The Efficacy of Neoantigen-Loaded Dendritic Cell Vaccine Immunotherapy in Non-Metastatic Gastric Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Protocol
2.2. Inclusion and Exclusion Criteria
2.3. Risk of Bias and Quality Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Zhao, Q.; Cao, L.; Guan, L.; Bie, L.; Wang, S.; Xie, B.; Chen, X.; Shen, X.; Cao, F. Immunotherapy for gastric cancer: Dilemmas and prospect. Brief. Funct. Genom. 2019, 18, 107–112. [Google Scholar] [CrossRef]
- Zhao, Y.; Bai, Y.; Shen, M.; Li, Y. Therapeutic strategies for gastric cancer targeting immune cells: Future directions. Front. Immunol. 2022, 13, 992762. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Research Network; Bass, A.J.; Thorsson, V.; Shmulevich, I.; Reynolds, S.M.; Miller, M.; Bernard, B.; Hinoue, T.; Laird, P.W.; Curtis, C.; et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Alsina, M.; Moehler, M.; Hierro, C.; Guardeño, R.; Tabernero, J. Immunotherapy for Gastric Cancer: A Focus on Immune Checkpoints. Target. Oncol. 2016, 11, 469–477. [Google Scholar] [CrossRef]
- Hu, Z.; Ott, P.A.; Wu, C.J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol. 2018, 18, 168–182. [Google Scholar] [CrossRef]
- Morad, G.; Helmink, B.A.; Sharma, P.; Wargo, J.A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 2021, 184, 5309–5337. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.P.; Cao, H.; Chen, W.; Mahmood, K.; Phillips, T.; Sutton, L.; Cato, A. Gastrin Vaccine Alone and in Combination with an Immune Checkpoint Antibody Inhibits Growth and Metastases of Gastric Cancer. Front. Oncol. 2021, 11, 788875. [Google Scholar] [CrossRef]
- Restifo, N.P.; Dudley, M.E.; Rosenberg, S.A. Adoptive immunotherapy for cancer: Harnessing the T cell response. Nat. Rev. Immunol. 2012, 12, 269–281. [Google Scholar] [CrossRef]
- Cheever, M.A.; Higano, C.S. PROVENGE (Sipuleucel-T) in Prostate Cancer: The First FDA-Approved Therapeutic Cancer Vaccine. Clin. Cancer Res. 2011, 17, 3520–3526. [Google Scholar] [CrossRef]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef]
- Yu, J.S.; Liu, G.; Ying, H.; Yong, W.H.; Black, K.L.; Wheeler, C.J. Vaccination with Tumor Lysate-Pulsed Dendritic Cells Elicits Antigen-Specific, Cytotoxic T-Cells in Patients with Malignant Glioma. Cancer Res. 2004, 64, 4973–4979. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.; Sami, A.; El-Gayed, A.; Guo, X.; Xiang, J. HER-2/neu-gene engineered dendritic cell vaccine stimulates stronger HER-2/neu-specific immune responses compared to DNA vaccination. Gene Ther. 2006, 13, 1391–1402. [Google Scholar] [CrossRef] [PubMed]
- Huarte, E.; Cubillos-Ruiz, J.R.; Nesbeth, Y.C.; Scarlett, U.K.; Martinez, D.G.; Buckanovich, R.J.; Benencia, F.; Stan, R.V.; Keler, T.; Sarobe, P.; et al. Depletion of Dendritic Cells Delays Ovarian Cancer Progression by Boosting Antitumor Immunity. Cancer Res. 2008, 68, 7684–7691. [Google Scholar] [CrossRef] [PubMed]
- Banchereau, J.; Steinman, R.M. Dendritic cells and the control of immunity. Nature 1998, 392, 245–252. [Google Scholar] [CrossRef]
