A Bioinformatics-Driven ceRNA Network in Stomach Adenocarcinoma: Identification of Novel Prognostic mRNA-miRNA-lncRNA Interactions
Abstract
1. Introduction
2. Materials and Methods
2.1. GEPIA Database
2.2. UALCAN Database
2.3. MiRNet Database
2.4. StarBase Database
2.5. Kaplan-Meier Plotter
2.6. Visualization Tools
2.7. Statistical Examination
3. Results
3.1. Identification of 10 Novel Prognosis-Associated Genes in Stomach Adenocarcinoma
3.2. Identification of the Upregulated Prognosis-Associated Genes
3.3. Prediction of Potential miRNAs Binding to Novel Prognosis-Associated Genes
3.4. Prediction of Key LncRNA Binding to Potential miRNA
3.5. Identification of the Upstream miRNA-lncRNA Network of the Predicted Novel mRNAs in Stomach Adenocarcinoma
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Thrift, A.P.; Wenker, T.N.; El-Serag, H.B. Global burden of gastric cancer: Epidemiological trends, risk factors, screening and prevention. Nat. Rev. Clin. Oncol. 2023, 20, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zheng, R.; Li, J.; Zeng, H.; Li, L.; Chen, R.; Sun, K.; Han, B.; Bray, F.; Wei, W.; et al. Global, regional, and national lifetime risks of developing and dying from gastrointestinal cancers in 185 countries: A population-based systematic analysis of GLOBOCAN. Lancet Gastroenterol. Hepatol. 2024, 9, 229–237. [Google Scholar] [CrossRef]
- Piazuelo, M.B.; Correa, P. Gastric cáncer: Overview. Colomb. Médica 2013, 44, 192–201. [Google Scholar]
- Guan, W.-L.; He, Y.; Xu, R.-H. Gastric cancer treatment: Recent progress and future perspectives. J. Hematol. Oncol. 2023, 16, 57. [Google Scholar] [CrossRef]
- Yang, W.-J.; Zhao, H.-P.; Yu, Y.; Wang, J.-H.; Guo, L.; Liu, J.-Y.; Pu, J.; Lv, J. Updates on global epidemiology, risk and prognostic factors of gastric cancer. World J. Gastroenterol. 2023, 29, 2452–2468. [Google Scholar] [CrossRef]
- Jin, X.; Liu, Z.; Yang, D.; Yin, K.; Chang, X. Recent progress and future perspectives of immunotherapy in advanced gastric cancer. Front. Immunol. 2022, 13, 948647. [Google Scholar] [CrossRef]
- Kono, K. Advances in cancer immunotherapy for gastroenterological malignancy. Ann. Gastroenterol. Surg. 2018, 2, 244–245. [Google Scholar] [CrossRef]
- Liu, Y.J.; Shen, D.; Yin, X.; Gavine, P.; Zhang, T.; Su, X.; Zhan, P.; Xu, Y.; Lv, J.; Qian, J.; et al. HER2, MET and FGFR2 oncogenic driver alterations define distinct molecular segments for targeted therapies in gastric carcinoma. Br. J. Cancer 2014, 110, 1169–1178. [Google Scholar] [CrossRef]
- Taieb, J.; Bennouna, J.; Penault-Llorca, F.; Basile, D.; Samalin, E.; Zaanan, A. Treatment of gastric adenocarcinoma: A rapidly evolving landscape. Eur. J. Cancer 2023, 195, 113370. [Google Scholar] [CrossRef]
- Pihlak, R.; Fong, C.; Starling, N. Targeted therapies and developing precision medicine in gastric cancer. Cancers 2023, 15, 3248. [Google Scholar] [CrossRef] [PubMed]
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell 2011, 146, 353–358. [Google Scholar] [CrossRef]
