Visual–Motor Functions and Associated Cognitive Outcomes in Pediatric Cancer Survivors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
Common Terminology Criteria for AEs (CTCAE)
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PFT | Posterior Fossa Tumors |
ALL | Acute Lymphoblastic Leukemia |
CANTAB | Cambridge Neuropsychological Test Automated Battery |
VMI | Visual–Motor Integration |
VP | Visual Perception |
MC | Motor Coordination |
References
- Saatci, D.; Thomas, A.; Botting, B.; Sutcliffe, A.G. Educational attainment in childhood cancer survivors: A meta-analysis. Arch. Dis. Child. 2020, 105, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Hunger, S.P.; Lu, X.; Devidas, M. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: A report from the children’s oncology group. J. Clin. Oncol. 2012, 30, 1663. [Google Scholar] [CrossRef] [PubMed]
- Hanzlik, E.; Woodrome, S.E.; Abdel-Baki, M.; Geller, T.J.; Elbabaa, S.K. A systematic review of neuropsychological outcomes following posterior fossa tumor surgery in children. Child’s Nerv. Syst. 2015, 31, 1869–1875. [Google Scholar] [CrossRef] [PubMed]
- Kesler, S.R.; Sleurs, C.; McDonald, B.C.; Deprez, S.; van der Plas, E.; Nieman, B.J. Brain imaging in pediatric cancer survivors: Correlates of cognitive impairment. J. Clin. Oncol. 2021, 39, 1775–1785. [Google Scholar] [CrossRef]
- López-Vicente, M.; Lamballais, S.; Louwen, S.; Hillegers, M.; Tiemeier, H.; Muetzel, R.L.; White, T. White matter microstructure correlates of age, sex, handedness and motor ability in a population-based sample of 3031 school-age children. Neuroimage 2021, 227, 117643. [Google Scholar] [CrossRef]
- Ribeiro, M.; Yordanova, Y.N.; Noblet, V.; Herbet, G.; Ricard, D. White matter tracts and executive functions: A review of causal and correlation evidence. Brain 2024, 147, 352–371. [Google Scholar] [CrossRef]
- Habibi, A.T.; Alaya, I.B.; Tensaouti, F.; Baudou, E.; Arribarat, G.; Pollidoro, L.; Laprie, A. Impact of Pediatric Posterior Fossa Tumor Treatments on Working Memory Tracts Using Resting-State fMRI and Tractography. J. Neuroimaging 2025, 35, e70007. [Google Scholar] [CrossRef]
- Grosse, F.; Rueckriegel, S.M.; Thomale, U.W.; Hernáiz Driever, P. Mapping of long-term cognitive and motor deficits in pediatric cerebellar brain tumor survivors into a cerebellar white matter atlas. Child’s Nerv. Syst. 2021, 37, 2787–2797. [Google Scholar] [CrossRef]
- Kim, J.B.; Lee, J.M.; Son, S.M. Childhood acute lymphoblastic leukemia showing unilateral motor dysfunction prior to chemotherapy: A diffusion tensor tractography study. Children 2023, 10, 224. [Google Scholar] [CrossRef]
- Reddick, W.E.; Taghipour, D.J.; Glass, J.O.; Ashford, J.; Xiong, X.; Wu, S.; Conklin, H.M. Prognostic factors that increase the risk for reduced white matter volumes and deficits in attention and learning for survivors of childhood cancers. Pediatr. Blood Cancer 2014, 61, 1074–1079. [Google Scholar] [CrossRef]
- Siegwart, V.; Benzing, V.; Spitzhuettl, J.; Schmidt, M.; Grotzer, M.; Steinlin, M.; Everts, R. Cognition, psychosocial functioning, and health-related quality of life among childhood cancer survivors. Neuropsychol. Rehabil. 2022, 32, 922–945. [Google Scholar] [CrossRef]
- Krull, K.R.; Hardy, K.K.; Kahalley, L.S.; Schuitema, I.; Kesler, S.R. Neurocognitive outcomes and interventions in long-term survivors of childhood cancer. J. Clin. Oncol. 2018, 36, 2181–2189. [Google Scholar] [CrossRef] [PubMed]
- Peterson, R.K.; Jacobson, L.A. Changes in executive function in pediatric brain tumor survivors. Pediatr. Blood Cancer 2022, 69, e29483. [Google Scholar] [CrossRef]
