Benefits of Cilostazol’s Effect on Vascular and Neuropathic Complications Caused by Diabetes
Abstract
:1. Introduction
2. Diabetic Neuropathy and Cilostazol: What Do We Know?
3. The Effect of Cilostazol on the Circulation of Diabetic Patients
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Diabetes Association Professional Practice Committee. Improving Care and Promoting Health in Populations: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47, S11–S19. [Google Scholar] [CrossRef] [PubMed]
- Malone, A.; Clair, K.; Chanfreau, C.; Bean-Mayberry, B.; Oberman, R.; Lesser, R.; Knight, C.; Finley, E.; Hamilton, A.; Farmer, M.M.; et al. Predictors of enrollment in a virtual diabetes prevention program among women veterans: A retrospective analysis. BMC Womens Health 2024, 24, 465. [Google Scholar] [CrossRef] [PubMed]
- Kataria, N.; Panda, A.; Singh, S.; Patrikar, S.; Sampath, S. Risk factors for cardiovascular disease in a healthy young population: Family matters. Med. J. Armed Forces India 2022, 78, 405–412. [Google Scholar] [CrossRef]
- Melo, L.A.; Lima, K.C. Factors associated with the most frequent multimorbidities in Brazilian older adults. Cienc. Saude Coletiva 2020, 25, 3879–3888. [Google Scholar] [CrossRef]
- Liang, N.; Ma, X.; Cao, Y.; Liu, T.; Fang, J.A.; Zhang, X. Mendelian Randomization Studies: Opening a New Window in the Study of Metabolic Diseases and Chronic Kidney Disease. Endocr. Metab. Immune Disord. Drug Targets, 2024; in press. [Google Scholar]
- Musial, D.C.; Irigaray, M.E.L.; Gerber, L.C.; Lenz, G.B.; Echterhoff, C.F.M.; Plinta, L.A.K.; Smith, C.D.; Leite, A.M.; Marques, A.G.B.; Araújo, S.W.; et al. Risk Factors for Early Lower Limb Re-Amputation in Vascular Diseases. Ann. Vasc. Surg. 2024, 107, 208–213. [Google Scholar] [CrossRef]
- Chen, T.; Xiao, S.; Chen, Z.; Yang, Y.; Yang, B.; Liu, N. Risk factors for peripheral artery disease and diabetic peripheral neuropathy among patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2024, 207, 111079. [Google Scholar] [CrossRef]
- Ponirakis, G.; Al-Janahi, I.; Elgassim, E.; Homssi, M.; Petropoulos, I.N.; Gad, H.; Khan, A.; Zaghloul, H.B.; Ali, H.; Siddique, M.A.; et al. Sustained corneal nerve loss predicts the development of diabetic neuropathy in type 2 diabetes. Front. Neurosci. 2024, 2, 1393105. [Google Scholar] [CrossRef]
- Valenzuela-Fuenzalida, J.J.; López-Chaparro, M.; Barahona-Vásquez, M.; Campos-Valdes, J.; Cordero Gonzalez, J.; Nova-Baeza, P.; Orellana-Donoso, M.; Suazo-Santibañez, A.; Oyanedel-Amaro, G.; Gutiérrez Espinoza, H. Effectiveness of Duloxetine versus Other Therapeutic Modalities in Patients with Diabetic Neuropathic Pain: A Systematic Review and Meta-Analysis. Pharmaceuticals 2024, 17, 856. [Google Scholar] [CrossRef]
- Chong, Z.Z.; Menkes, D.L.; Souayah, N. Targeting neuroinflammation in distal symmetrical polyneuropathy in diabetes. Drug Discov. Today 2024, 29, 104087. [Google Scholar] [CrossRef]
- Soyoye, D.O.; Abiodun, O.O.; Ikem, R.T.; Kolawole, B.A.; Akintomide, A.O. Diabetes and peripheral artery disease: A review. World J. Diabetes 2021, 12, 827–838. [Google Scholar] [CrossRef]
- Akalu, Y.; Birhan, A. Peripheral Arterial Disease and Its Associated Factors among Type 2 Diabetes Mellitus Patients at Debre Tabor General Hospital, Northwest Ethiopia. J. Diabetes Res. 2020, 2020, 9419413. [Google Scholar] [CrossRef] [PubMed]
