Minimally Invasive Left Ventricular Assist Device Implantation: A Systematic Review of Current Evidence on Clinical Outcomes and Surgical Approaches
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Selection of Studies and Data Extraction
2.4. Risk of Bias (Quality) Assessment
3. Results
3.1. Included Study Characteristics
Baseline Patient Characteristics Across Studies
3.2. Clinical Outcomes and Comparison of Minimally Invasive Approach and Sternotomy
4. Discussion
- Comparison of MICS and sternotomy on major clinical outcomes
- Infectious complications and wound healing
- Right ventricular failure and RVAD
- Complications associated with bleeding and blood transfusion
- Impact of surgical experience
- Functional and subjective indicators
- Applicability of MICS in complex clinical scenarios
- Methodological limitations and potential impact on conclusions
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Naamani, A.; Fahr, F.; Khan, A.; Bireta, C.; Nozdrzykowski, M.; Feder, S.; Deshmukh, N.; Jubeh, M.; Eifert, S.; Jawad, K.; et al. Minimally invasive ventricular assist device implantation. J. Thorac. Dis. 2021, 13, 2010–2017. [Google Scholar] [CrossRef] [PubMed]
- Moctezuma-Ramirez, A.; Mohammed, H.; Hughes, A.; Elgalad, A. Recent Developments in Ventricular Assist Device Therapy. Rev. Cardiovasc. Med. 2025, 26, 25440. [Google Scholar] [CrossRef] [PubMed]
- Carrozzini, M.; Bejko, J.; Guariento, A.; Rubino, M.; Bianco, R.; Tarzia, V.; Gregori, D.; Bottio, T.; Gerosa, G. Minimally Invasive Implantation of Continuous Flow Left Ventricular Assist Devices: The Evolution of Surgical Techniques in a Single-Center Experience. Artif. Organs 2019, 43, E41–E52. [Google Scholar] [CrossRef]
- Raja, S.G. New Clinical Advances in Minimally Invasive Coronary Surgery. J. Clin. Med. 2025, 14, 3142. [Google Scholar] [CrossRef] [PubMed]
- Wachter, K.; Franke, U.F.W.; Rustenbach, C.J.; Baumbach, H. Minimally Invasive versus Conventional LVAD-Implantation-An Analysis of the Literature. Thorac. Cardiovasc. Surg. 2019, 67, 156–163. [Google Scholar] [CrossRef]
- Nozdrzykowski, M.; Noack, T.; Schulz, U.; Luecke, C.; Borger, M.A.; Saeed, D. Simultaneous minimally invasive LVAD implantation and extracorporeal RVAD placement by patient with pectus excavatum and biventricular acute heart failure. J. Artif. Organs 2023, 26, 156–159. [Google Scholar] [CrossRef]
- Wert, L.; Chatterjee, A.; Dogan, G.; Hanke, J.S.; Boethig, D.; Tümler, K.A.; Napp, L.C.; Berliner, D.; Feldmann, C.; Kuehn, C.; et al. Minimally invasive surgery improves outcome of left ventricular assist device surgery in cardiogenic shock. J. Thorac. Dis. 2018, 10 (Suppl. 15), S1696–S1702. [Google Scholar] [CrossRef]
- Vinogradsky, A.; Ning, Y.; Kurlansky, P.; Kirschner, M.; Yuzefpolskaya, M.; Colombo, P.; Sayer, G.; Uriel, N.; Naka, Y.; Takeda, K. Less is better? Comparing effects of median sternotomy and thoracotomy surgical approaches for left ventricular assist device implantation on postoperative outcomes and valvulopathy. J. Thorac. Cardiovasc. Surg. 2024, 167, 731–743.e3. [Google Scholar] [CrossRef]
- Hess, N.R.; Winter, M.; Amabile, A.; Ashraf, F.; Kaczorowski, D.J.; Bonatti, J. Minimally invasive and robotic techniques for implantation of ventricular assist devices in patients with heart failure. Expert Rev. Med. Devices 2025, 22, 685–698. [Google Scholar] [CrossRef]
- Llerena-Velastegui, J.; Santafe-Abril, G.; Villacis-Lopez, C.; Hurtado-Alzate, C.; Placencia-Silva, M.; Santander-Aldean, M.; Trujillo-Delgado, M.; Freire-Oña, X.; Santander-Fuentes, C.; Velasquez-Campos, J. Efficacy and Complication Profiles of Left Ventricular Assist Devices in Adult Heart Failure Management: A Systematic Review and Meta-Analysis. Curr. Probl. Cardiol. 2024, 49, 102118. [Google Scholar] [CrossRef]
- McNamara, N.; Narroway, H.; Williams, M.; Brookes, J.; Farag, J.; Cistulli, D.; Bannon, P.; Marasco, S.; Potapov, E.; Loforte, A. Contemporary outcomes of continuous-flow left ventricular assist devices-a systematic review. Ann. Cardiothorac. Surg. 2021, 10, 186–208. [Google Scholar] [CrossRef]