- Zhu, B.; Sun, Y.; Wei, X.; Zhou, H.; Cao, J.; Li, C.; Wu, N. Dendritic Cell Vaccine Loaded with MG-7 Antigen Induces Cytotoxic T Lymphocyte Responses Against Gastric Cancer. J. Healthc. Eng. 2022, 2022, 1964081. [Google Scholar] [CrossRef]
- Yu, Z.; Restifo, N.P. Cancer vaccines: Progress reveals new complexities. J. Clin. Investig. 2002, 110, 289–294. [Google Scholar] [CrossRef]
- Overwijk, W.W.; Lee, D.S.; Surman, D.R.; Irvine, K.R.; Touloukian, C.E.; Chan, C.C.; Carroll, M.W.; Moss, B.; Rosenberg, S.A.; Restifo, N.P. Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: Requirement for CD4+ T lymphocytes. Proc. Natl. Acad. Sci. USA 1999, 96, 2982–2987. [Google Scholar] [CrossRef]
- Van Elsas, A.; Hurwitz, A.A.; Allison, J.P. Combination Immunotherapy of B16 Melanoma Using Anti–Cytotoxic T Lymphocyte–Associated Antigen 4 (Ctla-4) and Granulocyte/Macrophage Colony-Stimulating Factor (Gm-Csf)-Producing Vaccines Induces Rejection of Subcutaneous and Metastatic Tumors Accompanied by Autoimmune Depigmentation. J. Exp. Med. 1999, 190, 355–366. [Google Scholar] [CrossRef]
- Rosenberg, S.A.; Yang, J.C.; Schwartzentruber, D.J.; Hwu, P.; Marincola, F.M.; Topalian, S.L.; Restifo, N.P.; Dudley, M.E.; Schwarz, S.L.; Spiess, P.J.; et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat. Med. 1998, 4, 321–327. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Hooijmans, C.R.; Rovers, M.M.; De Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef]
- Macleod, M.R.; O’Collins, T.; Howells, D.W.; Donnan, G.A. Pooling of Animal Experimental Data Reveals Influence of Study Design and Publication Bias. Stroke 2004, 35, 1203–1208. [Google Scholar] [CrossRef]
- Cai, Y.G.; Fang, D.C.; Chen, L.; Tang, X.D.; Chen, T.; Yu, S.T.; Luo, Y.H.; Xiong, Z.; Wang, D.X.; Yang, S.M. Dendritic Cells Reconstituted with a Human Heparanase Gene Induce Potent Cytotoxic T-Cell Responses Against Gastric Tumor Cells In Vitro. Tumor Biol. 2007, 28, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Guo, C.; Li, Y.; Tan, B.; Fan, L.; Xiao, J. Enhanced antitumor effects of a dendritic cell vaccine transfected with gastric cancer cell total RNA carrying the 4-1BBL gene in vitro. Exp. Ther. Med. 2012, 3, 319–323. [Google Scholar] [CrossRef]
- Iwauchi, T.; Tanaka, H.; Yamazoe, S.; Yashiro, M.; Yoshii, M.; Kubo, N.; Muguruma, K.; Sawada, T.; Ohira, M.; Hirakawa, K. Identification of HLA-A*2402-restricted epitope peptide derived from ERas oncogene expressed in human scirrhous gastric cancer. Cancer Sci. 2011, 102, 683–689. [Google Scholar] [CrossRef]
- Kohnepoushi, C.; Nejati, V.; Delirezh, N.; Biparva, P. Poly Lactic-co-Glycolic Acid Nanoparticles Containing Human Gastric Tumor Lysates as Antigen Delivery Vehicles for Dendritic Cell-Based Antitumor Immunotherapy. Immunol. Investig. 2019, 48, 794–808. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.Y. Antitumor effects of vaccine consisting of dendritic cells pulsed with tumor RNA from gastric cancer. World J. Gastroenterol. 2004, 10, 630. [Google Scholar] [CrossRef]
