Landslides in the Mountain Region of Rio de Janeiro: A Proposal for the Semi-Automated Definition of Multiple Rainfall Thresholds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Nova Friburgo
2.1.2. Petrópolis
2.1.3. Teresópolis
2.2. Data Acquisition
2.3. Methodology
- (i) Threshold individuation, which is carried out by software, so as the replicability of the analyses is guaranteed.
- (ii) Threshold calibration, i.e., the verification of the performances of the threshold, in terms of correct predictions and missed or false alarms.
- (iii) Threshold validation, i.e., the defined threshold is validated against an independent landslide dataset.
3. Results
3.1. Threshold Calibration
3.2. Threshold Validation
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marengo, J.A. Mudanças Climáticas e Eventos Extremos no Brasil, 1st ed.; FBDS: Rio de Janeiro, Brazil, 2009; pp. 6–9. [Google Scholar]
- Busch, A.; Amorim, S. A Tragédia da Região Serrana do Rio de Janeiro em 2011: Procurando Respostas; ENAP Casoteca da Gestão Pública: Brasilia, Brazil, 2011; 20p. [Google Scholar]
- INEA - State Environmental Institute. Flood Alert. Available online: http://www.alertadecheias.inea.rj.gov.br/dados/rio_dois_rios.php (accessed on 3 July 2008).
- INMET-National Institute of Meteorology. Hydro-Meteorological Information System (SIM). Available online: http://www.inmet.gov.br/portal/index.php?r=estacoes/estacoesautomaticas (accessed on 15 April 2018).
- Marchezini, V.; Trajber, R.; Olivato, D.; Muñoz, V.A.; Pereira, F.O.; Luz, A.E.O. Participatory Early Warning Systems: Youth, Citizen Science, and Intergenerational Dialogues on Disaster Risk Reduction in Brazil. Int. J. Disaster Risk Sci. 2017, 8, 390–401. [Google Scholar] [CrossRef] [Green Version]
- Weichselgartner, J.; Pigeon, P. The role of knowledge in disaster risk reduction. Int. J. Disaster Risk Sci. 2015, 6, 107–116. [Google Scholar] [CrossRef]
- Chae, B.G.; Park, H.J.; Catani, F.; Simoni, A.; Berti, M. Landslide prediction, monitoring and early warning: A concise review of state-of-the-art. Geosci. J. 2017, 21, 1033–1070. [Google Scholar] [CrossRef]
- Salvatici, T.; Tofani, V.; Rossi, G.; D’Ambrosio, M.; Tacconi Stefanelli, C.; Masi, E.B.; Rosi, A.; Pazzi, V.; Vannocci, P.; Petrolo, M.; et al. Application of a physically based model to forecast shallow landslides at a regional scale. Nat. Hazards Earth Syst. Sci. 2018, 18, 1919–1935. [Google Scholar] [CrossRef]
- Schmaltz, E.M.; Van Beek, L.P.H.; Bogaard, T.A.; Kraushaar, S.; Steger, S.; Glade, T. Strategies to improve the explanatory power of a dynamic slope stability model by enhancing land cover parameterisation and model complexity. Earth Surf. Process. Landf. 2019, 44, 1259–1273. [Google Scholar] [CrossRef]
- Canli, E.; Mergili, M.; Thiebes, B.; Glade, T. Probabilistic landslide ensemble prediction systems: Lessons to be learned from hydrology. Nat. Hazards Earth Syst. Sci. 2018, 18, 2183–2202. [Google Scholar] [CrossRef]
- Mercogliano, P.; Segoni, S.; Rossi, G.; Sikorsky, B.; Tofani, V.; Schiano, P.; Catani, F.; Casagli, N. Brief communication “A prototype forecasting chain for rainfall induced shallow landslides”. Nat. Hazards Earth Syst. Sci. 2013, 13, 771–777. [Google Scholar] [CrossRef]
- Rossi, G.; Catani, F.; Leoni, L.; Segoni, S.; Tofani, V. HIRESSS: A physically based slope stability simulator for HPC applications. Nat. Hazards Earth. Syst. Sci. 2013, 13, 151–166. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Caine, N. The rainfall intensity-duration control of shallow landslides and debris flows. Geogr. Ann. Ser. A Phys. Geogr. 1980, 62, 23–27. [Google Scholar] [CrossRef]