- Worku, B.; Gambardella, I.; Rahouma, M.; Demetres, M.; Gaudino, M.; Girardi, L. Thoracotomy versus sternotomy? The effect of surgical approach on outcomes after left ventricular assist device implantation: A review of the literature and meta-analysis. J. Card. Surg. 2021, 36, 2314–2328. [Google Scholar] [CrossRef]
- Mondal, S.; Sankova, S.; Lee, K.; Sorensen, E.; Kaczorowski, D.; Mazzeffi, M. Intraoperative and Early Postoperative Management of Patients Undergoing Minimally Invasive Left Ventricular Assist Device Implantation. J. Cardiothorac. Vasc. Anesth. 2021, 35, 616–630. [Google Scholar] [CrossRef]
- Mehra, M.R.; Cleveland JCJr Uriel, N.; Cowger, J.A.; Hall, S.; Horstmanshof, D.; Naka, Y.; Salerno, C.T.; Chuang, J.; Williams, C.; Goldstein, D.J. Primary results of long-term outcomes in the MOMENTUM 3 pivotal trial and continued access protocol study phase: A study of 2200 HeartMate 3 left ventricular assist device implants. Eur. J. Heart Fail. 2021, 23, 1392–1400. [Google Scholar] [CrossRef]
- Al Hazzouri, A.; Attieh, P.; Sleiman, C.; Hamdan, R.; Ghadieh, H.E.; Harbieh, B. Left Ventricular Assist Device in Advanced Refractory Heart Failure: A Comprehensive Review of Patient Selection, Surgical Approaches, Complications and Future Perspectives. Diagnostics 2024, 14, 2480. [Google Scholar] [CrossRef]
- Bravo, C.A.; Navarro, A.G.; Dhaliwal, K.K.; Khorsandi, M.; Keenan, J.E.; Mudigonda, P.; O’Brien, K.D.; Mahr, C. Right heart failure after left ventricular assist device: From mechanisms to treatments. Front. Cardiovasc. Med. 2022, 9, 1023549. [Google Scholar] [CrossRef]
- Miller, T.; Lang, F.M.; Rahbari, A.; Theodoropoulos, K.; Topkara, V.K. Right heart failure after durable left ventricular assist device implantation. Expert Rev. Med. Devices 2024, 21, 197–206. [Google Scholar] [CrossRef]
- Wood, K.L.; Ayers, B.C.; Sagebin, F.; Vidula, H.; Thomas, S.; Alexis, J.D.; Barrus, B.; Knight, P.; Prasad, S.; Gosev, I. Complete Sternal-Sparing HeartMate 3 Implantation: A Case Series of 10 Consecutive Patients. Ann. Thorac. Surg. 2019, 107, 1160–1165. [Google Scholar] [CrossRef]
- Karahan, M.; Kervan, Ü.; Kocabeyoğlu, S.S.; Sert, D.E.; Akdi, M.; Yılmaz, A.; Koçak, C.; Çatav, Z. Off-pump implantation of left ventricular assist device via minimally invasive left thoracotomy: Our single-center experience. Turk Gogus Kalp Damar Cerrahisi Derg. 2023, 31, 37–44. [Google Scholar] [CrossRef]
- Vinck, E.E.; Ebels, T.; Hittinger, R.; Peterson, T.F. Cardiothoracic Surgery in the Caribbean. Braz. J. Cardiovasc. Surg. 2021, 36, 599–606. [Google Scholar] [CrossRef]
- Bjelic, M.; Ayers, B.; Paic, F.; Bernstein, W.; Barrus, B.; Chase, K.; Gu, Y.; Alexis, J.D.; Vidula, H.; Cheyne, C.; et al. Study results suggest less invasive HeartMate 3 implantation is a safe and effective approach for obese patients. J. Heart Lung Transplant. 2021, 40, 990–997. [Google Scholar] [CrossRef]
- Ilcheva, L.; Risteski, P.; Tudorache, I.; Häussler, A.; Papadopoulos, N.; Odavic, D.; Rodriguez Cetina Biefer, H.; Dzemali, O. Beyond Conventional Operations: Embracing the Era of Contemporary Minimally Invasive Cardiac Surgery. J. Clin. Med. 2023, 12, 7210. [Google Scholar] [CrossRef] [PubMed]
- PROSPERO International Prospective Register of Systematic Reviews: CRD420251102537. Available online: https://www.crd.york.ac.uk/PROSPERO/view/CRD420251102537 (accessed on 11 July 2025).
- Zhang, B.; Guo, S.; Fu, Z.; Liu, Z. Minimally invasive versus conventional continuous-flow left ventricular assist device implantation for heart failure: A meta-analysis. Heart Fail. Rev. 2022, 27, 1053–1061. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Br. Med. J. 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Ottawa Hospital Research Institute: The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 1 July 2025).
