PROX1 Expression in Resected Non-Small Cell Lung Cancer: Immunohistochemical Profile and Clinicopathological Correlates
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection Criteria
2.2. Immunohistochemistry and Histopathological Evaluation
2.3. Statistical Analysis
3. Results
3.1. Patient Demographics and Tumor Characteristics
3.2. PROX1 Protein Expression and Its Clinicopathological Correlates in NSCLC
3.3. Prognostic Relevance of PROX1 and Other Clinicopathological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PROX1 | Prospero homeobox 1 |
NSCLC | Non-small cell lung cancer |
OS | Overall survival |
LN | Lymph node |
References
- Wigle, J.T.; Harvey, N.; Detmar, M.; Lagutina, I.; Grosveld, G.; Gunn, D.M.; Jackson, D.G.; Oliver, G. An Essential Role for Prox1 in the Induction of the Lymphatic Endothelial Cell Phenotype. EMBO J. 2002, 21, 1505–1513. [Google Scholar] [CrossRef]
- Petrova, T.V.; Mäkinen, T.; Mäkelä, T.P.; Saarela, J.; Virtanen, I.; Ferrell, R.E.; Finegold, D.N.; Kerjaschki, D.; Ylä-Herttuala, S.; Alitalo, K. Lymphatic Endothelial Reprogramming of Vascular Endothelial Cells by the Prox-1 Homeobox Transcription Factor. EMBO J. 2002, 21, 4593–4599. [Google Scholar] [CrossRef]
- Skog, M.; Bono, P.; Lundin, M.; Lundin, J.; Louhimo, J.; Linder, N.; Petrova, T.V.; Andersson, L.C.; Joensuu, H.; Alitalo, K.; et al. Expression and Prognostic Value of Transcription Factor PROX1 in Colorectal Cancer. Br. J. Cancer 2011, 105, 1346–1351. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, J.B.; Qin, Y.; Wang, W.; Wei, L.; Teng, Y.; Guo, L.; Zhang, B.; Lin, Z.; Liu, J.; et al. PROX1 Promotes Hepatocellular Carcinoma Metastasis by Way of Up-Regulating Hypoxia-Inducible Factor 1α Expression and Protein Stability. Hepatology 2013, 58, 692–705. [Google Scholar] [CrossRef]
- Park, Y.-L.; Myung, E.; Park, S.-Y.; Kim, N.; Oak, C.-Y.; Myung, D.-S.; Cho, S.-B.; Lee, W.-S.; Kweon, S.-S.; Kim, H.-S.; et al. Impact of Prospero Homeobox-1 on Tumor Cell Behavior and Prognosis in Colorectal Cancer. Am. J. Cancer Res. 2015, 5, 3286–3300. [Google Scholar] [PubMed]
- Park, K.J.; Cho, S.B.; Park, Y.L.; Kim, N.; Park, S.Y.; Myung, D.S.; Lee, W.S.; Kweon, S.S.; Joo, Y.E. Prospero Homeobox 1 Mediates the Progression of Gastric Cancer by Inducing Tumor Cell Proliferation and Lymphangiogenesis. Gastric Cancer 2017, 20, 104–115. [Google Scholar] [CrossRef]
- Laerm, A.; Helmbold, P.; Goldberg, M.; Dammann, R.; Holzhausen, H.J.; Ballhausen, W.G. Prospero-Related Homeobox 1 (PROX1) Is Frequently Inactivated by Genomic Deletions and Epigenetic Silencing in Carcinomas of the Biliary System. J. Hepatol. 2007, 46, 89–97. [Google Scholar] [CrossRef]
- Chang, T.M.; Hung, W.C. The Homeobox Transcription Factor Prox1 Inhibits Proliferation of Hepatocellular Carcinoma Cells by Inducing p53-Dependent Senescence-like Phenotype. Cancer Biol. Ther. 2013, 14, 222–229. [Google Scholar] [CrossRef]