- Gerage, A.M.; Correia, M.A.; Oliveira, P.M.L.; Palmeira, A.C.; Domingues, W.J.R.; Zeratti, A.E.; Puech-Leão, P.; Wolosker, N.; Ritti-Dias, R.M.; Cucato, G.G. Physical Activity Levels in Peripheral Artery Disease Patients. Arq. Bras. Cardiol. 2019, 113, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.; Forster, R.B.; Cleanthis, M.; Mikhailidis, D.P.; Stansby, G.; Stewart, M. Cilostazol for intermittent claudication. Cochrane Database Syst. Rev. 2021, 6, CD003748. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.I.; Wang, H.C.; Tseng, K.Y.; Wang, Y.H.; Chang, C.Y.; Chen, Y.J.; Lai, C.S.; Chen, D.R.; Chang, L.L. Cilostazol Ameliorates Peripheral Neuropathic Pain in Streptozotocin-Induced Type I Diabetic Rats. Front. Pharmacol. 2022, 12, 771271. [Google Scholar] [CrossRef]
- Sugimoto, K.; Murakawa, Y.; Sima, A.A. Diabetic neuropathy—A continuing enigma. Diabetes Metab. Res. Rev. 2000, 16, 408–433. [Google Scholar] [CrossRef]
- Dobretsov, M.; Romanovsky, D.; Stimers, J.R. Early diabetic neuropathy: Triggers and mechanisms. World J. Gastroenterol. 2007, 13, 175–191. [Google Scholar] [CrossRef]
- Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic neuropathy. Nat. Rev. Dis. Primers 2019, 5, 42. [Google Scholar] [CrossRef]
- Diretrizes Sociedade Brasileira de Diabetes 2019-2020. Available online: https://www.saude.ba.gov.br/wp-content/uploads/2020/02/Diretrizes-Sociedade-Brasileira-de-Diabetes-2019-2020.pdf (accessed on 4 September 2024).
- Dunnigan, S.K.; Ebadi, H.; Breiner, A.; Katzberg, H.D.; Lovblom, L.E.; Perkins, B.A.; Bril, V. Conduction slowing in diabetic sensorimotor polyneuropathy. Diabetes Care 2013, 36, 3684–3690. [Google Scholar] [CrossRef]
- Feldman, E.L.; Nave, K.A.; Jensen, T.S.; Bennett, D.L.H. New horizons in diabetic neuropathy: Mechanisms, bioenergetics, and pain. Neuron 2017, 93, 1296–1313. [Google Scholar] [CrossRef]
- Galiero, R.; Caturano, A.; Vetrano, E.; Beccia, D.; Brin, C.; Alfano, M.; Di Salvo, J.; Epifani, R.; Piacevole, A.; Tagliaferri, G.; et al. Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options. Int. J. Mol. Sci. 2023, 24, 3554. [Google Scholar] [CrossRef]
- Okuda, Y.; Mizutani, M.; Ikegami, T.; Ueno, E.; Yamashita, K. Hemodynamic effects of cilostazol on peripheral artery in patients with diabetic neuropathy. Arzneim. Forsch. 1992, 42, 540–542. [Google Scholar]
- González, P.; Lozano, P.; Ros, G.; Solano, F. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. Int. J. Mol. Sci. 2023, 24, 9352. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Yang, T.; Chen, H.; Fu, D.; Hu, Y.; Wang, J.; Yuan, Q.; Yu, H.; Xu, W.; Xie, X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019, 20, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Chandrasekhar, A.; Cheng, C.; Martinez, J.A.; Ng, H.; de la Hoz, C.; Zochodne, D.W. Diabetic polyneuropathy, sensory neurons, nuclear structure and spliceosome alterations: A role for CWC22. Dis. Model. Mech. 2017, 10, 215–224. [Google Scholar] [CrossRef]
- Rosenberger, D.C.; Blechschmidt, V.; Timmerman, H.; Wolff, A.; Treede, R.D. Challenges of neuropathic pain: Focus on diabetic neuropathy. J. Neural Transm. 2020, 127, 589–624. [Google Scholar] [CrossRef]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef]
- Abbott, C.A.; Malik, R.A.; Van Ross, E.R.E.; Kulkarni, J.; Boulton, A.J.M. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care 2011, 34, 2220–2224. [Google Scholar] [CrossRef]