- Jawad, K.; Sipahi, F.; Koziarz, A.; Huhn, S.; Kalampokas, N.; Albert, A.; Borger, M.A.; Lichtenberg, A.; Saeed, D. Less-invasive ventricular assist device implantation: A multicenter study. J. Thorac. Cardiovasc. Surg. 2022, 164, 1910–1918.e4. [Google Scholar] [CrossRef] [PubMed]
- Reichart, D.; Brand, C.F.; Bernhardt, A.M.; Schmidt, S.; Schaefer, A.; Blankenberg, S.; Reichenspurner, H.; Wagner, F.M.; Deuse, T.; Barten, M.J.; et al. Analysis of Minimally Invasive Left Thoracotomy HVAD Implantation—A Single-Center Experience. Thorac. Cardiovasc. Surg. 2019, 67, 170–175. [Google Scholar] [CrossRef]
- Riebandt, J.; Wiedemann, D.; Sandner, S.; Angleitner, P.; Zuckermann, A.; Schlöglhofer, T.; Laufer, G.; Zimpfer, D. Impact of Less Invasive Left Ventricular Assist Device Implantation on Heart Transplant Outcomes. Semin. Thorac. Cardiovasc. Surg. 2022, 34, 148–156. [Google Scholar] [CrossRef]
- Kervan, U.; Tezer, Y.; Kocabeyoglu, S.S.; Sert, D.E.; Karahan, M.; Akdi, M.; Yilmaz, A.; Kocak, C.; Colak, A.; Catav, Z.; et al. Does minimally invasive approach reduce risk of infection after ventricular assist device implantation? Int. J. Artif. Organs 2021, 44, 972–979. [Google Scholar] [CrossRef]
- Özer, T.; Gunay, D.; Hancer, H.; Altas Yerlikhan, O.; Ozgur, M.M.; Aksut, M.; Sarikaya, S.; Kirali, K. Transition from Conventional Technique to Less Invasive Approach in Left Ventricular Assist Device Implantations. ASAIO J. 2020, 66, 1000–1005. [Google Scholar] [CrossRef]
- Pasrija, C.; Sawan, M.A.; Sorensen, E.; Voorhees, H.J.; Shah, A.; Wang, L.; Ton, V.K.; DiChiacchio, L.; Kaczorowski, D.J.; Griffith, B.P.; et al. Less Invasive Approach to Left Ventricular Assist Device Implantation May Improve Survival in High-Risk Patients. Innovations 2020, 15, 243–250. [Google Scholar] [CrossRef]
- Antończyk, R.; Biełka, A.; Kalinowski, M.; Śmigiel-Iras, M.; Kuczaj, A. The Results of Minimally Invasive Implantation of the HeartMate 3 LVAD Left Ventricular Assist Device. Transplant. Proc. 2024, 56, 854–859. [Google Scholar] [CrossRef]
- Gosev, I.; Wood, K.; Ayers, B.; Barrus, B.; Knight, P.; Alexis, J.D.; Vidula, H.; Lander, H.; Wyrobek, J.; Cheyne, C.; et al. Implantation of a fully magnetically levitated left ventricular assist device using a sternal-sparing surgical technique. J. Heart Lung Transplant. 2020, 39, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Ayers, B.; Sagebin, F.; Wood, K.; Barrus, B.; Thomas, S.; Storozynsky, E.; Chen, L.; Bernstein, W.; Lebow, B.; Prasad, S.; et al. Complete Sternal-Sparing Approach Improves Outcomes for Left Ventricular Assist Device Implantation in Patients with History of Prior Sternotomy. Innovations 2020, 15, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Saeed, D.; Muslem, R.; Rasheed, M.; Caliskan, K.; Kalampokas, N.; Sipahi, F.; Lichtenberg, A.; Jawad, K.; Borger, M.; Huhn, S. Less invasive surgical implant strategy and right heart failure after LVAD implantation. J. Heart Lung Transplant. 2021, 40, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Yen, P.; Peng, D.; Farmer, J.; Besola, L.; Chiu, W.; Bashir, J.; Johnston, D.; Field, T.; Flexman, A.; et al. Right Ventricular Function Following Sternotomy Versus a Less-Invasive Approach for Left Ventricular Assist Device Implant: Retrospective Cohort Study. J. Cardiothorac. Vasc. Anesth. 2025, 39, 79–87. [Google Scholar] [CrossRef]
- Gosev, I.; Pham, D.T.; Um, J.Y.; Anyanwu, A.C.; Itoh, A.; Kotkar, K.; Takeda, K.; Naka, Y.; Peltz, M.; Silvestry, S.C.; et al. Ventricular assist device using a thoracotomy-based implant technique: Multi-Center Implantation of the HeartMate 3 in Subjects with Heart Failure Using Surgical Techniques Other Than Full Median Sternotomy (HM3 SWIFT). J. Thorac. Cardiovasc. Surg. 2024, 168, 1474–1484.e12. [Google Scholar] [CrossRef]
- Shanker, A.; Upadhyay, P.; Rangasamy, V.; Muralidhar, K.; Subramaniam, B. Impact of frailty in cardiac surgical patients-Assessment, burden, and recommendations. Ann. Card. Anaesth. 2021, 24, 133–139. [Google Scholar] [CrossRef]