- Wang, X.D. Conjugation of toll-like receptor-7 agonist to gastric cancer antigen MG7-Ag exerts antitumor effects. World J. Gastroenterol. 2015, 21, 8052. [Google Scholar] [CrossRef]
- He, S.; Wang, L.; Wu, Y.; Li, D.; Zhang, Y. CCL3 and CCL20-recruited dendritic cells modified by melanoma antigen gene-1 induce anti-tumor immunity against gastric cancer ex vivo and in vivo. J. Exp. Clin. Cancer Res. 2010, 29, 37. [Google Scholar] [CrossRef]
- Nagaoka, K.; Sun, C.; Kobayashi, Y.; Kanaseki, T.; Tokita, S.; Komatsu, T.; Maejima, K.; Futami, J.; Nomura, S.; Udaka, K.; et al. Identification of Neoantigens in Two Murine Gastric Cancer Cell Lines Leading to the Neoantigen-Based Immunotherapy. Cancers 2021, 14, 106. [Google Scholar] [CrossRef] [PubMed]
- Nabeta, Y.; Sahara, H.; Suzuki, K.; Kondo, H.; Nagata, M.; Hirohashi, Y.; Sato, Y.; Wada, Y.; Sato, T.; Wada, T.; et al. Induction of Cytotoxic T Lymphocytes from Peripheral Blood of Human Histocompatibility Antigen (HLA)-A31+ Gastric Cancer Patients by In Vitro Stimulation with Antigenic Peptide of Signet Ring Cell Carcinoma. Jpn. J. Cancer Res. 2000, 91, 616–621. [Google Scholar] [CrossRef]
- Lu, X.; Liu, J.; Cui, P.; Liu, T.; Piao, C.; Xu, X.; Zhang, Q.; Xiao, M.; Liu, X.; Wang, Y.; et al. Co-inhibition of TIGIT, PD1, and Tim3 reverses dysfunction of Wilms tumor protein-1 (WT1)-specific CD8+ T lymphocytes after dendritic cell vaccination in gastric cancer. Am. J. Cancer Res. 2018, 8, 1564–1575. [Google Scholar] [PubMed]
- Westdorp, H.; Sköld, A.E.; Snijer, B.A.; Franik, S.; Mulder, S.F.; Major, P.P.; Foley, R.; Gerritsen, W.R.; De Vries, I.J.M. Immunotherapy for Prostate Cancer: Lessons from Responses to Tumor-Associated Antigens. Front. Immunol. 2014, 5, 191. [Google Scholar] [CrossRef] [PubMed]
- Butts, C.; Maksymiuk, A.; Goss, G.; Soulières, D.; Marshall, E.; Cormier, Y.; Ellis, P.M.; Price, A.; Sawhney, R.; Beier, F.; et al. Updated survival analysis in patients with stage IIIB or IV non-small-cell lung cancer receiving BLP25 liposome vaccine (L-BLP25): Phase IIB randomized, multicenter, open-label trial. J. Cancer Res. Clin. Oncol. 2011, 137, 1337–1342. [Google Scholar] [CrossRef]
- Tobias, J.; Garner-Spitzer, E.; Drinić, M.; Wiedermann, U. Vaccination against Her-2/neu, with focus on peptide-based vaccines. ESMO Open 2022, 7, 100361. [Google Scholar] [CrossRef]
- Elrifai, W.; Powell, S. Molecular biology of gastric cancer*. Semin. Radiat. Oncol. 2002, 12, 128–140. [Google Scholar] [CrossRef]
- Neek, M.; Kim, T.I.; Wang, S.W. Protein-based nanoparticles in cancer vaccine development. Nanomed. Nanotechnol. Biol. Med. 2019, 15, 164–174. [Google Scholar] [CrossRef]
- Dobrovolskienė, N.; Pašukonienė, V.; Darinskas, A.; Kraśko, J.A.; Žilionytė, K.; Mlynska, A.; Gudlevičienė, Ž.; Mišeikytė-Kaubrienė, E.; Schijns, V.; Lubitz, W.; et al. Tumor lysate-loaded Bacterial Ghosts as a tool for optimized production of therapeutic dendritic cell-based cancer vaccines. Vaccine 2018, 36, 4171–4180. [Google Scholar] [CrossRef]