- Dabelea, D.; Stafford, J.M.; Mayer-Davis, E.J.; D’Agostino, R., Jr.; Dolan, L.; Imperatore, G.; Linder, B.; Lawrence, J.M.; Marcovina, S.M.; Mottl, A.K.; et al. Association of Type 1 Diabetes vs Type 2 Diabetes Diagnosed During Childhood and Adolescence With Complications During Teenage Years and Young Adulthood. JAMA 2017, 317, 825–835. [Google Scholar] [CrossRef]
- Aronson, R.; Chu, L.; Joseph, N.; Brown, R. Prevalence and Risk Evaluation of Diabetic Complications of the Foot Among Adults With Type 1 and Type 2 Diabetes in a Large Canadian Population (PEDAL Study). Can. J. Diabetes 2021, 45, 588–593. [Google Scholar] [CrossRef]
- Ziegler, D.; Rathmann, W.; Dickhaus, T.; Meisinger, C.; Mielck, A. Neuropathic pain in diabetes, prediabetes and normal glucose tolerance: The MONICA/KORA Augsburg Surveys S2 and S3. Pain Med. 2009, 10, 393–400. [Google Scholar] [CrossRef]
- Pirart, J. Diabetes mellitus and its degenerative complications: A prospective study of 4400 patients observed between 1947 and 1973 (3rd and last part). Diabete Metab 1977, 3, 2–4. [Google Scholar]
- Sun, J.; Wang, Y.; Zhang, X.; Zhu, S.; He, H. Prevalence of peripheral neuropathy in patients with diabetes: A systematic review and meta-analysis. Prim. Care Diabetes 2020, 14, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.D.; Lin, J.; Mahoney, T.; Ume, N.; Yang, G.; Gabbay, R.A.; ElSayed, N.A.; Bannuru, R.R. Economic Costs of Diabetes in the U.S. in 2022. Diabetes Care 2024, 47, 26–43. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A. IDF Clinical Practice Recommendation on the Diabetic Foot: A guide for healthcare professionals. Diabetes Res. Clin. Pract. 2017, 127, 285–287. [Google Scholar] [CrossRef]
- Gordois, A.; Scuffham, P.; Shearer, A.; Oglesby, A.; Tobian, J.A. The health care costs of diabetic peripheral neuropathy in the US. Diabetes Care 2003, 26, 1790–1795. [Google Scholar] [CrossRef]
- Rosales, R.L.; Santos, M.M.; Mercado-Asis, L.B. Cilostazol: A pilot study on safety and clinical efficacy in neuropathies of diabetes mellitus type 2 (ASCEND). Angiology 2011, 62, 625–635. [Google Scholar] [CrossRef]
- O’Donnell, M.E.; Badger, S.A.; Sharif, M.A.; Makar, R.R.; Young, I.S.; Lee, B.; Soong, C.V. The effects of cilostazol on peripheral neuropathy in diabetic patients with peripheral arterial disease. Angiology 2008, 59, 695–704. [Google Scholar] [CrossRef]
- Papanas, N.; Maltezos, E. Cilostazol in diabetic neuropathy: Premature farewell or new beginning? Angiology 2011, 62, 605–608. [Google Scholar] [CrossRef]
- Tesfaye, S.; Tandan, R.; Bastyr, E.J., III; Kles, K.A.; Skljarevski, V.; Price, K.L.; Ruboxistaurin Study Group. Factors that impact symptomatic diabetic peripheral neuropathy in placebo administered patients from two 1-year clinical trials. Diabetes Care 2007, 30, 2626–2632. [Google Scholar] [CrossRef]
- Chapman, T.M.; Goa, K.L. Cilostazol: A review of its use in intermittent claudication. Am. J. Cardiovasc. Drugs 2003, 3, 117–138. [Google Scholar] [CrossRef]
- Liu, Y.; Shakur, Y.; Yoshitake, M.; Kambayashi, J. Cilostazol (pletal): A dual inhibitor of cyclic nucleotide phosphodiesterase type 3 and adenosine uptake. Cardiovasc. Drug Rev. 2001, 19, 369–386. [Google Scholar] [CrossRef] [PubMed]