- Saukkonen, K.; Hagström, J.; Mustonen, H.; Juuti, A.; Nordling, S.; Kallio, P.; Alitalo, K.; Seppänen, H.; Haglund, C. PROX1 and β-Catenin Are Prognostic Markers in Pancreatic Ductal Adenocarcinoma. BMC Cancer 2016, 16, 472. [Google Scholar] [CrossRef]
- Lim, B.; Kamal, A.; Gomez Ramos, B.; Adrian Segarra, J.M.; Ibarra, I.L.; Dignas, L.; Kindinger, T.; Volz, K.; Rahbari, M.; Rahbari, N.; et al. Active Repression of Cell Fate Plasticity by PROX1 Safeguards Hepatocyte Identity and Prevents Liver Tumorigenesis. Nat. Genet. 2025, 57, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Elsir, T.; Eriksson, A.; Orrego, A.; Lindström, M.S.; Nistér, M. Expression of PROX1 Is a Common Feature of High-Grade Malignant Astrocytic Gliomas. J. Neuropathol. Exp. Neurol. 2010, 69, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, B.; Saxena, R.; Morimiya, A.; Mehrotra, S.; Badve, S. Lymphangiogenesis Does Not Occur in Breast Cancer. Am. J. Surg. Pathol. 2005, 29, 1449–1455. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Ni, X.J.; Wang, M.H.; Zha, X.M.; Zhao, Y.; Wang, S. Tumor-Derived VEGF-C, but Not VEGF-D, Promotes Sentinel Lymph Node Lymphangiogenesis Prior to Metastasis in Breast Cancer Patients. Med. Oncol. 2012, 29, 2594–2600. [Google Scholar] [CrossRef]
- Ntikoudi, E.; Pergaris, A.; Kykalos, S.; Politi, E.; Theocharis, S. The Role of PROX1 in Neoplasia: A Key Player Often Overlooked. Diagnostics 2022, 12, 1624. [Google Scholar] [CrossRef]
- Choi, D.; Ramu, S.; Park, E.; Jung, E.; Yang, S.; Jung, W.; Choi, I.; Lee, S.; Kim, K.E.; Seong, Y.J.; et al. Aberrant Activation of Notch Signaling Inhibits PROX1 Activity to Enhance the Malignant Behavior of Thyroid Cancer Cells. Cancer Res. 2016, 76, 582–593. [Google Scholar] [CrossRef]
- Johnson, N.C.; Dillard, M.E.; Baluk, P.; McDonald, D.M.; Harvey, N.L.; Frase, S.L.; Oliver, G. Lymphatic Endothelial Cell Identity Is Reversible and Its Maintenance Requires Prox1 Activity. Genes Dev. 2008, 22, 3282–3291. [Google Scholar] [CrossRef]
- Jones, D. Parallels of Resistance between Angiogenesis and Lymphangiogenesis Inhibition in Cancer Therapy. Cells 2020, 9, 762. [Google Scholar] [CrossRef] [PubMed]
- Sasahira, T.; Ueda, N.; Yamamoto, K.; Kurihara, M.; Matsushima, S.; Bhawal, U.K.; Kirita, T.; Kuniyasu, H. Prox1 and FOXC2 Act as Regulators of Lymphangiogenesis and Angiogenesis in Oral Squamous Cell Carcinoma. PLoS ONE 2014, 9, e92534. [Google Scholar] [CrossRef]
- Shimoda, M.; Takahashi, M.; Yoshimoto, T.; Kono, T.; Ikai, I.; Kubo, H. A Homeobox Protein, Prox1, Is Involved in the Differentiation, Proliferation, and Prognosis in Hepatocellular Carcinoma. Clin. Cancer Res. 2006, 12, 6005–6011. [Google Scholar] [CrossRef]
- International Association for the Study of Lung Cancer (IASLC). Available online: https://www.iaslc.org (accessed on 29 June 2025).