- Pu, X.; Sheng, S.; Fu, Y.; Yang, Y.; Xu, G. Construction of circRNA-miRNA-mRNA ceRNA regulatory network and screening of diagnostic targets for tuberculosis. Ann. Med. 2024, 56, 2416604. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dai, D.; Wang, H.; Wu, B.; Wang, R. Identification of prognostic signatures associated with long-term overall survival of thyroid cancer patients based on a competing endogenous RNA network. Genomics 2020, 112, 1197–1207. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Zeng, J.; Tan, Y. ceRNA network analysis reveals prognostic markers for glioblastoma. Oncol. Lett. 2019, 17, 5545–5557. [Google Scholar] [CrossRef]
- Paul, Y.; Thomas, S.; Patil, V.; Kumar, N.; Mondal, B.; Hegde, A.S.; Arivazhagan, A.; Santosh, V.; Mahalingam, K.; Somasundaram, K. Genetic landscape of long noncoding RNA (lncRNAs) in glioblastoma: Identification of complex lncRNA regulatory networks and clinically relevant lncRNAs in glioblastoma. Oncotarget 2018, 9, 29548–29564. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Wu, C.; Yan, M.; Wu, H.; Wang, J.; Yang, X.; Shao, Q. Construction and investigation of lncRNA-associated ceRNA regulatory network in papillary thyroid cancer. Oncol. Rep. 2018, 39, 1197–1206. [Google Scholar] [CrossRef]
- Wang, W.; Lou, W.; Ding, B.; Yang, B.; Lu, H.; Kong, Q.; Fan, W. A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer. Aging 2019, 11, 2610–2627. [Google Scholar] [CrossRef]
- Song, H.; Sun, J.; Kong, W.; Ji, Y.; Xu, D.; Wang, J. Construction of a circRNA-Related ceRNA Prognostic Regulatory Network in Breast Cancer. Onco Targets Ther. 2020, 13, 8347–8358. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, F.; Petinrin, O.O.; Wang, F.; Zhang, Y.; Wong, K.-C. Uncovering the ceRNA Network Related to the Prognosis of Stomach Adenocarcinoma Among 898 Patient Samples. Biochem. Genet. 2024, 62, 4770–4790. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Hou, X.; Li, S.; Wang, J.; Luo, S. Identification of a potential competing endogenous RNA (ceRNA) network in gastric adenocarcinoma. J. Gastrointest. Oncol. 2023, 14, 1019–1036. [Google Scholar] [CrossRef]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, D.S.; Karthikeyan, S.K.; Korla, P.K.; Patel, H.; Shovon, A.R.; Athar, M.; Netto, G.J.; Qin, Z.S.; Kumar, S.; Manne, U.; et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia 2022, 25, 18–27. [Google Scholar] [CrossRef]
- Chang, L.; Zhou, G.; Soufan, O.; Xia, J. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 2020, 48, W244–W251. [Google Scholar] [CrossRef]
- Li, J.-H.; Liu, S.; Zhou, H.; Qu, L.-H.; Yang, J.-H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014, 42, D92–D97. [Google Scholar] [CrossRef]
- Győrffy, B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation 2024, 5, 100625. [Google Scholar] [CrossRef]
- Doncheva, N.T.; Morris, J.H.; Holze, H.; Kirsch, R.; Nastou, K.C.; Cuesta-Astroz, Y.; Rattei, T.; Szklarczyk, D.; von Mering, C.; Jensen, L.J. Cytoscape stringApp 2.0: Analysis and Visualization of Heterogeneous Biological Networks. J. Proteome Res. 2023, 22, 637–646. [Google Scholar] [CrossRef]
- Yan, H.; Xing, Z.; Liu, S.; Gao, P.; Wang, Q.; Guo, G. CALCR exacerbates renal cell carcinoma progression via stabilizing CD44. Aging 2024, 16, 10765–10783. [Google Scholar] [CrossRef]