- Wei, F.Q.; Sun, W.; Wong, T.S.; Gao, W.; Wen, Y.H.; Wei, J.W.; Wei, Y.; Wen, W.P. Eliciting cytotoxic T lymphocytes against human laryngeal cancer-derived antigens: Evaluation of dendritic cells pulsed with a heat-treated tumor lysate and other antigen-loading strategies for dendritic-cell-based vaccination. J. Exp. Clin. Cancer Res. 2016, 35, 18. [Google Scholar] [CrossRef]
- Papież, M.A.; Krzyściak, W. Biological Therapies in the Treatment of Cancer—Update and New Directions. Int. J. Mol. Sci. 2021, 22, 11694. [Google Scholar] [CrossRef] [PubMed]
- Mao, M.; Liu, S.; Zhou, Y.; Wang, G.; Deng, J.; Tian, L. Nanostructured lipid carrier delivering chlorins e6 as in situ dendritic cell vaccine for immunotherapy of gastric cancer. J. Mater. Res. 2020, 35, 3257–3264. [Google Scholar] [CrossRef]
- Draube, A.; Klein-González, N.; Mattheus, S.; Brillant, C.; Hellmich, M.; Engert, A.; Von Bergwelt-Baildon, M. Dendritic Cell Based Tumor Vaccination in Prostate and Renal Cell Cancer: A Systematic Review and Meta-Analysis. PLoS ONE 2011, 6, e18801. [Google Scholar] [CrossRef]
- Calvo Tardón, M.; Allard, M.; Dutoit, V.; Dietrich, P.Y.; Walker, P.R. Peptides as cancer vaccines. Curr. Opin. Pharmacol. 2019, 47, 20–26. [Google Scholar] [CrossRef]
- Bowen, W.S.; Svrivastava, A.K.; Batra, L.; Barsoumian, H.; Shirwan, H. Current challenges for cancer vaccine adjuvant development. Expert. Rev. Vaccines 2018, 17, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Giuppi, M.; La Salvia, A.; Evangelista, J.; Ghidini, M. The Role and Expression of Angiogenesis-Related miRNAs in Gastric Cancer. Biology 2021, 10, 146. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Gao, L.; Yang, X.; Xiang, X.; Yi, C. Inflammation-Related Genes Serve as Prognostic Biomarkers and Involve in Immunosuppressive Microenvironment to Promote Gastric Cancer Progression. Front. Med. 2022, 9, 801647. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, S.; Huang, X.; Luo, L. Ferroptosis-Related lncRNAs Act as Novel Prognostic Biomarkers in the Gastric Adenocarcinoma Microenvironment, Immunotherapy, and Chemotherapy. Oxidative Med. Cell. Longev. 2023, 2023, 9598783. [Google Scholar] [CrossRef]
- Yuan, M.; Li, X.; Song, X.; Chen, X.; Wang, Y.; Han, S.; Ni, Y.; Liu, D. Lactate metabolism-related genes serve as potential biomarkers for predicting gastric cancer progression and immunotherapy. Discov. Oncol. 2025, 16, 1012. [Google Scholar] [CrossRef]
- Cheng, Z.; Lu, J.; Chen, Y.; Cao, W.; Shao, Q. The role of CD101 and Tim3 in the immune microenvironment of gastric cancer and their potential as prognostic biomarkers. Int. Immunopharmacol. 2025, 146, 113835. [Google Scholar] [CrossRef]
- Xu, H.; Huang, K.; Lin, Y.; Gong, H.; Ma, X.; Zhang, D. Glycosyltransferase GLT8D1 and GLT8D2 serve as potential prognostic biomarkers correlated with Tumor Immunity in Gastric Cancer. BMC Med. Genom. 2023, 16, 123. [Google Scholar] [CrossRef]
Study | Year | Country | Study Type | Population |
---|---|---|---|---|
Cai [24] | 2007 | China | in vitro | NA |
Song [25] | 2012 | China | in vitro | NA |