- Reilly, M.P.; Mohler, E.R. Cilostazol: Treatment of intermittent claudication. Ann. Pharmacother. 2001, 35, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cone, J.; Fong, M.; Yoshitake, M.; Ji, K.; Liu, Y. Interplay between inhibition of adenosine uptake and phosphodiesterase type 3 on cardiac function by cilostazol, an agent to treat intermittent claudication. J. Cardiovasc. Pharmacol. 2001, 38, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Naka, K.; Sasaki, H.; Kishi, Y.; Furuta, M.; Sanke, T.; Nanjo, K.; Mukoyama, M. Effects of cilostazol on development of experimental diabetic neuropathy: Functional and structural studies, and Na+-K+-ATPase acidity in peripheral nerve in rats with streptozotocin-induced diabetes. Diabetes Res. Clin. Pract. 1995, 30, 153–162. [Google Scholar] [CrossRef]
- Kihara, M.; Schmelzer, J.D.; Low, P.A. Effect of cilostazol on experimental diabetic neuropathy in the rat. Diabetologia 1995, 38, 914–918. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Yasuda, Y.; Kimura, Y.; Komiya, Y. Effects of cilostazol, an antiplatelet agent, on axonal regeneration following nerve injury in diabetic rats. Eur. J. Pharmacol. 1998, 352, 171–178. [Google Scholar] [CrossRef]
- Kim, J.R.; Jung, J.A.; Kim, S.; Huh, W.; Ghim, J.L.; Shin, J.G.; Ko, J.W. Effect of Cilostazol on the Pharmacokinetics of Simvastatin in Healthy Subjects. BioMed Res. Int. 2019, 2019, 1365180. [Google Scholar] [CrossRef]
- Oelze, M.; Welschof, P.; Knorr, M.; Tran, L.P.; Ullmann, E.; Stamm, P.; Kröller-Schön, S.; Jansen, T.; Kopp, M.; Schulz, E.; et al. Basic in vitro Characterization of the Vasodilatory Potential of 2-Aminoethyl Nitrate Fixed-Dose Combinations with Cilostazol, Metoprolol and Valsartan. Pharmacology 2018, 101, 54–63. [Google Scholar] [CrossRef]
- Sohn, M.; Lim, S. The Role of Cilostazol, a Phosphodiesterase-3 Inhibitor, in the Development of Atherosclerosis and Vascular Biology: A Review with Meta-Analysis. Int. J. Mol. Sci. 2024, 25, 2593. [Google Scholar] [CrossRef]
- Cha, J.J.; Cho, J.Y.; Lim, S.; Kim, J.H.; Joo, H.J.; Park, J.H.; Hong, S.J.; Lim, D.S.; Kook, H.; Lee, S.H.; et al. Effect of Cilostazol on Patients With Diabetes Who Underwent Endovascular Treatment for Peripheral Artery Disease. J. Am. Heart Assoc. 2023, 12, e027334. [Google Scholar] [CrossRef]
- Asal, N.J.; Wojciak, K.A. Effect of cilostazol in treating diabetes-associated microvascular complications. Endocrine 2017, 56, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, K.; Koga, M.; Tanaka, K.; Uchiyama, S.; Sunami, H.; Omae, K.; Kimura, K.; Hoshino, H.; Fukuda-Doi, M.; Miwa, K.; et al. Blood pressure during long-term cilostazol-based dual antiplatelet therapy after stroke: A post hoc analysis of the CSPS.com trial. Hypertens. Res. 2024, 47, 2238–2249. [Google Scholar] [CrossRef] [PubMed]
- Dawson, D.L.; Cutler, B.S.; Meissner, M.H.; Strandness, D.E., Jr. Cilostazol has beneficial effects in treatment of intermittent claudication: Results from a multicenter, randomized, prospective, double-blind trial. Circulation 1998, 98, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.S.; Agarwal, H.; Barthwal, M.K. Corrigendum to “Cilostazol ameliorates heart failure with preserved ejection fraction and diastolic dysfunction in obese and non-obese hypertensive mice” [J. Mol. Cell. Cardiol. 2018, 123, 46–57]. J. Mol. Cell. Cardiol. 2018, 123, 46–57, Erratum in J. Mol. Cell. Cardiol. 2020, 143, 161. [Google Scholar] [CrossRef]
- Sakurada, M.; Yoshimoto, T.; Sekizawa, N.; Hirono, Y.; Suzuki, N.; Hirata, Y. Vasculoprotective effect of cilostazol in aldosterone-induced hypertensive rats. Hypertens. Res. 2010, 33, 229–235. [Google Scholar] [CrossRef]
- Kim, B.J.; Kwon, S.U.; Park, J.H.; Kim, Y.J.; Hong, K.S.; Wong, L.K.S.; Yu, S.; Hwang, Y.H.; Lee, J.S.; Lee, J.; et al. Cilostazol Versus Aspirin in Ischemic Stroke Patients With High-Risk Cerebral Hemorrhage: Subgroup Analysis of the PICASSO Trial. Stroke 2020, 51, 931–937. [Google Scholar] [CrossRef]