- Kyriakopoulos, C.P.; Kapelios, C.J.; Stauder, E.L.; Taleb, I.; Hamouche, R.; Sideris, K.; Koliopoulou, A.G.; Bonios, M.J.; Drakos, S.G. LVAD as a Bridge to Remission from Advanced Heart Failure: Current Data and Opportunities for Improvement. J. Clin. Med. 2022, 11, 3542. [Google Scholar] [CrossRef]
- Guglin, M.; Zucker, M.J.; Borlaug, B.A.; Breen, E.; Cleveland, J.; Johnson, M.R.; Panjrath, G.S.; Patel, J.K.; Starling, R.C.; Bozkurt, B.; et al. Evaluation for Heart Transplantation and LVAD Implantation: JACC Council Perspectives. J. Am. Coll. Cardiol. 2020, 75, 1471–1487. [Google Scholar] [CrossRef]
- Inglis, S.S.; Suh, G.A.; Razonable, R.R.; Schettle, S.D.; Spencer, P.J.; Villavicencio, M.A.; Rosenbaum, A.N. Infections in patients with left ventricular assist devices: Current state and future perspectives. ASAIO J. 2023, 69, 633–641. [Google Scholar] [CrossRef]
- Comba, I.Y.; Chesdachai, S.; Tabaja, H.; Mahmood, M.; Deml, S.; Wengenack, N.L.; Wilson, J.W. Cardiovascular device infections due to rapidly growing Mycobacteria: A review of cases at a tertiary care hospital. J. Clin. Tuberc. Other Mycobact. Dis. 2022, 26, 100296. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Peleg, A.Y.; McGiffin, D. Ventricular Assist Device-Specific Infections. J. Clin. Med. 2021, 10, 453. [Google Scholar] [CrossRef] [PubMed]
- Pienta, M.; Shore, S.; Pagani, F.D.; Likosky, D.S. Michigan Congestive Heart Failure Investigators. Rates and types of infections in left ventricular assist device recipients: A scoping review. JTCVS Open 2021, 8, 405–411. [Google Scholar] [CrossRef]
- James, L.; Smith, D.E. Supporting the “forgotten” ventricle: The evolution of percutaneous RVADs. Front. Cardiovasc. Med. 2023, 9, 1008499. [Google Scholar] [CrossRef]
- Kuroda, T.; Miyagi, C.; Fukamachi, K.; Karimov, J.H. Mechanical circulatory support devices and treatment strategies for right heart failure. Front. Cardiovasc. Med. 2022, 9, 951234. [Google Scholar] [CrossRef] [PubMed]
- Valente, F.; Stefanidis, C.; Vachiéry, J.L.; Dewachter, C.; Engelman, E.; Vanden Eynden, F.; Roussoulières, A. A novel metrics to predict right heart failure after left ventricular assist device implantation. J. Artif. Organs 2023, 26, 24–35. [Google Scholar] [CrossRef]
- Simpson, K.E.; Kirklin, J.K.; Cantor, R.S.; Mehegan, M.; Lamour, J.M.; Guleserian, K.J.; Peng, D.M.; Pahl, E. Right heart failure with left ventricular assist device implantation in children: An analysis of the Pedimacs registry database. J. Heart Lung Transplant. 2020, 39, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Dang, N.C.; Topkara, V.K.; Mercando, M.; Joy, K.; Kruger, K.H.; Aboodi, M.S.; Oz, M.C.; Naka, Y. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J. Heart Lung Transplant. 2006, 25, 1–6. [Google Scholar] [CrossRef]
- Park, S.Y.; Plambeck, C.; Joyce, L.D.; Joyce, D.L. Bleeding After LVAD Implant: If Things Do Not Add Up, Take a Look! Innovations 2021, 16, 488–490. [Google Scholar] [CrossRef]
- Yang, M.; Houck, K.L.; Dong, X.; Hernandez, M.; Wang, Y.; Nathan, S.S.; Wu, X.; Afshar-Kharghan, V.; Fu, X.; Cruz, M.A.; et al. Hyperadhesive von Willebrand Factor Promotes Extracellular Vesicle-Induced Angiogenesis: Implication for LVAD-Induced Bleeding. JACC Basic Transl. Sci. 2022, 7, 247–261. [Google Scholar] [CrossRef]
- Frigerio, M. Left Ventricular Assist Device: Indication, Timing, and Management. Heart Fail. Clin. 2021, 17, 619–634. [Google Scholar] [CrossRef]
- Shah, P.; Looby, M.; Dimond, M.; Bagchi, P.; Shah, B.; Isseh, I.; Rollins, A.T.; Abdul-Aziz, A.A.; Kennedy, J.; Tang, D.G.; et al. Evaluation of the Hemocompatibility of the Direct Oral Anticoagulant Apixaban in Left Ventricular Assist Devices: The DOAC LVAD Study. JACC Heart Fail. 2024, 12, 1540–1549. [Google Scholar] [CrossRef]
- Albert, A.; Raweh, A.; Blehm, A.; Petrov, G.; Saeed, D. Minimally invasive direct left ventricular assist device implantation. JTCVS Tech. 2023, 19, 58–60. [Google Scholar] [CrossRef] [PubMed]