- Aleotti, P. A warning system for rainfall-induced shallow failures. Eng. Geol. 2004, 73, 247–265. [Google Scholar] [CrossRef]
- Giannecchini, R. Relationship between rainfall and shallow landslides in the southern Apuan Alps (Italy). Nat. Hazards Earth. Syst. Sci. 2006, 6, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Peruccacci, S.; Rossi, M.; Luciani, S.; Valigi, D.; Guzzetti, F. Rainfall thresholds for the possible occurrence of landslides in Italy. Nat. Hazards Earth. Syst. Sci. 2010, 10, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Giannecchini, R.; D’Amato Avanzi, G. Historical research as a tool in estimating hydrogeological hazard in a typical small alpine-like area: The example of the Versilia River basin (Apuan Alps, Italy). Phys. Chem. Earth Parts A/B/C 2012, 49, 32–43. [Google Scholar] [CrossRef]
- Martelloni, G.; Segoni, S.; Fanti, R.; Catani, F. Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides 2012, 9, 485–495. [Google Scholar] [CrossRef]
- Segoni, S.; Rossi, G.; Rosi, A.; Catani, F. Landslides triggered by rainfall: A semiautomated procedure to define consistent intensity-duration thresholds. Comput. Geosci. 2014, 63, 123–131. [Google Scholar] [CrossRef]
- Segoni, S.; Rosi, A.; Rossi, G.; Catani, F.; Casagli, N. Analysing the relationship between rainfall and landslides to define a mosaic of triggering thresholds for regional-scale warning systems. Nat. Hazards Earth. Syst. Sci. 2014, 14, 2637–2648. [Google Scholar] [CrossRef]
- Vennari, C.; Gariano, S.L.; Antronico, L.; Brunetti, M.T.; Iovine, G.; Peruccacci, S.; Terranova, O.; Guzzetti, F. Rainfall thresholds for shallow landslide occurrence in Calabria, southern Italy. Nat. Hazards Earth. Syst. Sci. 2014, 14, 317–330. [Google Scholar] [CrossRef] [Green Version]
- Gariano, S.L.; Brunetti, M.T.; Iovine, G.; Melillo, M.; Peruccacci, S.; Terranova, O.; Vennari, C.; Guzzetti, F. Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 2015, 228, 653–665. [Google Scholar] [CrossRef]
- Rosi, A.; Lagomarsino, D.; Rossi, G.; Segoni, S.; Battistini, A.; Casagli, N. Updating EWS rainfall thresholds for the triggering of landslides. Nat. Hazards 2015, 78, 297–308. [Google Scholar] [CrossRef]
- Melillo, M.; Brunetti, M.T.; Peruccacci, S.; Gariano, S.L.; Guzzetti, F. An algorithm for the objective reconstruction of rainfall events responsible for landslides. Landslides 2015, 12, 311–320. [Google Scholar] [CrossRef]
- Rossi, M.; Luciani, S.; Valigi, D.; Kirschbaum, D.; Brunetti, M.T.; Peruccacci, S.; Guzzetti, F. Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data. Geomorphology 2017, 285, 16–27. [Google Scholar] [CrossRef]
- Peruccacci, S.; Brunetti, M.T.; Luciani, S.; Vennari, C.; Guzzetti, F. Lithological and seasonal control of rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 2012, 139–140, 79–90. [Google Scholar] [CrossRef]
- Tien Bui, D.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, Ø.B. Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam. Nat. Hazards 2013, 66, 707–730. [Google Scholar] [CrossRef]
- Lee, S.; Won, J.S.; Jeon, S.W.; Park, I.; Lee, M.J. Spatial landslide hazard prediction using rainfall probability and a logistic regression model. Math. Geosci. 2015, 47, 565–589. [Google Scholar] [CrossRef]
- Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