- He, T.; Ling, F. CALCR knockdown inhibits the development and progression of non-small-cell lung cancer. Carcinogenesis 2021, 42, 1390–1398. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zong, J.; Si, S. Complement Factor H related protein 1 and immune inflammatory disorders. Mol. Immunol. 2022, 145, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Yan, Y.; Wang, X.; Ren, X.; Chen, X.; Zeng, S.; Wei, J.; Qian, L.; Yang, X.; Ou, C.; et al. CFHR1 is a potentially downregulated gene in lung adenocarcinoma. Mol. Med. Rep. 2019, 20, 3642–3648. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shen, T.; Liu, J.; Yu, X.; Li, Q.; Chen, T.; Jiang, T. CFHR1 involvement in bile duct carcinoma: Insights from a data mining study. Anal. Biochem. 2024, 688, 115474. [Google Scholar] [CrossRef]
- Zaugg, K.; Yao, Y.; Reilly, P.T.; Kannan, K.; Kiarash, R.; Mason, J.; Huang, P.; Sawyer, S.K.; Fuerth, B.; Faubert, B.; et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 2011, 25, 1041–1051. [Google Scholar] [CrossRef]
- Li, J.; Zheng, W.; Wu, J.; Zhang, J.; Lv, B.; Li, W.; Liu, J.; Zhang, X.; Huang, T.; Luo, Z. CPT1C-mediated fatty acid oxidation facilitates colorectal cancer cell proliferation and metastasis. Acta Biochim. Biophys. Sin. 2023, 55, 1301–1309. [Google Scholar] [CrossRef]
- Chen, T.; Wu, G.; Hu, H.; Wu, C. Enhanced fatty acid oxidation mediated by CPT1C promotes gastric cancer progression. J. Gastrointest. Oncol. 2020, 11, 695–707. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, W.; Shen, K.; Su, R.; Liu, X.; Ma, Z.; Liu, B.; Hu, C.; Xue, Y.; Xin, Z.; et al. The ELAVL3/MYCN positive feedback loop provides a therapeutic target for neuroendocrine prostate cancer. Nat. Commun. 2023, 14, 7794. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Wang, J. Discovery of a novel three-long non-coding RNA signature for predicting the prognosis of patients with gastric cancer. J. Gastrointest. Oncol. 2020, 11, 760–769. [Google Scholar] [CrossRef]
- Thanou, E.; Lontra, D.; Balgouranidou, I.; Efthimiadou, E.; Delipetrou, A.; Tsaroucha, E.; Theodosiou, M.; Georgoulias, V.; Kotsakis, A.; Lianidou, E.; et al. NALCN Promoter Methylation as a Biomarker for Metastatic Risk in a Cohort of Non-Small Cell Lung Cancer Patients. Biomolecules 2024, 14, 1514. [Google Scholar] [CrossRef]
- He, J.; Xu, J.; Chang, Z.; Yan, J.; Zhang, L.; Qin, Y. NALCN is a potential biomarker and therapeutic target in human cancers. Front. Genet. 2023, 14, 1164707. [Google Scholar] [CrossRef] [PubMed]
- Goettsch, S.; Badea, R.A.; Mueller, J.W.; Wotzlaw, C.; Schoelermann, B.; Schulz, L.; Rabiller, M.; Bayer, P.; Hartmann-Fatu, C. Human TPST1 transmembrane domain triggers enzyme dimerisation and localisation to the Golgi compartment. J. Mol. Biol. 2006, 361, 436–449. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, F.; Huang, S.; Jia, W.; Qian, Y. Identification of TPST1 as a promising prognostic biomarker in head and neck squamous cell carcinoma. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhu, J.; Ma, Y.; Hong, C.; Xiao, S.; Jin, L. Tyrosylprotein sulfotransferase 1 expression is negatively correlated with c-Met and lymph node metastasis in human lung cancer. Mol. Med. Rep. 2015, 12, 5217–5222. [Google Scholar] [CrossRef]