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. (Eds.) AJCC Cancer Staging Manual, 8th ed.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Deboever, N.; Mitchell, K.G.; Feldman, H.A.; Cascone, T.; Sepesi, B. Current Surgical Indications for Non-Small-Cell Lung Cancer. Cancers 2022, 14, 1263. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, J.; Cong, Y.; Chen, K.; Li, H.; He, Q.; Chen, L.; Song, Y.; Xing, Y. PROX1 Drives Neuroendocrine Plasticity and Liver Metastases in Prostate Cancer. Cancer Lett. 2024, 597, 217068. [Google Scholar] [CrossRef]
- Versmold, B.; Felsberg, J.; Mikeska, T.; Ehrentraut, D.; Köhler, J.; Hampl, J.A.; Röhn, G.; Niederacher, D.; Betz, B.; Hellmich, M.; et al. Epigenetic Silencing of the Candidate Tumor Suppressor Gene PROX1 in Sporadic Breast Cancer. Int. J. Cancer 2007, 121, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.; Jung, E.; Oh, S.; Shin, S.Y. Homeobox Protein PROX1 Expression Is Negatively Regulated by Histone Deacetylase 1 and c-JUN Complex in MDA-MB-231 Human Breast Cancer Cells. Folia Biol. 2023, 69, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.H.; Huang, C.C.; Pan, M.R.; Chen, H.H.; Hung, W.C. Prospero Homeobox 1 Promotes Epithelial–Mesenchymal Transition in Colon Cancer Cells by Inhibiting E-Cadherin via miR-9. Clin. Cancer Res. 2012, 18, 6416–6425. [Google Scholar] [CrossRef]
- Ueta, K.; Otowa, Y.; Kakeji, Y.; Hirashima, M. PROX1 Is Associated with Cancer Progression and Prognosis in Gastric Cancer. Anticancer Res. 2018, 38, 6139–6145. [Google Scholar] [CrossRef]
- Zhu, S.H.; Shan, C.J.; Wu, Z.F.; Xu, S.Z. Proliferation of Small Cell Lung Cancer Cell Line Reduced by Knocking-Down PROX1 via shRNA in Lentivirus. Anticancer Res. 2013, 33, 3169–3175. [Google Scholar] [PubMed]
- Hao, X.; Luo, W.; Qiu, X. The Association of Transcription Factor Prox1 with the Proliferation, Migration, and Invasion of Lung Cancer. Open Life Sci. 2021, 16, 602–610. [Google Scholar] [CrossRef]
- Yi, M.; Tan, Y.; Wang, L.; Cai, J.; Li, X.; Zeng, Z.; Xiong, W.; Li, G.; Li, X.; Tan, P.; et al. TP63 Links Chromatin Remodeling and Enhancer Reprogramming to Epidermal Differentiation and Squamous Cell Carcinoma Development. Cell. Mol. Life Sci. 2020, 77, 4325–4346. [Google Scholar] [CrossRef]
- Agnihotri, N.S.; Astekar, M. The Role of Novel Prognostic Markers PROX1 and FOXC2 in Carcinogenesis of Oral Squamous Cell Carcinoma. J. Exp. Ther. Oncol. 2018, 12, 171–184. [Google Scholar]
- Yokobori, T.; Bao, P.; Fukuchi, M.; Altan, B.; Ozawa, D.; Rokudai, S.; Bai, T.; Kumakura, Y.; Honjo, H.; Hara, K.; et al. Nuclear PROX1 Is Associated with Hypoxia-Inducible Factor 1α Expression and Cancer Progression in Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2015, 22 (Suppl. S3), S1566–S1573. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.F.S.D.; de Oliveira Rodini, C.; de Aquino Xavier, F.C.; Paiva, K.B.; Severino, P.; Moyses, R.A.; López, R.M.; DeCicco, R.; Rocha, L.A.; Carvalho, M.B.; et al. PROX1 Gene Is Differentially Expressed in Oral Cancer and Reduces Cellular Proliferation. Medicine 2014, 93, e192. [Google Scholar] [CrossRef]