Iwauchi [26] | 2010 | Japan | in vitro | NA |
Kohnepoushi [27] | 2019 | Iran | in vitro | NA |
Liu [28] | 2004 | China | in vivo | Mice |
Wang [29] | 2015 | China | in vitro and in vivo | Mice |
He [30] | 2010 | China | in vitro and in vivo | Mice |
Nagaoka [31] | 2021 | Japan | in vivo | Mice |
Zhu [16] | 2018 | China | in vitro and in vivo | Mice |
Nabeta [32] | 2000 | Japan | in vitro | NA |
Lu [33] | 2018 | China | in vitro and in vivo | Humans |
Study | Neoantigen | Derived From |
---|---|---|
Cai [24] | Heparanase | Plasmid pcDNA3-Hpa |
Song [25] | total RNA from MFC/4-1BBL cells | MFC |
Iwauchi [26] | ERas peptide (ERas-A24-120) | Human scirrhous gastric cancer cells (OCUM-8, OCUM-2MD3, OCUM-2M) |
Kohnepoushi [27] | Tumor lysate | Human gastric cancer cells |
Liu [28] | Tumor total RNA | MFC |
Wang [29] | MG7-Ag | Human gastric cancer cells |
He [30] | MAGE-1 | Human gastric cancer cells |
Nagaoka [31] | mCdt1, mScarb2, mZfp106 | YTN2 and YTN16 murine gastric cancer cells |
Zhu [16] | MG7-Ag | Human gastric cancer cells |
Nabeta [32] | F4.2 peptide | Signet ring gastric cancer cells |
Lu [33] | WT-1 peptide | Human gastric cancer cells |
Study | Collection of the DCs | Fusion of the DCs | ||
---|---|---|---|---|
Culture with GM-CSF | Duration | Neoantigen | Duration | |
Cai [24] | PBMCs | 5 days | rAd-Hpa | 3 days |
Song [25] | Murine BMDCs | 5 days | MFC/4-1BBL RNA | 7 days |
Iwauchi [26] | PBMCs | 5 days | ERas HLA-A*2402 | 5 days |
Kohnepoushi [27] | PBMCs | 4 days | Tumor lysate | 4 days |
Liu [28] | Spleen cells | 24 h | DOTAP and total RNA | 2–4 h |
Wang [29] | BMDCs | 6 days | T7-MG1 or T7-MG3 | 24 h |
He [30] | Murine PBMCs | 8–9 days | rAd-MAGE-1 | 2 h |
Nagaoka [31] | Murine BMDCs | 8 days | mCdt1, mScarb2, mZfp106 | 2 h |
Zhu [16] | Human PBMCs | 5 days | MG-7 | 7 days |
Nabeta [32] | Human PBMCs | 4–7 days | F4.2 | 2 days |
Lu [33] | Human PBMCs | 5 days | WT1 | 30 min |
Study | Collection of CTLs | CTL Culture with GM-CSF | Duration (Days) | Identification of CTLs Activity | Identification of IFNγ Levels |
---|---|---|---|---|---|
Cai [24] | Human peripheral blood lymphocytes | rAd-Hpa pulsed DCs | 21 days | 51Cr | ELISA |
Song [25] | Murine spleen | MFC/4-1BBL/DCs | 5 days | MTT | ELISA |
Iwauchi [26] | PBMCs | ERas HLA-A*2402 DCs | NS | 51Cr | NS |
Kohnepoushi [27] | PMBCs | Tumor lysate pulsed DCs | NS | MTT | NS |
Liu [28] | Spleen | DOTAP and RNA pulsed DCs | 5 days | 51Cr | NS |
Wang [29] | Spleen | EAC tumor cells | 4 h | LDH method | ELISA |
He [30] | Spleen | DC-Ad-MAGE-1 | 14 days | MTT | NS |
Nagaoka [31] | Spleen | Irradiated tumor cells | NS | NS | ELISA |
Zhu [16] | Spleen | MG-7 pulsed DCs | 48 h | CCK-8 | NS |
Nabeta [32] | Human PBMCs | F4.2 pulsed DCs | 2 h | 51Cr | NS |
Lu [33] | PBMCs | WT1 pulsed DCs | NS | Flow cytometry | ELISA |
Study | Vaccine Type | Vector | Neoantigen | Target |
---|---|---|---|---|
Cai [24] | DC vaccine | rAd-Hpa | Heparanase | Gastric cancer KATO-III cell line |
Song [25] | DC vaccine | pMKITneo/4-1BBL plasmid | Total RNA from MFC/4-1BBL cells | MFC cells |