- Varshney, A.S.; DeFilippis, E.M.; Cowger, J.A.; Netuka, I.; Pinney, S.P.; Givertz, M.M. Trends and Outcomes of Left Ventricular Assist Device Therapy: JACC Focus Seminar. J. Am. Coll. Cardiol. 2022, 79, 1092–1107. [Google Scholar] [CrossRef] [PubMed]
- Pleșoianu, F.A.; Pleșoianu, C.E.; Bararu Bojan, I.; Bojan, A.; Țăruș, A.; Tinică, G. Concept, Design, and Early Prototyping of a Low-Cost, Minimally Invasive, Fully Implantable Left Ventricular Assist Device. Bioengineering 2022, 9, 201. [Google Scholar] [CrossRef]
- Walther, C.P.; Civitello, A.B.; Liao, K.K.; Navaneethan, S.D. Nephrology Considerations in the Management of Durable and Temporary Mechanical Circulatory Support. Kidney360 2022, 3, 569–579. [Google Scholar] [CrossRef]
- Morshuis, M.; Fox, H.; Lauenroth, V.; Schramm, R. Long-term assist device patients admitted to ICU: Tips and pitfalls. J. Intensive Care Med. 2022, 3, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Malone, G.; Abdelsayed, G.; Bligh, F.; Al Qattan, F.; Syed, S.; Varatharajullu, P.; Msellati, A.; Mwipatayi, D.; Azhar, M.; Malone, A.; et al. Advancements in left ventricular assist devices to prevent pump thrombosis and blood coagulopathy. J. Anat. 2023, 242, 29–49. [Google Scholar] [CrossRef]
- Maiani, M.; Lechiancole, A.; Piani, D.; Silvestri, A.; Vendramin, I.; Sponga, S.; Benedetti, G.; Ortis, H.; Frigatti, P.; Livi, U. Left subclavian artery as an alternative site for left ventricular assist device outflow graft in challenging situations. Artif. Organs 2022, 46, 2319–2324. [Google Scholar] [CrossRef]
- Sert, D.E.; Karahan, M.; Aygun, E.; Kocabeyoglu, S.S.; Akdi, M.; Kervan, U. Prediction of right ventricular failure after continuous flow left ventricular assist device implantation. J. Card. Surg. 2020, 35, 2965–2973. [Google Scholar] [CrossRef] [PubMed]
Category | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Type of research | Original articles: retrospective and prospective cohort studies, comparative observational studies, RCTs (if available) | Reviews, meta-analyses, case reports, letters, posters, dissertations, conference proceedings, untraceable sources (gray literature) |
Patients | Adult patients (≥18 years) with end-stage chronic heart failure who have undergone LVAD implantation | Studies Involving Children/Adolescents (<18 Years) |
Intervention | Minimally invasive approaches: mini-thoracotomy, mini-sternotomy, bilateral thoracotomy, etc., without the use of full median sternotomy | Lack of data on the type of access, impossibility of stratifying the results by the type of intervention |
Outcomes | Presence of at least one postoperative outcome: 30-day mortality, RVAD, bleeding, transfusion, ICU, infection, length of hospital stay | Articles without indication of clinical outcomes or aggregated data without separation by access groups |
Language and access | Publications in English with access to full text | Non-English articles without translation; full text unavailable |
Originality of data | Primary source with clinical results | Duplicate publications without new data |
Study (Author, Year) | Selection (Max 4) | Comparability (Max 2) | Outcome (Max 3) | Total Score (Max 9) |
---|---|---|---|---|
Jawad et al. (2021) [27] | 4 | 2 | 3 | 9 |
Reichart et al. (2019) [28] | 4 | 1 | 2 | 7 |
Riebandt et al. (2021) [29] | 4 | 1 | 2 | 7 |
Kervan et al. (2021) [30] | 4 | 1 | 2 | 7 |
Ozer et al. (2020) [31] | 4 | 1 | 2 | 7 |
Pasrija et al. (2020) [32] | 3 | 2 | 3 | 8 |
Antonczyk et al. (2024) [33] | 4 | 1 | 2 | 7 |
Gosev et al. (2019) [34] | 4 | 2 | 3 | 9 |
Ayers et al. (2020) [35] | 4 | 1 | 2 | 7 |
Saeed et al. (2021) [36] | 4 | 2 | 3 | 9 |
Sun et al. (2024) [37] | 4 | 2 | 3 | 9 |
Gosev et al. (2024) [38] | 4 | 2 | 3 | 9 |
No. | Authors (Year) | Country | Study Design | Sample Size (MICS/Comparator) | Mortality | Blood Loss/Reoperation | ICU Stay | Infection Rate | Key Findings |
---|---|---|---|---|---|---|---|---|---|
1 | Jawad et al. (2021) [27] | Germany, Canada | Multicenter, retrospective, PSM | 73/73 | 1-yr: 77.5% (MICS) vs. 77.3% (FS); 2-yr: 74.8% vs. 70.9% | Reoperation: 4.1% (MICS) vs. 6.8% (FS) | Median 4 (IQR 2–9.25) vs. 6 (IQR 3–13) | Driveline: 2.7% vs. 5.5% | MICS led to fewer reoperations, shorter ICU and hospital stay, and comparable long-term survival. |