- Nurmi, H.; Saharinen, P.; Zarkada, G.; Zheng, W.; Robciuc, M.R.; Alitalo, K. VEGF-C Is Required for Intestinal Lymphatic Vessel Maintenance and Lipid Absorption. EMBO Mol. Med. 2015, 7, 1418–1425. [Google Scholar] [CrossRef]
- Srinivasan, R.S.; Dillard, M.E.; Lagutin, O.V.; Lin, F.J.; Tsai, S.; Tsai, M.J.; Samokhvalov, I.M.; Oliver, G. Lineage Tracing Demonstrates the Venous Origin of the Mammalian Lymphatic Vasculature. Genes Dev. 2007, 21, 2422–2432. [Google Scholar] [CrossRef]
- Liu, C.; Wei, S.; Guo, C.; Mei, J.; Pu, Q.; Liu, L. Clinical Significance of Station 3A Lymph Node Dissection in Patients with Right-Side Non-Small-Cell Lung Cancer: A Retrospective Propensity-Matched Analysis. Ann. Surg. Oncol. 2021, 28, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Cackowski, M.M.; Zbytniewski, M.; Gryszko, G.M.; Dziedzic, M.; Woźnica, K.; Orłowski, T.M.; Dziedzic, D.A. Effect of 3A Lymph Node Resection on Survival in Patients with Right-Sided NSCLC: A Retrospective, Multicentre, Propensity-Score Matching Study. J. Thorac. Dis. 2022, 14, 3265–3276. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.Z.; Tan, Z.H.; Li, J.B.; Long, H.; Fu, J.H.; Zhang, L.J.; Lin, P.; Hou, X.; Yang, H.X. Station 3A Lymph Node Dissection Does Not Improve Long-Term Survival in Right-Side Operable Non-Small-Cell Lung Cancer Patients: A Propensity Score Matching Study. Thorac. Cancer 2022, 13, 2106–2116. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Büchler, P.; Giese, N.; Giese, T.; Wilting, J.; Büchler, M.W.; Friess, H. Role of Lymphangiogenesis and Lymphangiogenic Factors during Pancreatic Cancer Progression and Lymphatic Spread. Int. J. Oncol. 2006, 28, 883–890. [Google Scholar] [CrossRef] [PubMed]
- GEPIA. Gene Expression Profiling Interactive Analysis. 2017. Available online: http://gepia.cancer-pku.cn (accessed on 29 June 2025).
- Subramanian, J.; Morgensztern, D.; Goodgame, B.; Baggstrom, M.Q.; Gao, F.; Piccirillo, J.; Govindan, R. Distinctive Characteristics of Non-Small Cell Lung Cancer (NSCLC) in the Young: A Surveillance, Epidemiology, and End Results (SEER) Analysis. J. Thorac. Oncol. 2010, 5, 23–28. [Google Scholar] [CrossRef]
- Sezen, C.B.; Kalafat, C.E.; Doğru, M.V.; Aker, C.; Erdogu, V.; Saydam, O.; Metin, M. The Effect of Lymph Node Ratio on Survival in NonSmallCell Lung Cancer. Acta Chir. Belg. 2023, 123, 36–42. [Google Scholar] [CrossRef]
- Roudi, R.; Madjd, Z.; Korourian, A.; Mehrazma, M.; Molanae, S.; Sabet, M.N.; Shariftabrizi, A. Clinical significance of putative cancer stem cell marker CD44 in different histological subtypes of lung cancer. Cancer Biomark. 2014, 14, 457–467. [Google Scholar] [CrossRef]