- Myall, O.T.; Allen, S.L.; McLean, W.G. The effect of acrylamide on the induction of ornithine decarboxylase in the dorsal root ganglion of the rat. Brain Res. 1990, 523, 295–297. [Google Scholar] [CrossRef]
- Cameron, N.E.; Cotter, M.A.; Dines, K.C.; Maxfield, E.K.; Carey, F.; Mirrlees, D.J. Aldose reductase inhibition, nerve perfusion, oxygenation and function in streptozotocindiabetic rats: Dose-response considerations and independence from a myo-inositol mechanism. Diabetologia 1994, 37, 651–663. [Google Scholar] [CrossRef]
- Suh, K.S.; Oh, S.J.; Woo, J.T.; Kim, S.W.; Yang, I.M.; Kim, J.W.; Kim, Y.S.; Choi, Y.K.; Park, I.K. Effect of cilostazol on the neuropathies of streptozotocin-induced diabetic rats. Korean J. Intern. Med. 1999, 14, 34–40. [Google Scholar] [CrossRef]
- Uehara, K.; Sugimoto, K.; Wada, R.; Yoshikawa, T.; Marukawa, K.; Yasuda, Y.; Kimura, Y.; Yagihashi, S. Effects of cilostazol on the peripheral nerve function and structure in STZ-induced diabetic rats. J. Diabetes Its Complicat. 1997, 11, 194–202. [Google Scholar] [CrossRef]
- Inada, H.; Shindo, H.; Tawata, M.; Onaya, T. Cilostazol, a cyclic AMP phosphodiesterase inhibitor, stimulates nitric oxide production and sodium potassium adenosine triphosphatase activity in SH-SY5Y human neuroblastoma cells. Life Sci. 1999, 65, 1413–1422. [Google Scholar] [CrossRef] [PubMed]
- Gornik, H.L.; Beckman, J.A. Cardiology patient page. Peripheral arterial disease. Circulation 2005, 111, e169–e172. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.A.; Eid, M.A.; Creager, M.A.; Goodney, P.P. Epidemiology and Risk of Amputation in Patients With Diabetes Mellitus and Peripheral Artery Disease. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1808–1817. [Google Scholar] [CrossRef] [PubMed]
- Athavale, A.; Fukaya, E.; Leeper, N.J. Peripheral Artery Disease: Molecular Mechanisms and Novel Therapies. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 1165–1170. [Google Scholar] [CrossRef] [PubMed]
- Alexander, R.W. Theodore Cooper Memorial Lecture. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: A new perspective. Hypertension 1995, 25, 155–161. [Google Scholar] [CrossRef]
- Signorelli, S.S.; Scuto, S.; Marino, E.; Xourafa, A.; Gaudio, A. Oxidative Stress in Peripheral Arterial Disease (PAD) Mechanism and Biomarkers. Antioxidants 2019, 8, 367. [Google Scholar] [CrossRef]
- Katakami, N. Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus. J. Atheroscler. Thromb. 2018, 25, 27–39. [Google Scholar] [CrossRef]
- Yazdani, S.; Bilan, P.J.; Jaldin-Fincati, J.R.; Pang, J.; Ceban, F.; Saran, E.; Brumell, J.H.; Freeman, S.A.; Klip, A. Dynamic glucose uptake, storage, and release by human microvascular endothelial cells. Mol. Biol. Cell 2022, 33, ar106. [Google Scholar] [CrossRef]
- Tumova, S.; Kerimi, A.; Porter, K.E.; Williamson, G. Transendothelial glucose transport is not restricted by extracellular hyperglycaemia. Vascul. Pharmacol. 2016, 87, 219–229. [Google Scholar] [CrossRef]
- Sweet, I.R.; Gilbert, M.; Maloney, E.; Hockenbery, D.M.; Schwartz, M.W.; Kim, F. Endothelial inflammation induced by excess glucose is associated with cytosolic glucose 6-phosphate but not increased mitochondrial respiration. Diabetologia 2009, 52, 921–931. [Google Scholar] [CrossRef]