- Mo, W.-Y.; Cao, S.-Q. MiR-29a-3p: A potential biomarker and therapeutic target in colorectal cancer. Clin. Transl. Oncol. 2023, 25, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Lin, L.; Lin, H.; Xu, Y.; Chen, W.; Liu, Y.; Wu, J.; Chen, S.; Lin, Q.; Zeng, Y.; et al. C1QTNF6 regulated by miR-29a-3p promotes proliferation and migration in stage I lung adenocarcinoma. BMC Pulm. Med. 2022, 22, 285. [Google Scholar] [CrossRef]
- Zhang, H.; Du, Y.; Xin, P.; Man, X. The LINC00852/miR-29a-3p/JARID2 axis regulates the proliferation and invasion of prostate cancer cell. BMC Cancer 2022, 22, 1269. [Google Scholar] [CrossRef]
- Pan, H.; Ding, Y.; Jiang, Y.; Wang, X.; Rao, J.; Zhang, X.; Yu, H.; Hou, Q.; Li, T. LncRNA LIFR-AS1 promotes proliferation and invasion of gastric cancer cell via miR-29a-3p/COL1A2 axis. Cancer Cell Int. 2021, 21, 7. [Google Scholar] [CrossRef] [PubMed]
- Cagle, P.; Qi, Q.; Niture, S.; Kumar, D. KCNQ1OT1: An oncogenic long noncoding RNA. Biomolecules 2021, 11, 1602. [Google Scholar] [CrossRef]
- Jiang, L.; Jin, H.; Gong, S.; Han, K.; Li, Z.; Zhang, W.; Tian, J. LncRNA KCNQ1OT1-mediated cervical cancer progression by sponging miR-1270 as a ceRNA of LOXL2 through PI3k/Akt pathway. J. Obstet. Gynaecol. Res. 2022, 48, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ren, Z.; Xu, Y.; Gao, X.; Huang, H.; Zhu, F. KCNQ1OT1 sponges miR-34a to promote malignant progression of malignant melanoma via upregulation of the STAT3/PD-L1 axis. Environ. Toxicol. 2023, 38, 368–380. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, L.; Li, J.; Guan, Y. KCNQ1OT1 promotes retinoblastoma progression by targeting miR-339-3p that suppresses KIF23. Int. Ophthalmol. 2023, 43, 2419–2432. [Google Scholar] [CrossRef]
- Zhan, K.; Pan, H.; Zhou, Z.; Tang, W.; Ye, Z.; Huang, S.; Luo, L. Biological role of long non-coding RNA KCNQ1OT1 in cancer progression. Biomed. Pharmacother. 2023, 169, 115876. [Google Scholar] [CrossRef]
- Carvajal, F.J.; Olivares, W.; Santoro, P.; Quest, A.; Corvalan, A.H. Mo1247 Dysregulation of KCNQ1OT1 and Its Competing Endogenous RNA (ceRNA) Network After H. pylori Infection: Role in Gastric Cancer Pathogenesis. Gastroenterology 2024, 166, S-995. [Google Scholar] [CrossRef]
- Yue, T.; Li, J.; Liang, M.; Yang, J.; Ou, Z.; Wang, S.; Ma, W.; Fan, D. Identification of the KCNQ1OT1/miR-378a-3p/RBMS1 Axis as a Novel Prognostic Biomarker Associated with Immune Cell Infiltration in Gastric Cancer. Front. Genet. 2022, 13, 928754. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Huang, G.-Y.; Chen, H.; Lv, J.; Wang, J.; Shen, J.; Zhao, S.-Y. Exploring the clinical and cellular mechanisms of LncRNA-KCNQ1OT1/miR-29a-3p/SOCS3 molecular axis in cases of unexplained recurrent spontaneous abortion. J. Matern. Fetal Neonatal Med. 2024, 37, 2337723. [Google Scholar] [CrossRef]
- Wang, S.; Wang, W.; Zeng, J. Role of CALCR expression in liver cancer: Implications for the immunotherapy response. Mol. Med. Rep. 2025, 31, 41. [Google Scholar] [CrossRef] [PubMed]