- Romanova, E.; Deviaterikova, A.; Tolchennikova, V.; Karelin, A.; Kasatkin, V. Short-term sensorimotor training incorporating cognitive tasks for pediatric survivors of posterior fossa tumors: A pilot study. J. Neuro-Oncol. 2025, 171, 393–402. [Google Scholar] [CrossRef]
- Nigro, S.E.; Hall, L.P.; Harman, J.; Willard, V.W.; Conklin, H.M.; Pui, C.H.; Jacola, L.M. The association of environmental factors with neurocognitive outcomes in survivors of childhood acute lymphoblastic leukemia (ALL). Support. Care Cancer 2024, 32, 1. [Google Scholar] [CrossRef] [PubMed]
- Sleight, A.; Gerber, L.H.; Marshall, T.F.; Livinski, A.; Alfano, C.M.; Harrington, S.; Schoenhals, A. Systematic review of functional outcomes in cancer rehabilitation. Arch. Phys. Med. Rehabil. 2022, 103, 1807–1826. [Google Scholar] [CrossRef]
- L’Hotta, A.J.; Martin-Giacalone, B.; Zink, J.; Fung, A.; Myers, A.; Lipsey, K.; Brick, R. Impact of Non-Pharmacological Cognitive Interventions on Real-World Daily Function in Children With Cancer: A Systematic Review. Pediatr. Blood Cancer 2025, 72, e31429. [Google Scholar] [CrossRef]
- Benzing, V.; Spitzhüttl, J.; Siegwart, V.; Schmid, J.; Grotzer, M.; Heinks, T.; Everts, R. Effects of cognitive training and exergaming in pediatric cancer survivors—A randomized clinical trial. Med. Sci. Sports Exerc. 2020, 52, 2293. [Google Scholar] [CrossRef]
- Kasatkin, V.; Deviaterikova, A.; Shurupova, M.; Karelin, A. The feasibility and efficacy of short-term visual-motor training in pediatric posterior fossa tumor survivors. Eur. J. Phys. Rehabil. Med. 2021, 58, 51. [Google Scholar] [CrossRef]
- Ashford, M.T.; Aaronson, A.; Kwang, W.; Eichenbaum, J.; Gummadi, S.; Jin, C.; Nosheny, R.L. Unsupervised Online Paired Associates Learning Task from the Cambridge Neuropsychological Test Automated Battery (CANTAB®) in the Brain Health Registry. J. Prev. Alzheimer’s Dis. 2024, 11, 514–524. [Google Scholar] [CrossRef]
- Panahipour, S.; Tafti, M.A.; Hashemi, Z. The structural model of academic performance based on multiple intelligences with the mediating role of executive functions (sustained attention, processing speed, planning and working memory) in adolescents with attention-deficit/hyperactivity disorder. J. Cogn. Psychol. 2024, 12, 45–64. [Google Scholar]
- Beery, K.E. Beery VMI: The Beery-Buktenica Developmental Test of Visual-Motor Integration; Pearson: Minneapolis, MN, USA, 2004. [Google Scholar]
- Russell, J.S.; Colevas, A.D. Adverse event monitoring in oncology clinical trials. Clin. Investig. 2013, 3, 1157–1165. [Google Scholar]
- Jamovi-Open Statistical Software for the Desktop and Cloud. 2024. Available online: https://www.jamovi.org/ (accessed on 11 January 2025).
- Puhr, A.; Ruud, E.; Anderson, V.; Due-Tønnessen, B.J.; Skarbø, A.B.; Finset, A.; Andersson, S. Executive function and psychosocial adjustment in adolescent survivors of pediatric brain tumor. Dev. Neuropsychol. 2021, 46, 149–168. [Google Scholar] [CrossRef]
- Bledsoe, J.C.; Breiger, D.; Breiger, M.; Shonka, S.; Ermoian, R.P.; Ojemann, J.G.; Geyer, J.R. Differential trajectories of neurocognitive functioning in females versus males following treatment for pediatric brain tumors. Neuro-Oncology 2019, 21, 1310–1318. [Google Scholar]
- Seidler, R.D.; Bo, J.; Anguera, J.A. Neurocognitive contributions to motor skill learning: The role of working memory. J. Mot. Behav. 2012, 44, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Marvel, C.L.; Morgan, O.P.; Kronemer, S.I. How the motor system integrates with working memory. Neurosci. Biobehav. Rev. 2019, 102, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Gandotra, A.; Csaba, S.; Sattar, Y.; Cserényi, V.; Bizonics, R.; Cserjesi, R.; Kotyuk, E. A meta-analysis of the relationship between motor skills and executive functions in typically-developing children. J. Cogn. Dev. 2022, 23, 83–110. [Google Scholar] [CrossRef]