Iwauchi [26] | DC vaccine | None | ERas-A24-120 peptide | Scirrhous gastric cancer cells |
Kohnepoushi [27] | DC vaccine | PLGA nanoparticles | Tumor lysate | Gastric cancer cells |
Wang [29] | DC vaccine | None | MG7-Ag | EAC cells |
He [30] | DC vaccine | Ad-MAGE-1 | MAGE-1 | Gastric cancer cells |
Zhu [16] | DC vaccine | Lentiviral vector encoding MG-7Ag | MG7-Ag | Gastric cancer cell lines KATO-III and MKN45 |
Nabeta [32] | DC vaccine | None | F4.2 peptide | Gastric cancer cells |
Lu [33] | DC vaccine | None | WT-1 peptide | Gastric cancer cells |
Study | Vaccine Type | Vector | Neoantigen | Target | Enhancer | Dosage (No. of DCs) | Timing | Route of Administration |
---|---|---|---|---|---|---|---|---|
Liu [28] | DC vaccine | DOTAP-mediated RNA | Tumor total RNA | Gastric cancer cells | NS | 1 × 106 | Day 0 and day 7 | SC |
Wang [29] | DC vaccine | None | MG7-Ag | EAC cells | TLR7 agonist | 25 μg | Week 2, 4, 6, 9 | IP |
He [30] | DC vaccine | Ad-MAGE-1 | MAGE-1 | Gastric cancer cells | CCL3 and CCL20 | 1 × 106 | Day 5 and day 12 | SC |
Nagaoka [31] | DC vaccine | None | mCdt1, mScarb2, mZfp106 | Gastric cancer cell lines YTN2 and YTN16 | LPS | 1 × 106 | Day 5 | SC |
Zhu [16] | DC vaccine | Lentivirus encoding MG-7Ag | MG-7Ag | Gastric cancer cell lines KATO-3 and MKN45 | Polybrene | 1 × 106 | Once daily for three consecutive days | IV |
Lu [33] | DC vaccine | None | WT-1 peptide | Gastric cancer cells | OK-432 | 1 × 107 | Every 2 weeks for at least 6 sessions | ID |
Study | Groups | Vaccination Cytotoxic Effect | IFNγ Levels |
---|---|---|---|
Cai [24] | Group A: DC/rAd-Hpa Group B: DC/rAd-LacZ (control) Group C: LC/IL-2 (control) | Group A vs. Group B vs. Group C: 60% vs. 30% vs. 10% | Significantly increased in Group A (p < 0.05) |
Song [25] | Group A: MFC/4-1BBL/DC Group B: Control group | Group A vs. Group B target to effector ratio killing rate: 1:20 → 53.3% vs. 34.2% 1:10 → 32.1% vs. 26.7% 1:5 → 21.8% vs. 14.7% (p < 0.05) | Group A: 9.45 pg/mL; Group B: 5.97 pg/mL (p < 0.05) |
Iwauchi [26] | Group A: CTLs induced by ERas-pulsed DCs Group B: CTLs induced by non-pulsed DCs | Significantly stronger in Group A (p < 0.05) | Significantly higher in Group A (p < 0.05) |
Kohnepoushi [27] | NP + Ag Group: DCs pulsed with tumor lysate encapsulated in PLGA nanoparticles Ag Group: DCs pulsed with soluble tumor lysate Control: DCs pulsed with blank PLGA nanoparticles | Stronger in the NP + Ag Group (p < 0.05) | Significantly higher in the NP + Ag Group (p < 0.05) |
Wang [29] | Group A: T7-MG1 Group B: T7-MG3 Group C: PBS control | Group A vs. Group C: 40.92% vs. 16.29 (p < 0.01) | Higher in Group A vs. Group B (p > 0.05) |
He [30] | Study Group: DC-Ad-MAGE-1 Adenoviral control Group: DC-Ad-LacZ Tumor lysate Group: DC-MFC Ag Control Group: Untreated DCs | Higher in the Study Group compared to Control Groups | Significantly higher in Study Group (p < 0.05) |
Zhu [16] | Study Group: DC-MG-7Ag Negative control group: lentiviral vector without MG-7Ag Control group: untreated DCs | Increased in Study Group compared to Control Groups (p > 0.05) | NS |