- Chang, K.; Shou-Hao, C.; Feng, L. Analysing the Relationship Between Typhoon-Triggered Landslides and Critical Rainfall Conditions. Earth Surf. Process. Landf. 2008, 33, 1261–1271. [Google Scholar] [CrossRef]
- Ma, C.; Hu, K.H.; Zou, Q.; Tian, M. Characteristics of clustering debris flows in Wenchuan earthquake zone. J. Mt. Sci. 2013, 10, 953–961. [Google Scholar] [CrossRef]
- Ciervo, F.; Rianna, G.; Mercogliano, P.; Papa, M.N. Effects of climate change on shallow landslides in a small coastal catchment in southern Italy. Landslides 2017, 14, 1043–1055. [Google Scholar] [CrossRef]
- Segoni, S.; Battistini, A.; Rossi, G.; Rosi, A.; Lagomarsino, D.; Catani, F.; Moretti, S.; Casagli, N. Technical note: An operational landslide early warning system at regional scale based on space–time variable rainfall thresholds. Nat. Hazards Earth Syst. Sci. 2015, 15, 853–861. [Google Scholar] [CrossRef]
- Lagomarsino, D.; Segoni, S.; Rosi, A.; Battistini, A.; Catani, F.; Casagli, N. Quantitative comparison between two different methodologies to define rainfall thresholds for landslide forecasting. Earth Syst. Sci. 2015, 15, 2413–2423. [Google Scholar] [CrossRef] [Green Version]
- Rosi, A.; Peternel, T.; Jemec-Auflič, M.; Komac, M.; Segoni, S.; Casagli, N. Rainfall thresholds for rainfall-induced landslides in Slovenia. Landslides 2016, 13, 1571–1577. [Google Scholar] [CrossRef]
- Segoni, S.; Tofani, V.; Rosi, A.; Catani, F.; Casagli, N. Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale. Front. Earth Sci. 2018, 6, 85. [Google Scholar] [CrossRef]
- Waldherr, F.; Tupinambá, M.A. Dinâmica dos Depósitos Pretéritos na Deflagração de Corridas de Detritos em Eventos Catastróficos: A Bacia de Drenagem do Córrego do Príncipe, Teresópolis-RJ. In Proceedings of the VIII SLAGF Simpósio Latinoamericano de Geografia Física, IV SIAGF Simpósio Iberoamericano de Geografia Física, Santiago, Chile, 3–5 Dcember 2004; pp. 1185–1192. [Google Scholar] [CrossRef]
- Van Beek, R.; Cammeraat, E.; Andreu, V.; Mickovski, S.B.; Dorren, L. Hillslope Processes: Mass Wasting, Slope Stability and Erosion. In Slope Stability and Erosion Control: Ecotechnological Solutions; Norris, J.E., Stokes, A., Mickovski, S.B., Cammeraat, E., van Beek, R., Nicoll, B.C., Achim, A., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 17–64. ISBN 978-1-4020-6676-4. [Google Scholar]
- Ottero, C.R.; Chargel, L.T.; Hora, M.A.G.M. Análise de frequência dos dados pluviométricos observados em 2011 e 2013 na Região Serrana, Estado do Rio de Janeiro. Revista Brasileira de Meteorologia 2018, 33, 131–139. [Google Scholar] [CrossRef]
- Ab’saber, A.N. A Serra do Japi, sua origem geomorfológica e a teoria dos refúgios. In História Natural da Serra do Japi: Ecologia e Preservação de Uma Área Florestal no Sudeste do Brasil; Morellato, L.P.C., Ed.; Unicamp/Fapesp: Campinas, Brazil, 1992; pp. 12–23. [Google Scholar]
- Dantas, M.E. Geomorfologia do Estado do Rio de Janeiro. In Estudo Geoambiental do Estado do Rio de Janeiro; CPRM-Serviço Geológico do Brasil: Brasília, Brazil, 2001; p. 19. [Google Scholar]
- Roderjan, C.V.; Kuniyoshi, Y.S. Macrozoneamento Florístico da Área de Proteção Ambiental de Guaraqueçaba: APA-Guaraqueçaba; IPARDES: Curitiba, Brasil, 2001; 150p. [Google Scholar]
- EMBRAPA. Centro Nacional de Pesquisa de Solos. Boletim de Pesquisa e Desenvolvimento. Zoneamento Agroecológico Do Estado Do Rio De Janeiro-ANO 2003. Available online: https://www.embrapa.br/solos/busca-de-publicacoes/-/publicacao/338523/zoneamento-agroecologico-do-estado-do-rio-de-janeiro---ano-2003 (accessed on 17 August 2018).