2 | Reichart et al. (2019) [28] | Germany | Single-center, retrospective | 22/53 | 30-day: 13.6% (MICS), 12.5% (STX); 2-yr: no difference | RBC transfusion (7d): 6.6 ± 6.3 (MICS) vs. 8.4 ± 9.5 (STX) | 13.5 ± 25.2 days (both) | LVAD-related: 18.2% (MICS) vs. 41.7% (STX); Wound: 0% vs. 10.4% | MICS reduced infection and wound complications; survival comparable to sternotomy. |
3 | Riebandt et al. (2021) [29] | Austria | Retrospective cohort | 27 (LIS)/19 (FS) | LIS: 7% vs. FS: 5% (p = 1.000) | 4 (IQR 2–7) vs. 7 (IQR 4–8) units (p = 0.045); reoperation data not provided | Not reported | Not reported | LIS associated with reduced blood product use and significantly lower de novo DSA formation post-HTX (4% vs. 36%; p = 0.006). Survival and adverse events were similar. |
4 | Kervan et al. (2021) [30] | Turkey | Single-center, retrospective | 41 (no comparator; early deaths excluded) | 30-day: excluded | Blood loss: 582 ± 221 mL; 0% reop | 6.4 ± 3.5 days | 44% total (27% driveline, 17% incision site) | Lower bleeding and ICU stay with MICS; higher thoracotomy site infection. |
5 | Ozer et al. (2020) [31] | Turkey | Retrospective comparative (matched) | 30/30 | 30-day: 0% (MICS) vs. 13.3% (FS) | Blood loss: 860 ± 458 mL (MICS) vs. 1210 ± 560 mL (FS); Reop: 23.3% (both groups) | 3.7 ± 3.5 days (MICS) vs. 5.4 ± 4.6 days (FS) | Not reported | MICS had lower bleeding, shorter ICU stay, and no early mortality. |
6 | Pasrija et al. (2020) [32] | USA | Single-center, retrospective | 11/12 (high-risk patients) | 1st yr: 91% (MICS) vs. 42% (FS) | RBC units: 3 (IQR 2–7) vs. 6 (IQR 3–12) | Median 7 (IQR 5–20) vs. 12 (IQR 7–28) | Not reported | Less RVAD use, shorter CPB, and improved survival in MICS group (91% vs. 42%, p = 0.033). |
7 | Antonczyk et al. (2024) [33] | Poland | Single-center, retrospective | 26/22 | 1-yr: 84% both; 2-yr: 84% (MICS) vs. 73% (STX), p = 0.79 | More intraop FFP/platelets in MICS; reop bleeding: NS | Not reported | Wound: 0% (MICS) vs. 6% (STX); other: NS | MICS had longer OR time, fewer infections, similar survival; preferable in redo cases. |
8 | Gosev et al. (2019) [34] | USA | Single-center, retrospective | 41/36 | 6-month: 93% vs. 77% (p = 0.088) | Reop: 5% vs. 20%; drain output: 1045 vs. 1403 mL | Median 4 (IQR 3–7) | SSI: 10%, Driveline: 2% | Lower RV failure (7% vs. 28%), transfusions, and faster recovery with MICS. |
9 | Ayers et al. (2020) [35] | USA | Single-center, retrospective | 15/14 | 30-day: 6.7% (MICS) vs. 14.3% (FS) | RBC, plasma, platelets significantly less in MICS (p < 0.05) | Median 4 (vs. 13 in FS) | Not detailed | Lower RVF (p = 0.006), shorter LOS, fewer transfusions; no conversions to sternotomy. |
10 | Saeed et al. (2021) [36] | 5 countries | Multicenter, retrospective | 122/305 | 1st year: No difference | RHF: 18.6% vs. 29.9%, RVAD: 8.2% vs. 18.6% (p < 0.01) | Not reported | Not reported | LIS associated with less RHF and RVAD; survival similar. |
11 | Sun et al. (2024) [37] | Canada | Single-center, retrospective | 78/94 | 30-day: 3.8% vs. 14.9% (p = 0.02) | No diff in severe RVF | Same: 8 days | Not reported | Less platelet transfusion, lower 30-day mortality; CPB avoidance may reduce complications. |
12 | Gosev et al. (2024) [38] | USA, Multicenter | Prospective multicenter, propensity-matched cohort | 102 (MICS)/204 (sternotomy) | 6-month: 11% (MICS) vs. 10.3% (sternotomy); non inferior (p < 0.0025) | Reoperation: 10.8% (MICS) vs. 11.8% (FS); CPB: 123 ± 65 vs. 84 ± 40 min | Median: 7 days (MICS) vs. 8 days (sternotomy); N.S. | Major infection: 38.2% (both groups); driveline infection: 8.8% (MICS) vs. 8.3% | Thoracotomy-based implantation was noninferior to sternotomy in survival, stroke, and major complications; longer OR time but similar ICU stay and adverse event rates. RVAD use higher in MICS group (13.7% vs. 5.4%; p = 0.02). |
No. | Study | Age, Years (Mean ± SD) (FS/MIC S) | Males, % (FS/MIC S) | Previous Cardiac Surgeries, % (FS/MIC S) | INTERMACS (Mean ± SD or % I–III) | Key Outcomes/Comorbidity |