- Roudi, R.; Madjd, Z.; Ebrahimi, M.; Samani, F.S.; Samadikuchaksaraei, A. CD44 and CD24 cannot act as cancer stem cell markers in human lung adenocarcinoma cell line A549. Cell. Mol. Biol. Lett. 2014, 19, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Roudi, R.; Korourian, A.; Shariftabrizi, A.; Madjd, Z. Differential Expression of Cancer Stem Cell Markers ALDH1 and CD133 in Various Lung Cancer Subtypes. Cancer Investig. 2015, 33, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Roudi, R.; Haji, G.; Madjd, Z.; Shariftabrizi, A.; Mehrazma, M. Evaluation of anaplastic lymphoma kinase expression in nonsmall cell lung cancer;a tissue microarray analysis. J. Cancer Res. Ther. 2016, 12, 1065–10699. [Google Scholar] [PubMed]
- Dieterich, L.C.; Klein, S.; Mathelier, A.; Sliwa-Primorac, A.; Ma, Q.; Hong, Y.K.; Shin, J.W.; Hamada, M.; Lizio, M.; Itoh, M.; et al. DeepCAGE Transcriptomics Reveal an Important Role of the Transcription Factor MAFB in the Lymphatic Endothelium. Cell Rep. 2015, 13, 1493–1504. [Google Scholar] [CrossRef]
- Aspelund, A.; Tammela, T.; Antila, S.; Nurmi, H.; Leppänen, V.M.; Zarkada, G.; Stanczuk, L.; Francois, M.; Mäkinen, T.; Saharinen, P.; et al. The Schlemm’s canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel. J. Clin. Investig. 2014, 124, 3975–3986. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Value |
---|---|
Total patients (NSCLC, surgically resected) | 145 |
Patients eligible after staining | 121 |
Mean age (years) | 64.7 (range: 40–84) |
Sex | Male: 81% (n = 98); Female: 19% (n = 23) |
Histology | Adenocarcinoma: 51.2%; Squamous cell carcinoma: 48.8% |
Adenocarcinoma subtype | Non-mucinous: 53.2% (33/62) |
Tumor grade | Well-differentiated: 8.7%; Moderately differentiated: 43.5%; Poorly differentiated: 47.8% |
Tumor stage (TNM) | Stage I: 24%; Stage II: 36.4%; Stage III: 39.6%; Stage IV: 0% |
Mean tumor size (cm) | 3.5 (range: 1.2–8.4) |
Positive lymph nodes | Median: 3 (range: 0–15) |
PROX1 Expression | ||||
---|---|---|---|---|
Percentage | 0–25% | 26–50% | 51–75% | 76–100% |
n (%) | 63 (52.1%) | 28 (23.1%) | 20 (16.5%) | 10 (8.3%) |
Intensity | 0 | 1 | 2 | 3 |
n (%) | 25 (20.7%) | 50 (41.3%) | 36 (29.8%) | 10 (8.3%) |
PROX1 Expression | ||||||
---|---|---|---|---|---|---|
Variable | 0–25% | 26–50% | 51–75% | 76–100% | Total | p-Value |
Age (mean ± SD) | 65.54 (8.62) | 63.43 (10.3) | 62.85 (9.73) | 66.80 (6.21) | 64.71 (9.05) | 0.486 |
Sex | 0.355 | |||||
| 51 (80.9%) | 20 (71.4%) | 18 (90%) | 9 (90%) | 98 (81.0%) | |
| 12 (19.1%) | 8 (28.6%) | 2 (10%) | 1 (10%) | 23 (19.0%) | |
Histology | 0.791 | |||||
Squamous cell carcinoma | 33 (52.4%) | 12 (42.9%) | 10 (50%) | 4 (40%) | 59 (48.8%) | |
Adenocarcinoma | 30 (47.6%) | 16 (57.1%) | 10 (50%) | 6 (60%) | 62 (51.2%) | |
Subtype | 0.607 | |||||