- IBGE-Instituto Brasileiro de Geografia e Estatística. Cidades. Available online: https://cidades.ibge.gov.br/brasil/rj/petropolis/panorama (accessed on 25 September 2018).
- Fonseca, M.J.G.; Derze, G.R.; Barreto, A.M.; Williams, G.H. Mapa Geológico do Estado do Rio de Janeiro; Departamento Nacional de Produção Mineral (DPMN): Rio de Janeiro, Brazil, 1998; 141p. [Google Scholar]
- Penha, M.M.; Ferrari, A.L.; Junho, M.C.B.; Souza, S.L.A.; Brennes, T.L. Projeto Carta Geológica do Estado do Rio de Janeiro: Folha Itaipava; v. 1; Convênio DRM/IG-UFRJ: Rio de Janeiro, Brazil, 1981. [Google Scholar]
- Gonçalves, L.F.H. Avaliação e Diagnóstico da Distribuição Espacial e Temporal dos Movimentos de Massa com a Expansão da Área Urbana em Petrópolis-RJ. Ph.D. Thesis, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil, 1998. [Google Scholar]
- Carvalho Filho, A.; Lumbreras, J.F.; Santos, R.D. Os Solos do Estado do Rio de Janeiro; CPRM: Brasília, Brazil, 2000; 36p. [Google Scholar]
- Goulart, D.R.; Monteiro, A.E.G.C.; Guerra, A.J.T. Mapeamento de risco para o município de Petrópolis-RJ. In 4° Encontro Nacional de Estudos Sobre o Meio Ambiente; UFMT: Cuiabá, Brazil, 1993; pp. 387–396. [Google Scholar]
- UERJ/IBGE. Estudo Ambiental Como Subsídio à Metodologia Para o Ordenamento Territorial Através de Análise de Caso: Município de Teresópolis, RJ; Projeto PADCT: Rio de Janeiro, Brazil, 1999. [Google Scholar]
- Oliveira, N.S. Relação entre chuva e deslizamento em Nova Friburgo/Rj. Master’s Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, July 2014. [Google Scholar]
- CEMADEN-National Center for Monitoring and Warning of Natural Disasters. Available online: https://www.cemaden.gov.br/o-alerta/ (accessed on 18 February 2019).
- Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Baum, R.; Harp, E.; Hultman, W. Map Showing Recent and Historic Landslide Activity on Coastal Bluffs of Puget Sound between Shilshole Bay and Everett, Washington, US Geological Survey Miscellaneous Field Studies Map MF-2346, Scale 1:24.000, U.S. Geological Survey. 2000. [CrossRef]
- Segoni, S.; Rosi, A.; Fanti, R.; Gallucci, A.; Monni, A.; Casagli, N. A Regional-Scale Landslide Warning System Based on 20 Years of Operational Experience. Water 2018, 10, 1297. [Google Scholar] [CrossRef]
- Huang, J.; Ju, N.P.; Liao, Y.J.; Liu, D.D. Determination of rainfall thresholds for shallow landslides by a probabilistic and empirical method. Nat. Hazards Earth Syst. Sci. 2015, 15, 2715–2723. [Google Scholar] [CrossRef] [Green Version]
- Vaz, T.; Zezere, J.L.; Pereira, S. Regional rainfall thresholds for landslide occurrence using a centenary database. Nat. Hazard Earth Syst. Sci. 2018, 18, 1037–1054. [Google Scholar] [CrossRef] [Green Version]
Municipality | Displaced Persons | Homeless People | Deads | Total |
---|---|---|---|---|
Nova Friburgo | 4528 | 789 | 429 | 5476 |
Cordeiro | 17 | 26 | - | 43 |
Macuco | 28 | 24 | - | 52 |
Bom Jardim | 1186 | 632 | 2 | 1820 |
São Sebastião do Alto | 32 | 75 | - | 107 |
Santa Maria Madalena | 284 | 44 | - | 328 |
Petrópolis | 6956 | 187 | 71 | 7214 |
São José do Vale do Rio Preto | 300 | 174 | 2 | 474 |
Areal | - | 8 | - | 8 |
Teresópolis | 9110 | 6727 | 392 | 16,229 |
Sumidouro | 163 | 109 | 22 | 294 |
Total | 22,604 | 8795 | 918 | 32,317 |
Municipality | A | β | No Rain Gap (h) | Minimum Rainfall (mm/h) | Equation |
---|---|---|---|---|---|
Nova Friburgo | 29.98 | −0.87 | 36 | 20 | 29.98D−0.87 |
Petrópolis | 17.95 | −0.68 | 24 | 30 | 17.95D−0.68 |
Teresópolis | 64.80 | −0.89 | 24 | 30 | 64.8D−0.89 |
Threshold | Equation | CA | FA | PPV | |
---|---|---|---|---|---|
Nova Friburgo | moderate | I = 29.98D−0.87 | 69 | 97 | 0.42 |
high | I = 64.98D−0.87 | 34 | 28 | 0.55 | |
very high | I = 101.98D−0.87 | 29 | 6 | 0.83 | |
Petrópolis | moderate | I = 17.96D−0.68 | 190 | 158 | 0.55 |
high | I = 34.96D−0.68 | 59 | 14 | 0.81 | |
very high | I = 55.80D−0.68 | 20 | 4 | 0.83 | |
Teresópolis | moderate | I = 64.80D−0.89 | 18 | 30 | 0.38 |
high | I = 124.00−0.89 | 6 | 3 | 0.67 | |
very high | I = 184.00D−0.89 | 6 | 2 | 0.75 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosi, A.; Canavesi, V.; Segoni, S.; Dias Nery, T.; Catani, F.; Casagli, N. Landslides in the Mountain Region of Rio de Janeiro: A Proposal for the Semi-Automated Definition of Multiple Rainfall Thresholds. Geosciences 2019, 9, 203. https://doi.org/10.3390/geosciences9050203
Rosi A, Canavesi V, Segoni S, Dias Nery T, Catani F, Casagli N. Landslides in the Mountain Region of Rio de Janeiro: A Proposal for the Semi-Automated Definition of Multiple Rainfall Thresholds. Geosciences. 2019; 9(5):203. https://doi.org/10.3390/geosciences9050203
Chicago/Turabian StyleRosi, Ascanio, Vanessa Canavesi, Samuele Segoni, Tulius Dias Nery, Filippo Catani, and Nicola Casagli. 2019. "Landslides in the Mountain Region of Rio de Janeiro: A Proposal for the Semi-Automated Definition of Multiple Rainfall Thresholds" Geosciences 9, no. 5: 203. https://doi.org/10.3390/geosciences9050203
APA StyleRosi, A., Canavesi, V., Segoni, S., Dias Nery, T., Catani, F., & Casagli, N. (2019). Landslides in the Mountain Region of Rio de Janeiro: A Proposal for the Semi-Automated Definition of Multiple Rainfall Thresholds. Geosciences, 9(5), 203. https://doi.org/10.3390/geosciences9050203