- Yang, W.S.; Seo, J.W.; Han, N.J.; Choi, J.; Lee, K.U.; Ahn, H.; Lee, S.K.; Park, S.K. High glucose-induced NF-kappaB activation occurs via tyrosine phosphorylation of IkappaBalpha in human glomerular endothelial cells: Involvement of Syk tyrosine kinase. Am. J. Physiol. Renal Physiol. 2008, 294, F1065–F1075. [Google Scholar] [CrossRef] [PubMed]
- Pahwa, R.; Nallasamy, P.; Jialal, I. Toll-like receptors 2 and 4 mediate hyperglycemia induced macrovascular aortic endothelial cell inflammation and perturbation of the endothelial glycocalyx. J. Diabetes Complicat. 2016, 30, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Stehouwer, C.D.A. Microvascular Dysfunction and Hyperglycemia: A Vicious Cycle With Widespread Consequences. Diabetes 2018, 67, 1729–1741. [Google Scholar] [CrossRef] [PubMed]
- Horton, W.B.; Barrett, E.J. Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease. Endocr. Rev. 2021, 42, 29–55. [Google Scholar] [CrossRef]
- Jialal, I.; Kaur, H. The Role of Toll-Like Receptors in Diabetes-Induced Inflammation: Implications for Vascular Complications. Curr. Diabetes Rep. 2012, 12, 172–179. [Google Scholar] [CrossRef]
- Fadini, G.P.; Spinetti, G.; Santopaolo, M.; Madeddu, P. Impaired Regeneration Contributes to Poor Outcomes in Diabetic Peripheral Artery Disease. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 34–44. [Google Scholar] [CrossRef]
- Mascarenhas, J.V.; Albayati, M.A.; Shearman, C.P.; Jude, E.B. Peripheral arterial disease. Endocrinol. Metab. Clin. North Am. 2014, 43, 149–166. [Google Scholar] [CrossRef]
- Hingorani, A.; LaMuraglia, G.M.; Henke, P.; Meissner, M.H.; Loretz, L.; Zinszer, K.M.; Driver, V.R.; Frykberg, R.; Carman, T.L.; Marston, W.; et al. The management of diabetic foot: A clinical practice guideline by the Society for Vascular Surgery in collaboration with the American Podiatric Medical Association and the Society for Vascular Medicine. J. Vasc. Surg. 2016, 63, 3S–21S. [Google Scholar] [CrossRef]
- Biagioni, R.B.; Louzada, A.C.S.; Biagioni, L.C.; da Silva, M.F.A.; Teivelis, M.P.; Wolosker, N. Cross-Sectional Analysis of 180,595 Lower Limb Amputations in the State of Sao Paulo Over 12 Years. World J. Surg. 2022, 46, 2498–2506. [Google Scholar] [CrossRef]
- Jiang, D.; Kuchta, K.; Morcos, O.; Lind, B.; Yoon, W.; Qamar, A.; Trenk, A.; Lee, C.J. Revascularizations and limb outcomes of hospitalized patients with diabetic peripheral arterial disease in the contemporary era. J. Vasc. Surg. 2023, 77, 1155–1164. [Google Scholar] [CrossRef]
- Graz, H.; D’Souza, V.K.; Alderson, D.E.C.; Graz, M. Diabetes-related amputations create considerable public health burden in the UK. Diabetes Res. Clin. Pract. 2018, 135, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.G.; Tan, T.W.; Boulton, A.J.M.; Bus, S.A. Diabetic Foot Ulcers: A Review. JAMA 2023, 330, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Kanade, R.V.; van Deursen, R.W.; Harding, K.; Price, P. Walking performance in people with diabetic neuropathy: Benefits and threats. Diabetologia 2006, 49, 1747–1754. [Google Scholar] [CrossRef] [PubMed]
- Jude, E.B.; Eleftheriadou, I.; Tentolouris, N. Peripheral arterial disease in diabetes—A review. Diabet. Med. 2010, 27, 4–14. [Google Scholar] [CrossRef]
- Paulino Geisel, P.; Pantuso Monteiro, D.; de Oliveira Nascimento, I.; Gomes Pereira, D.A. Evaluation of functional capacity and muscle metabolism in individuals with peripheral arterial disease with and without diabetes. J. Vasc. Surg. 2022, 75, 671–679. [Google Scholar] [CrossRef]