| 52 (83.9%) | 16 (57.1%) | 13 (72.2%) | 8 (80%) | 89 (75.4%) | 0.054 |
| 1 (1.6%) | 2 (7.1%) | 1 (5.6%) | 1 (10%) | 5 (4.2%) | 0.470 |
| 1 (1.6%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (0.8%) | 0.823 |
| 2 (3.2%) | 0 (0.0%) | 1 (5.6%) | 0 (0.0%) | 3 (2.5%) | 0.622 |
| 4 (6.5%) | 9 (32.1%) | 2 (11.1%) | 1 (10%) | 16 (13.6%) | 0.010 |
| 1 (1.6%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (0.8%) | 0.823 |
| 1 (1.6%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (0.6%) | 0.823 |
PROX1 Expression | ||||||
---|---|---|---|---|---|---|
Variable | 0–25% | 26–50% | 51–75% | 76–100% | Total | p-Value |
TNM | ||||||
T1a | 1 (1.6%) | 0 (0%) | 1 (5%) | 0 (0%) | 2 (1.6%) | 0.101 |
T1b | 4 (6.3%) | 5 (17.8%) | 3 (15%) | 1 (10%) | 13 (10.7%) | |
T1c | 9 (14.3%) | 3 (10.7%) | 2 (10%) | 1 (10%) | 15 (12.4%) | |
T2a | 10 (15.9%) | 10 (35.7%) | 1 (5%) | 5 (50%) | 26 (21.5%) | |
T2b | 9 (14.3%) | 4 (14.3%) | 6 (30%) | 1 (10%) | 20 (16.5%) | |
T3 | 13 (20.6%) | 5 (17.9%) | 5 (25%) | 1 (10%) | 24 (19.8%) | |
T4 | 17 (27%) | 1 (3.6%) | 2 (10%) | 1 (10%) | 21 (17.3%) | |
N0 | 30 (47.6%) | 17 (60.7%) | 9 (45%) | 5 (50%) | 61 (50.4%) | 0.884 |
N1 | 18 (28.6%) | 5 (17.9%) | 7 (35%) | 3 (30%) | 33 (27.3%) | |
N2 | 12 (19%) | 5 (17.9%) | 4 (20%) | 1 (10%) | 22 (18.2%) | |
N3 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | |
Nx | 3 (4.8%) | 1 (3.6%) | 0 (0%) | 1 (10%) | 5 (4.1%) | |
M0 | 63 (100%) | 28 (100%) | 20 (100%) | 10 (100%) | 121 (100%) | NA |
M1 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | |
STAGE | ||||||
IA1 | 0 (0%) | 0 (0%) | 1 (5%) | 0 (0%) | 1 (0.8%) | 0.097 |
IA2 | 1 (1.6%) | 5 (17.9%) | 3 (15%) | 1 (10%) | 10 (8.3%) | |
IA3 | 3 (4.8%) | 1 (3.6%) | 1 (5%) | 0 (0%) | 5 (4.1%) | |
IB | 4 (6.3%) | 6 (21.4%) | 0 (0%) | 3 (30%) | 13 (10.7%) | |
IIA | 7 (11.1%) | 3 (10.7%) | 10 (50%) | 1 (10%) | 12 (9.9%) | |
IIB | 17 (27.0%) | 6 (21.4%) | 7 (35%) | 2 (20%) | 32 (26.4%) | |
IIIA | 27 (42.9%) | 5 (17.9%) | 5 (25%) | 3 (30%) | 40 (33.0%) | |
IIIB | 4 (6.3%) | 2 (7.1%) | 2 (10%) | 0 (0%) | 8 (6.6%) | |
Dmax | 5.36 (3.07) | 3.52 (1.71) | 4.48 (2.65) | 4.13(2.52) | 4.69 (2.78) | 0.026 |
Nodes | 18.18 (11.54) | 17.26 (10.28) | 15.60 (8.51) | 16.67 (7.98) | 17.41 (10.48) | 0.811 |
Nodes+ | 2.41 (4.28) | 4.30 (9.10) | 2.05 (2.85) | 2.11 (3.26) | 2.76 (5.55) | 0.435 |
LN ratio | 0.14 (0.23) | 0.15 (0.25) | 0.11 (0.16) | 0.12 (0.20) | 0.14 (0.22) | 0.958 |
PROX1 Expression | ||||||
---|---|---|---|---|---|---|
Variable | 0–25% | 26–50% | 51–75% | 76–100% | Total | p-Value |
Necrosis | 0.366 | |||||
Yes | 51 (80.9%) | 22 (78.6%) | 13 (65%) | 9 (90%) | 95 (78.5%) | |
No | 12 (19.1%) | 6 (21.4%) | 7 (35%) | 1 (10%) | 26 (21.5%) | |
Mucus | 0.002 | |||||
Yes | 9 (14.5%) | 14 (50%) | 3 (15%) | 3 (30%) | 29 (24.1%) | |
No | 53 (85.5%) | 14 (50%) | 17 (85%) | 7 (70%) | 91 (75.9%) | |
Differentiation | 0.357 | |||||