---|---|---|---|---|---|---|
1 | Riebandt et al. [29] | 58.3 ± 9.0/56.0 ± 7.9 | 84/82 | Not reported | I–III: 68/70 (p = 0.887) | “Patients were comparable in preoperative characteristics, including kidney and liver function, INR levels (full sternotomy [FS]: 2.2 ± 0.9 vs. less invasive surgery [LIS]: 2.5 ± 0.5; p = 0.357), and assessment by the Model for End-Stage Liver Disease excluding INR (MELD-XI) (FS: 8.48 ± 4.22 vs. LIS: 10.35 ± 4.53; p = 0.159).” |
2 | Gosev et al., (SWIFT) [38] | 58.4 ± 12.4/59.1 ± 13.4 | 83.8/81.4 | 28.4/27.5 | 32.4/31.4 | All patients with advanced heart failure were excluded from the study if biventricular circulatory support or concomitant procedures were planned at the time of left ventricular assist device (LVAD) implantation, or if irreversible end-organ dysfunction or active infection was present. |
3 | Jawad et al. [27] | 59 ± 11 (total cohort) | 90 (total cohort) | 23/14 (p = 0.08) | 2.35 ± 1.13/2.83 ± 1.0 (p < 0.001) | ECMO before implantation: 19.6% total; long-term ECMO CS 9 ± 6 vs. LIS 5 ± 3 days (p = 0.02); Tricuspid valve insufficiency grade II-III27 FS (42.9%, n = 63)/MICS 26 (37.7%, n = 69) p = 0.106 Etiology of ischemic cardiomyopathy FS 37 (51.4%, n = 72)/MICS 40 (54.8%, n = 73) p =0.068 |
4 | Reichart et al. [28] | 52 ± 15 vs. 59 ± 11 | 95.4/83.3 | Not reported | 31.8%/68.8%, p = 0.01 | Dilated CMP MICS 12 (54.5) STX 21 (43.7), Ischemic CMP MICS 6 (27.3) STX 20 (41.7) |
5 | Kervan et al. [30] | 45.7 ± 13.7/44.8 ± 15.6 | 90/73 | 14/17 p = 0.03 | INTERMACS 1 9/7% INTERMACS 2 24/20 p = 0.6 INTERMACS 3 25/24 p = 0.1 | Dilated cardiomyopathy CS 53% MICS 68%, Ischemic cardiomyopathy CS 47% MICS 32%, Diabetes mellitus CS 31%, MICS 17% Chronic obstructive pulmonary disease CS 10%, MICS 7% |
6 | Ozer et al. [31] | 49.1 ± 10.4/46.6 ± 11 | 93.3/83.3 | 13.3/30 p = 0.2 | 43.3/63.3 | Hypertension MICS 12 (%40) FS 8 (%26.7) Cardiac indices, pulmonary vascular resistances, transpulmonary pressure gradients, central venous pressures, and pulmonary artery pressures were not statistically different between the two groups (p > 0.05) |
7 | Antończyk et al. [33] | 53.7 ± 11.9/55.8 ± 10.7 | No data | 12/54 p < 0.001 | Not reported | Among patients, ischemic cardiomyopathy was present in 45% of those undergoing full sternotomy (FS) and 77% in the minimally invasive cardiac surgery (MICS) group. Dilated cardiomyopathy was present in 36% of FS patients and 8% of MICS patients. Extracorporeal membrane oxygenation (ECMO) as a bridge to left ventricular assist device (LVAD) implantation was used more frequently in the FS group (11% vs. 0%, p = 0.03). |
8 | Ayers et al. [35] | 63.6 ± 11.3/60.4 ± 9.2 | 79/93 | 50/73 p = 0.264 | 1.9 ± 0.9/2.4 ± 0.9 p = 0.120 | Chronic renal insufficiency FS 6 (40%) MICS 5 (36%), Diabetes FS 5 (33%), MICS 7 (50%), COPD FS 3 (20%), MICS 3 (21%) |
9 | Saeed et al. [36] | 58 ± 11 vs. 58 ± 12 | There were no differences in mean age, gender, body mass index, diabetes mellitus, or history of hypertension between patients in the MICS group and the FS group. Preoperative use of ECMO and IABP was more common in the FS group, while off-pump implantation was more frequent in the MICS group. Other preimplantation variables, including creatinine levels, hemodynamic parameters, and tricuspid regurgitation, did not differ between the two groups. | |||
10 | Sun et al. [37] | 56.0 (47.0, 63.0)/54.0 (46.2, 62.0) | 72.3/64.1 | 21.3/26.9 p = 0.39 | 1. 44 (46.8)/17 (22.1) 2. 26 (27.7)/29 (37.7) 3. 24 (25.5)/31 (40.3) | Ischemic cardiomyopathy (%): FS—41.5%, MICS—35.9%, p = 0.45, Dialysis dependence (%): FS—9.6%, MICS—10.3%, p = 0.88, Peripheral vascular disease (%):FS—2.1%, MICS—5.1%, p = 0.41, Insulin-dependent diabetes (%):FS—7.4%, MICS—9.0%, p = 0.93, Myocardial infarction ≤ 90 days (%):FS—25.5%, MICS—12.8%, p = 0.06, Congenital heart disease (%):FS—5.3%, MICS—11.5%, p = 0.14, Chronic disease mild (%):FS—10.6%, MICS—5.1%, p = 0.26 |