- Hennion, D.R.; Siano, K.A. Diagnosis and treatment of peripheral arterial disease. Am. Fam. Physician 2013, 88, 306–310. [Google Scholar]
- Anderson, J.L.; Halperin, J.L.; Albert, N.M.; Bozkurt, B.; Brindis, R.G.; Curtis, L.H.; DeMets, D.; Guyton, R.A.; Hochman, J.S.; Kovacs, R.J.; et al. Management of patients with peripheral artery disease (compilation of 2005 and 2011 ACCF/AHA guideline recommendations): A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013, 127, 1425–1443. [Google Scholar] [CrossRef]
- Kalantzi, K.; Tentolouris, N.; Melidonis, A.J.; Papadaki, S.; Peroulis, M.; Amantos, K.A.; Andreopoulos, G.; Bellos, G.I.; Boutel, D.; Bristianou, M.; et al. Efficacy and Safety of Adjunctive Cilostazol to Clopidogrel-Treated Diabetic Patients With Symptomatic Lower Extremity Artery Disease in the Prevention of Ischemic Vascular Events. J. Am. Heart Assoc. 2021, 10, e018184. [Google Scholar] [CrossRef]
- Liang, X.; Wang, Y.; Zhao, C.; Cao, Y. Systematic review the efficacy and safety of cilostazol, pentoxifylline, beraprost in the treatment of intermittent claudication: A network meta-analysis. PLoS ONE 2022, 17, e0275392. [Google Scholar] [CrossRef]
- Kherallah, R.Y.; Khawaja, M.; Olson, M.; Angiolillo, D.; Birnbaum, Y. Cilostazol: A Review of Basic Mechanisms and Clinical Uses. Cardiovasc. Drugs Ther. 2022, 36, 777–792. [Google Scholar] [CrossRef]
- Biscetti, F.; Pecorini, G.; Straface, G.; Arena, V.; Stigliano, E.; Rutella, S.; Locatelli, F.; Angelini, F.; Ghirlanda, G.; Flex, A. Cilostazol promotes angiogenesis after peripheral ischemia through a VEGF-dependent mechanism. Int. J. Cardiol. 2013, 167, 910–916. [Google Scholar] [CrossRef]
- Fong, M.; Yoshitake, M.; Kambayashi, J.; Liu, Y. Cilostazol increases tissue blood flow in contracting rabbit gastrocnemius muscle. Circ. J. 2010, 74, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Pasini, F.L.; Capecchi, P.L.; Perri, T.D. Adenosine and chronic ischemia of the lower limbs. Vasc. Med. 2000, 5, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fong, M.; Cone, J.; Wang, S.; Yoshitake, M.; Kambayashi, J. Inhibition of adenosine uptake and augmentation of ischemia-induced increase of interstitial adenosine by cilostazol, an agent to treat intermittent claudication. J. Cardiovasc. Pharmacol. 2000, 36, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Desai, K.; Han, B.; Kuziez, L.; Yan, Y.; Zayed, M.A. Literature review and meta-analysis of the efficacy of cilostazol on limb salvage rates after infrainguinal endovascular and open revascularization. J. Vasc. Surg. 2021, 73, 711–721. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musial, D.C.; Ajita, M.E.; Bomfim, G.H.S. Benefits of Cilostazol’s Effect on Vascular and Neuropathic Complications Caused by Diabetes. Med. Sci. 2025, 13, 1. https://doi.org/10.3390/medsci13010001
Musial DC, Ajita ME, Bomfim GHS. Benefits of Cilostazol’s Effect on Vascular and Neuropathic Complications Caused by Diabetes. Medical Sciences. 2025; 13(1):1. https://doi.org/10.3390/medsci13010001
Chicago/Turabian StyleMusial, Diego Castro, Maria Eduarda Ajita, and Guilherme Henrique Souza Bomfim. 2025. "Benefits of Cilostazol’s Effect on Vascular and Neuropathic Complications Caused by Diabetes" Medical Sciences 13, no. 1: 1. https://doi.org/10.3390/medsci13010001
APA StyleMusial, D. C., Ajita, M. E., & Bomfim, G. H. S. (2025). Benefits of Cilostazol’s Effect on Vascular and Neuropathic Complications Caused by Diabetes. Medical Sciences, 13(1), 1. https://doi.org/10.3390/medsci13010001