Low | 31 (52.5%) | 10 (37%) | 7 (36.8%) | 7 (70%) | 55 (47.8%) | |
Low/Moderate | 9 (15.2%) | 6 (22.2%) | 2 (10.5%) | 0 (0.0%) | 17 (14.8%) | |
Moderate | 13 (22%) | 8 (29.6%) | 9 (47.4%) | 3 (30%) | 33 (28.7%) | |
Μoderate/High | 5 (8.5%) | 1 (3.7%) | 1 (5.3%) | 0 (0.0%) | 7 (6.1%) | |
High | 1 (1.7%) | 2 (7.4%) | 0 (0.0%) | 0 (0.0%) | 3 (2.6%) | |
Mitosis | 0.552 | |||||
Low | 1 (2.1%) | 1 (5.6%) | 0 (0%) | 0 (0%) | 2 (2.4%) | |
Moderate | 9 (19.6%) | 3 (16.7%) | 4 (36.4%) | 0 (0%) | 16 (19.5%) | |
Effective | 36 (78.3%) | 14 (77.8%) | 7 (63.6%) | 7 (100%) | 64 (78%) |
Variable | Median Survival (Months) | p-Value |
---|---|---|
Age | 0.021 | |
<50 | >167 [Q1:56, Q3:167] | |
50–59 | 60 [Q1:12, Q3:120] | |
60–69 | 50 [Q1:22, Q3:165] | |
>70 | 35 [Q1:8, Q3:61] | |
Sex | ||
Male | 42 [Q1:17, Q3:109] | 0.006 |
Female | >167 [Q1:56, Q3:167] | |
Histology | ||
Squamous | 60 [Q1:22, Q3:167] | 0.393 |
Adenocarcinoma | 42 [Q1:17, Q3:120] | |
Nodes+ | ||
0–9 | 60 [Q1:24, Q3:131] | 0.001 |
10+ | 17 [Q1:6, Q3:24] | |
LN Ratio | ||
0–0.49 | 60 [Q1:24, Q3:163] | 0.018 |
0.50–1.00 | 14 [Q1:6, Q3:27] | |
Stage | ||
IA | 72 [Q1:29, Q3:72] | 0.314 |
IB | 60 [Q1:18, Q3:84] | |
II | 43 [Q1:24, Q3:128] | |
IIIA | 36 [Q1:14, Q3:84] | |
IIIB | 12 [Q1:6, Q3:61] | |
Necrosis | ||
Yes | 43 [Q1:14, Q3:109] | 0.043 |
No | 72 [Q1:36, Q3:167] | |
Mucus | ||
Yes | 33 [Q1:18, Q3:96] | 0.571 |
No | 56 [Q1:19, Q3:132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntikoudi, E.; Karagkounis, T.; Mylonas, K.S.; Kykalos, S.; Schizas, D.; Vamvakaris, I.N.; Politi, E.; Karamouzis, M.V.; Theocharis, S. PROX1 Expression in Resected Non-Small Cell Lung Cancer: Immunohistochemical Profile and Clinicopathological Correlates. Med. Sci. 2025, 13, 140. https://doi.org/10.3390/medsci13030140
Ntikoudi E, Karagkounis T, Mylonas KS, Kykalos S, Schizas D, Vamvakaris IN, Politi E, Karamouzis MV, Theocharis S. PROX1 Expression in Resected Non-Small Cell Lung Cancer: Immunohistochemical Profile and Clinicopathological Correlates. Medical Sciences. 2025; 13(3):140. https://doi.org/10.3390/medsci13030140
Chicago/Turabian StyleNtikoudi, Evangelia, Thomas Karagkounis, Konstantinos S. Mylonas, Stylianos Kykalos, Dimitrios Schizas, Ioannis N. Vamvakaris, Ekaterini Politi, Michail V. Karamouzis, and Stamatios Theocharis. 2025. "PROX1 Expression in Resected Non-Small Cell Lung Cancer: Immunohistochemical Profile and Clinicopathological Correlates" Medical Sciences 13, no. 3: 140. https://doi.org/10.3390/medsci13030140
APA StyleNtikoudi, E., Karagkounis, T., Mylonas, K. S., Kykalos, S., Schizas, D., Vamvakaris, I. N., Politi, E., Karamouzis, M. V., & Theocharis, S. (2025). PROX1 Expression in Resected Non-Small Cell Lung Cancer: Immunohistochemical Profile and Clinicopathological Correlates. Medical Sciences, 13(3), 140. https://doi.org/10.3390/medsci13030140