Nabeta [32] | Group A: F4.2-pulsed DCs Group B: Unpulsed DCs | 10 times greater in Group A vs. Group B | NS |
Lu [33] | Group A: WT1-pulsed DCs
Group B: no DC vaccine | Greater cytotoxicity in Group A (p > 0.05) | Enhanced in Group A (p > 0.05) |
Study | Groups | Vaccination Cytotoxic Effect | Effect on Tumor Size | Effect on Survival |
---|---|---|---|---|
Liu [28] | Group A: pulsed DCs Group B: unpulsed DCs Group C: Control group | Highest in Group A | Tumor size at day 21 in Group A vs. Group B vs. Group C: 0.3688 vs. 0.7536 vs. 2.6323 | NS * |
Wang [29] | Group A: T7-MG1 Group B: T7-MG3 Group C: PBS control | Group B vs. Group C: 40.92% vs. 16.29% (p < 0.01) | 37.36% weight reduction in Group B vs. Group C (p < 0.01) | NS ** |
He [30] | Study Group: DC-Ad-MAGE-1 Adenoviral control Group: DC-Ad-LacZ Tumor lysate Group: DC-MFC Ag Control Group: Untreated DCs | Higher in the Study Group vs. Controls | Significantly reduced in the Study Group (p < 0.05) | OS > 60 days for 50% of mice |
Nagaoka [31] | mCdt1 Group mScarb2 Group mZfp106 Group Control group (untreated) | Highest in the mCdt1 Group | Significantly reduced in the mCdt1 Group vs. Control group (p < 0.0001) | NS |
Zhu [16] | Study Group: DC-MG-7Ag Negative control group: lentiviral vector without MG-7Ag Control group: untreated DCs | Stronger in the Study Group vs. Control Groups | Significantly reduced in the Study Group | NS |
Lu [33] | Study Group: WT1-pulsed DCs Control Group: no DC vaccine | Increased in the Study Group | No difference | Patients with stable disease had longer survival than those with progressive disease (p < 0.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papakonstantinou, M.; Chatzikomnitsa, P.; Gkaitatzi, A.D.; Myriskou, A.; Giakoustidis, A.; Giakoustidis, D.; Papadopoulos, V.N. The Efficacy of Neoantigen-Loaded Dendritic Cell Vaccine Immunotherapy in Non-Metastatic Gastric Cancer. Med. Sci. 2025, 13, 90. https://doi.org/10.3390/medsci13030090
Papakonstantinou M, Chatzikomnitsa P, Gkaitatzi AD, Myriskou A, Giakoustidis A, Giakoustidis D, Papadopoulos VN. The Efficacy of Neoantigen-Loaded Dendritic Cell Vaccine Immunotherapy in Non-Metastatic Gastric Cancer. Medical Sciences. 2025; 13(3):90. https://doi.org/10.3390/medsci13030090
Chicago/Turabian StylePapakonstantinou, Menelaos, Paraskevi Chatzikomnitsa, Areti Danai Gkaitatzi, Athanasia Myriskou, Alexandros Giakoustidis, Dimitrios Giakoustidis, and Vasileios N. Papadopoulos. 2025. "The Efficacy of Neoantigen-Loaded Dendritic Cell Vaccine Immunotherapy in Non-Metastatic Gastric Cancer" Medical Sciences 13, no. 3: 90. https://doi.org/10.3390/medsci13030090
APA StylePapakonstantinou, M., Chatzikomnitsa, P., Gkaitatzi, A. D., Myriskou, A., Giakoustidis, A., Giakoustidis, D., & Papadopoulos, V. N. (2025). The Efficacy of Neoantigen-Loaded Dendritic Cell Vaccine Immunotherapy in Non-Metastatic Gastric Cancer. Medical Sciences, 13(3), 90. https://doi.org/10.3390/medsci13030090