- Dhuri, K.; Bechtold, C.; Quijano, E.; Pham, H.; Gupta, A.; Vikram, A.; Bahal, R. Antisense oligonucleotides: An emerging area in drug discovery and development. J. Clin. Med. 2020, 9, 2004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Y.; Fu, C.; Yang, L.; Li, G.; Wu, Y.; Tong, H.; Tian, G.; Wang, K.; Wang, J.; et al. Exploration and validation of ceRNA regulatory networks in colorectal cancer based on associations whole transcriptome sequencing. Sci. Rep. 2024, 14, 20446. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.-W.; Rissland, O.S.; Koppstein, D.; Abreu-Goodger, C.; Jan, C.H.; Agarwal, V.; Yildirim, M.A.; Rodriguez, A.; Bartel, D.P. Global analyses of the effect of different cellular contexts on microRNA targeting. Mol. Cell 2014, 53, 1031–1043. [Google Scholar] [CrossRef]
- Chaiwangyen, W.; Khantamat, O.; Kangwan, N.; Tipsuwan, W.; de Sousa, F.L.P. MicroRNA expression in response to environmental hazards: Implications for health. Ecotoxicol. Environ. Saf. 2025, 300, 118420. [Google Scholar] [CrossRef]
- Cava, C.; Bertoli, G.; Castiglioni, I. Portrait of Tissue-Specific Coexpression Networks of Noncoding RNAs (miRNA and lncRNA) and mRNAs in Normal Tissues. Comput. Math. Methods Med. 2019, 2019, 9029351. [Google Scholar] [CrossRef]
miRNAs | lncRNAs | Correlation | p-Value |
---|---|---|---|
hsa-mir-29a-3p | MIR29B2CHG | r = 0.076 | 1.042 × 10−1 |
hsa-mir-29a-3p | MIR4458HG | r = −0.008 | 8.75 × 10−1 |
hsa-mir-29a-3p | STAG3L5P-PVRIG2P-PILRB | r = −0.010 | 8.53 × 10−1 |
hsa-mir-29a-3p | VASH1-AS1 | r = 0.120 | 2.05 × 10−2 |
hsa-mir-29a-3p | DNAAF4-CCPG1 | r = −0.034 | 5.12 × 10−1 |
hsa-mir-29a-3p | MIRLET7BHG | r= 0.082 | 1.15 × 10−1 |
hsa-mir-29a-3p | XIST | r = 0.048 | 3.58 × 10−1 |
hsa-mir-29a-3p | GAS5 | r = 0.048 | 3.53 × 10−1 |
hsa-mir-29a-3p | THUMPD3-AS1 | r = −0.053 | 3.04 × 10−1 |
hsa-mir-29a-3p | EBLN3P | r = −0.085 | 1.02 × 10−1 |
hsa-mir-29a-3p | KCNQ1OT1 | r = −0.157 | 2.39 × 10−3 |
hsa-mir-29a-3p | NEAT1 | r = 0.045 | 3.83 × 10−1 |
hsa-mir-29a-3p | OIP5-AS1 | r = −0.161 | 1.89 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamal, E.; Omar, Z.M.M.; Geddawy, A.; Omer, A.A.A. A Bioinformatics-Driven ceRNA Network in Stomach Adenocarcinoma: Identification of Novel Prognostic mRNA-miRNA-lncRNA Interactions. Med. Sci. 2025, 13, 214. https://doi.org/10.3390/medsci13040214
Kamal E, Omar ZMM, Geddawy A, Omer AAA. A Bioinformatics-Driven ceRNA Network in Stomach Adenocarcinoma: Identification of Novel Prognostic mRNA-miRNA-lncRNA Interactions. Medical Sciences. 2025; 13(4):214. https://doi.org/10.3390/medsci13040214
Chicago/Turabian StyleKamal, Ebtihal, Zainab Mohammed Mahmoud Omar, Ayman Geddawy, and Ahmad A. A. Omer. 2025. "A Bioinformatics-Driven ceRNA Network in Stomach Adenocarcinoma: Identification of Novel Prognostic mRNA-miRNA-lncRNA Interactions" Medical Sciences 13, no. 4: 214. https://doi.org/10.3390/medsci13040214
APA StyleKamal, E., Omar, Z. M. M., Geddawy, A., & Omer, A. A. A. (2025). A Bioinformatics-Driven ceRNA Network in Stomach Adenocarcinoma: Identification of Novel Prognostic mRNA-miRNA-lncRNA Interactions. Medical Sciences, 13(4), 214. https://doi.org/10.3390/medsci13040214