- Willoughby, M.T.; Hudson, K. Contributions of motor skill development and physical activity to the ontogeny of executive function skills in early childhood. Dev. Rev. 2023, 70, 101102. [Google Scholar] [CrossRef]
- Niering, M.; Seifert, J. The effects of visual skills training on cognitive and executive functions in stroke patients: A systematic review with meta-analysis. J. NeuroEng. Rehabil. 2024, 21, 41. [Google Scholar] [CrossRef]
- Şahin, S.; Akel, B.S.; Huri, M.; Akyüz, C. Investigation of the effect of task-orientated rehabilitation program on motor skills of children with childhood cancer: A randomized-controlled trial. Int. J. Rehabil. Res. 2020, 43, 167–174. [Google Scholar] [CrossRef]
ALL | PFT | Control | F | p | Effect Size | |
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | ||||
SSP (sequence length) | 5.2 (1.6) | 4.7 (1.8) | 6.2 (1.4) | 18.6 | 0.000 | 7% |
Attention (mistakes) | 3.7 (5.2) | 5.8 (8.7) | 3.7 (2.9) | 6.8 | 0.012 | 4% |
Planning (correctly solved tasks) | 6.9 (2.2) | 6.3 (2.2) | 7.5 (2.2) | 7.5 | 0.000 | 5% |
VMI (visual–motor integration) | 98.4 (9.6) | 90.2 (14.5) | 108.4 (8.5) | 65.1 | 0.000 | 30% |
VP (visual perception) | 101.8 (12.3) | 88.4 (14.1) | 104.2 (9.2) | 49.6 | 0.000 | 25% |
MC (motor coordination) | 94.7 (12.8) | 86.2 (15.7) | 105.4 (10.2) | 53.6 | 0.000 | 26% |
F | Effect df | Error df | p | |
---|---|---|---|---|
Oncology | 4.440 | 30 | 352.0 | 0.000 |
Sex | 1.304 | 15 | 176.0 | 0.203 |
Age | 5.778 | 30 | 352.0 | 0.000 |
Group | R2 | Corr. R2 | Predictor | β | B | T | F | p |
---|---|---|---|---|---|---|---|---|
ALL | 0.647 | 0.394 | Age | 0.633 | 0.311 (0.048) | 6.44 | 16.79 | 0.000 |
Visual perception | 0.251 | 0.031 (0.013) | 2.48 | 0.015 | ||||
Visual motor integration | 0.215 | 0.037 (0.017) | 2.24 | 0.028 | ||||
PFT | 0.641 | 0.388 | Age | 0.617 | 0.047 (0.312) | 6.59 | 17.47 | 0.000 |
Toxicity | −0.276 | 0.036 (−0.099) | −2.78 | 0.007 | ||||
Visual motor integration | 0.264 | 0.012 (0.033) | 2.72 | 0.008 | ||||
Control | 0.440 | 0.186 | Age | 0.440 | 0.046 (0.224) | 4.83 | 23.35 | 0.000 |
Group | R2 | Corr. R2 | Predictor | β | B | T | F | p |
---|---|---|---|---|---|---|---|---|
ALL | 0.535 | 0.267 | visual motor integration | −0.490 | −0.165 (0.034) | −4.88 | 14.26 | 0.000 |
age | −0.235 | −0.230 (0.098) | 2.34 | 0.001 | ||||
PFT | 0.240 | 0.045 | age | −0.240 | 0.298 (−0.643) | −2.15 | 4.65 | 0.034 |
Control | 0.391 | 0.135 | age | −0.335 | 0.171 (−0.611) | −3.57 | 8.65 | 0.000 |
sex | 0.203 | 0.990 (2.135) | 2.15 | 0.001 |
Group | R2 | Corr. R2 | Predictor | β | B | T | F | p |
---|---|---|---|---|---|---|---|---|
ALL | 0.379 | 0.131 | age | −0.294 | 0.055 (−0.170) | −3.10 | 8.44 | 0.003 |
PFT | 0.461 | 0.064 | sex | 0.278 | 0.506 (1.424) | 2.37 | 8.91 | 0.000 |
Control | 0.387 | 0.132 | age | −0.294 | 0.55 (−0.170) | −3.10 | 8.44 | 0.003 |
sex | −0.289 | 0.019 (−0.057) | −3.04 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deviaterikova, A. Visual–Motor Functions and Associated Cognitive Outcomes in Pediatric Cancer Survivors. Med. Sci. 2025, 13, 41. https://doi.org/10.3390/medsci13020041
Deviaterikova A. Visual–Motor Functions and Associated Cognitive Outcomes in Pediatric Cancer Survivors. Medical Sciences. 2025; 13(2):41. https://doi.org/10.3390/medsci13020041
Chicago/Turabian StyleDeviaterikova, Alena. 2025. "Visual–Motor Functions and Associated Cognitive Outcomes in Pediatric Cancer Survivors" Medical Sciences 13, no. 2: 41. https://doi.org/10.3390/medsci13020041
APA StyleDeviaterikova, A. (2025). Visual–Motor Functions and Associated Cognitive Outcomes in Pediatric Cancer Survivors. Medical Sciences, 13(2), 41. https://doi.org/10.3390/medsci13020041