11 | Pasrija et al. [32] | 55 years (33–57)/55 years (36–64) | 67/91 | No data | 75%—preoperative VAD or VA-ECMO, the rest INTERMACS 1 with inotropes and IABP/37%—preoperative VAD or VA-ECMO, the rest INTERMACS 1 (86% of them with IABP) | FS/MICS Ischemic etiology: 42%/27% Atrial fibrillation: 42%/46% Heart thrombus: 8%/9% Oncology: 0%/18% History of stroke: 8%/9% Diabetes mellitus: 67%/18% Obesity: 33%/46% |
12 | Gosev et al. [34] | 57 years (43–64)/61 years (56.5–68) | 76/78 | 24%/22% p = 0.084 | Profile 1–41%/34% Profile 2–15%/8% Profile 3–39%/48% Profile 4–5%/9% | FS/MICS Ischemic etiology: 44%/47% Stroke or TIA: 7%/5% Chronic renal failure: 27%/39% Diabetes mellitus: 29%/38% COPD: 12%/14% |
Outcome | MICS (Mean ± SD; 95% CI; Range) | FS (Mean ± SD; 95% CI; Range) | Studies Reporting MICS Advantage |
---|---|---|---|
30-day mortality | 4.80 ± 4.17% (4.12–5.48); 0–13.6 | 12.06 ± 1.96% (11.87–12.25); 10.3–14.9 | Jawad 2021 [27], Özer 2020 [31], Sun 2024 [37], Riebandt 2021 [29], Reichart 2019 [28], Ayers 2020 [35] |
6-month survival | 89.51 ± 4.39% (88.46–90.56); 84–93 | 75.48 ± 1.94% (74.98–75.98); 73–77 | Gosev 2019 [34], Gosev 2024 [38] |
Reoperation (bleeding) | 8.03 ± 6.45% (7.29–8.78); 0–23.3 | 12.60 ± 4.83% (12.09–13.11); 6.8–23.3 | Jawad 2021 [27], Gosev 2019 [34], Özer 2020 [31], Antonczyk 2024 [33] |
Time in ICU (days) | 6.30 ± 2.36 (6.07–6.53); 3.7–13.5 | 8.39 ± 2.31 (8.18–8.59); 5.4–13.5 | Jawad 2021 [27], Ayers 2020 [35], Sun 2024 [37], Reichart 2019 [28], Özer 2020 [31] |
Infectious complications | 20.27 ± 17.74% (18.35–22.18); 0–44 | 29.93 ± 14.83% (28.38–31.48); 5.5–41.7 | Antonczyk 2024 [33], Kervan 2021 [30], Reichart 2019 [28], Jawad 2021 [27], Gosev 2019 [34] |
RVF frequency | 17.96 ± 4.89% (17.37–18.55); 7–21.6 | 22.44 ± 9.40% (21.65–23.23); 10.3–29.9 | Saeed 2021 [36], Gosev 2019 [34], Gosev 2024 [38], Jawad 2021 [27], Sun 2024 [37] |
Using RVAD | 10.03 ± 3.71% (9.56–10.50); 0–13.7 | 14.29 ± 8.71% (13.55–15.04); 5.4–50 | Saeed 2021 [36], Gosev 2019 [34], Gosev 2024 [38], Jawad 2021 [27] |
Authors | Sample Size (MICS/STX) | % With Prior Cardiac Surgery (MICS) | Indication for MICS Approach | Use of Peripheral Cannulation | Cardiopulmonary Bypass (CPB) Duration (min, MICS) | Need to Convert to STX | Comments on Surgical Complexity |
---|---|---|---|---|---|---|---|
Reichart et al. (2018) [28] | 22/48 | 18.2% | Adequate pulmonary function; no concomitant surgery | 72.7% femoral access | Not specified | 0% | All MICS cases elective; no conversions |
Antonczyk et al. (2024) [33] | 26/47 | 54% | Redo patients; high comorbidity | 92% femoral artery & 100% vein | 59.5 min (median) | 0% | Higher OR time; more platelet/FFP transfusions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turtabayev, B.; Joshibayev, S.; Kervan, U.; Zharmenov, S.; Ustemirov, Y.; Begdildayev, A.; Iskakbayev, G. Minimally Invasive Left Ventricular Assist Device Implantation: A Systematic Review of Current Evidence on Clinical Outcomes and Surgical Approaches. Med. Sci. 2025, 13, 173. https://doi.org/10.3390/medsci13030173
Turtabayev B, Joshibayev S, Kervan U, Zharmenov S, Ustemirov Y, Begdildayev A, Iskakbayev G. Minimally Invasive Left Ventricular Assist Device Implantation: A Systematic Review of Current Evidence on Clinical Outcomes and Surgical Approaches. Medical Sciences. 2025; 13(3):173. https://doi.org/10.3390/medsci13030173
Chicago/Turabian StyleTurtabayev, Baglan, Seitkhan Joshibayev, Umit Kervan, Samat Zharmenov, Yerbol Ustemirov, Almas Begdildayev, and Gali Iskakbayev. 2025. "Minimally Invasive Left Ventricular Assist Device Implantation: A Systematic Review of Current Evidence on Clinical Outcomes and Surgical Approaches" Medical Sciences 13, no. 3: 173. https://doi.org/10.3390/medsci13030173
APA StyleTurtabayev, B., Joshibayev, S., Kervan, U., Zharmenov, S., Ustemirov, Y., Begdildayev, A., & Iskakbayev, G. (2025). Minimally Invasive Left Ventricular Assist Device Implantation: A Systematic Review of Current Evidence on Clinical Outcomes and Surgical Approaches. Medical Sciences, 13(3), 173. https://doi.org/10.3390/medsci13030173