov, O.Y.; Reyes, S.; Alekseev, A.E. Alpha-2 adrenoceptors and imidazoline receptors in cardiomyocytes mediate counterbalancing effect of agmatine on NO synthesis and intracellular calcium handling. J. Mol. Cell Cardiol. 2014, 68, 66–74. [Google Scholar] [CrossRef]
- Maltsev, A.V. Agmatine modulates calcium handling in cardiomyocytes of hibernating ground squirrels through calcium-sensing receptor signaling. Cell. Signal. 2018, 51, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Maltsev, A.V.; Evdokimovskii, E.V.; Kokoz, Y.M. Synergism of myocardial β-adrenoceptor blockade and I1-imidazoline receptor-driven signaling: Kinase-phosphatase switching. Biochem. Biophys. Res. Commun. 2019, 511, 363–368. [Google Scholar] [CrossRef]
- Maltsev, A.V.; Evdokimovskii, E.V.; Kokoz, Y.M. α2-Adrenoceptor signaling in cardiomyocytes of spontaneously hypertensive rats starts to impair already at early age. Biochem. Biophys. Res. Commun. 2019, 512, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Maltsev, A.V.; Evdokimovskii, E.V.; Kokoz, Y.M. Disturbance of I1-imidazoline receptor signal transduction in cardiomyocytes of Spontaneously Hypertensive Rats. Arch. Biochem. Biophys. 2019, 671, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Jeon, Y.H.; Bokara, K.K.; Koo, B.N.; Lee, W.T.; Park, K.A.; Lee, J.E. Agmatine promotes the migration of murine brain endothelial cells via multiple signaling pathways. Life Sci. 2013, 92, 42–50. [Google Scholar] [CrossRef] [PubMed]





| Routes of Administration | HR | BP | Dose | Model of Animal Experiment | Studies | |
|---|---|---|---|---|---|---|
| Centrally | Icv | - | ↑ | 10–1000 nmol/5 μL | Anesthetized SHR | [39] |
| - | ↑ | 10–1000 nmol/5 μL | Anesthetized SHR | [40] | ||
| Into the fourth ventricle | ↑ | - | 10–1000 nmol/5 μL | Anesthetized SHR | [39] | |
| ↑ | - | 10–1000 nmol/5 μL | Anesthetized SHR | [40] | ||
| ↑ | - | 30–300 μg/kg | SHR | [24] | ||
| ↑ | >1000 μg/kg + adverse effects | SHR | [24] | |||
| Peripherally | Iv | ↓ | ↓ | 0.01–100 mg/kg | Anesthetized > pithed SHR | [39] |
| ↓ | ↓ | 0.01–100 mg/kg | Anesthetized and pithed SHR | [24] | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manole, O.-M.; Rusu-Zota, G.; Bazyani, A.; Onofrei, V. Exploring the Cardiovascular Impacts of Agmatine: A Systematic Review. Med. Sci. 2025, 13, 255. https://doi.org/10.3390/medsci13040255
Manole O-M, Rusu-Zota G, Bazyani A, Onofrei V. Exploring the Cardiovascular Impacts of Agmatine: A Systematic Review. Medical Sciences. 2025; 13(4):255. https://doi.org/10.3390/medsci13040255
Chicago/Turabian StyleManole, Oana-Mădălina, Gabriela Rusu-Zota, Amin Bazyani, and Viviana Onofrei. 2025. "Exploring the Cardiovascular Impacts of Agmatine: A Systematic Review" Medical Sciences 13, no. 4: 255. https://doi.org/10.3390/medsci13040255
APA StyleManole, O.-M., Rusu-Zota, G., Bazyani, A., & Onofrei, V. (2025). Exploring the Cardiovascular Impacts of Agmatine: A Systematic Review. Medical Sciences, 13(4), 255. https://doi.org/10.3390/medsci13040255

