Assessment of Heavy Metals Pollution and Stable Isotopic Signatures in Hard Rock Aquifers of Krishnagiri District, South India
Abstract
:1. Introduction
2. Study Area
3. Methods
4. Results
4.1. Hydrochemistry
4.2. Heavy Metals
4.2.1. Aluminum (Al)
4.2.2. Cadmium (Cd)
4.2.3. Lead (Pb)
4.2.4. Zinc (Zn) and Copper (Cu)
4.2.5. Selenium (Se)
4.2.6. Barium (Ba)
4.2.7. Manganese (Mn)
4.2.8. Nickel (Ni) and Cobalt (Co)
4.2.9. Arsenic (As)
4.2.10. Chromium (Cr)
4.2.11. Molybdenum (Mo)
4.2.12. Strontium (Sr)
4.2.13. Boron (Br)
4.2.14. Iron (Fe)
4.2.15. Lithium (Li) and Rubidium (Rb)
4.3. Stable Isotopes
5. Discussion
5.1. Major Ions
5.2. Heavy Metals
5.3. Factor Analysis
5.4. Pollution Indices
5.4.1. Heavy Metal Pollution Index
5.4.2. Degree of Contamination
5.5. Isotope Signatures
5.5.1. Oxygen & Hydrogen
5.5.2. Deuterium Excess
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Madhav, S.; Ahamad, A.; Kumar, A.; Kushawaha, J.; Singh, P.; Mishra, P.K. Geochemical assessment of groundwater quality for its suitability for drinking and irrigation purpose in rural areas of Sant Ravidas Nagar (Bhadohi), Uttar Pradesh. Geol. Ecol. Landsc. 2018, 2, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Thilagavathi, R.; Chidambaram, S.; Thivya, C.; Prasanna, M.V.; Keesari, T.; Pethaperumal, S. Assessment of groundwater chemistry in layered coastal aquifers using multivariate statistical analysis. Sustain. Water Resour. Manag. 2017, 3, 55–69. [Google Scholar] [CrossRef]
- Devaraj, N.; Chidambaram, S.; Gantayat, R.R.; Thivya, C.; Thilagavathi, R.; Prasanna, M.V.; Panda, B.; Adithya, V.S.; Vasudevan, U.; Pradeep, K.; et al. An insight on the speciation and genetical imprint of bicarbonate ion in the groundwater along K/T boundary, South India. Arab. J. Geosci. 2018, 11, 291. [Google Scholar] [CrossRef]
- Rao1, K.N.; Latha, P.S. Groundwater quality assessment using water quality index with a special focus on vulnerable tribal region of Eastern Ghats hard rock terrain, Southern India. Arab. J. Geosci. 2019, 12, 267. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Ritter, L.; Solomon, K.; Sibley, P.; Hall, K.; Keen, P.; Mattu, G.; Linton, B. Sources, pathways, and relative risks of contaminants in surface water and groundwater: A perspective prepared for the Walkerton inquiry. J. Toxicol. Environ. Health Part A 2002, 65, 1–142. [Google Scholar] [PubMed]
- Kungolos, A.; Samaras, P.; Tsiridis, V.; Petala, M.; Sakellaropoulos, G. Bioavailability and toxicity of heavy metals in the presence of natural organic matter. J. Environ. Sci. Health Part A 2006, 41, 1509–1517. [Google Scholar] [CrossRef]
- Jacob, J.M.; Karthik, C.; Saratale, R.G.; Kumar, S.S.; Prabakar, D.; Kadirvelu, K.; Pugazhendhi, A. Biological approaches to tackle heavy metal pollution: A survey of literature. J. Environ. Manag. 2018, 217, 56–70. [Google Scholar] [CrossRef]
- Abolude, D.S.; Davies, O.A.; Chia, A.M. Distribution and concentration of trace elements in Kubanni reservoir in Northern Nigeria. Res. J. Environ. Earth Sci. 2009, 1, 39–44. [Google Scholar]
- Okoya, A.A.; Asubiojo, O.I.; Amusan, A.A. Extractable metals and physicochemical properties of some Southwestern Nigerian Soils. In Biotechnology Development and Threat of Climate Change in Africa: The Case of Nigeria; Cuvillier Verlag: Gottingen, German, 2010; Volume 2, pp. 166–176. [Google Scholar]
- Sarma, G.K.; Gupta, S.S.; Bhattacharyya, K.G. Nanomaterials as versatile adsorbents for heavy metal ions in water: A review. Environ. Sci. Pollut. Res. 2019, 26, 6245–6278. [Google Scholar] [CrossRef]
- Bouhidel, K.-E.; Rumeau, M. Ion-exchange membrane fouling by boric acid in the electrodialysis of nickel electroplating rinsing waters: Generalization of our results. Desalination 2004, 167, 301–310. [Google Scholar] [CrossRef]
- Foster, I.D.L.; Charlesworth, S.M. Heavy metals in the hydrological cycle: Trends and explanation. Hydrol. Process. 1996, 10, 227–261. [Google Scholar] [CrossRef]
- Rainbow, P.S. Biomonitoring of heavy metal availability in the marine environment. Mar. Pollut. Bull. 1995, 31, 183–192. [Google Scholar] [CrossRef]
- Adriano, D.C. Trace Elements in Terrestrial Environments; Springer: New York, NY, USA, 2001; pp. 219–261. [Google Scholar]
- Rondeau, V.; Commenges, D.; Jacqmin-Gadda, H.; Dartigues, J.F. Relation between aluminum concentrations in drinking water and Alzheimer’s disease: An 8-year follow-up study. Am. J. Epidemiol. 2000, 152, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Orisakwe, O.E.; Igwilo, I.O.; Afonne, O.J.; Maduabuchi, J.M.; Obi, E.; Nduka, J.C. Heavy metal hazards of sachet water in Nigeria. Arch. Environ. Occup. Health 2006, 61, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Adepoju-Bello, A.A.; Alabi, O.M. Heavy metals: A review. Nig. J. Pharm 2005, 37, 41–45. [Google Scholar]
- Berman, E. Toxic Metals and Their Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Zietz, B.P.; Laß, J.; Suchenwirth, R. Assessment and management of tap water lead contamination in Lower Saxony, Germany. Int. J. Environ. Health Res. 2007, 17, 407–418. [Google Scholar] [CrossRef]
- Kojola, W.H.; Brenniman, G.R.; Carnow, B.W. A review of environmental characteristics and health effects of barium in public water supplies. Rev. Environ. Health 1979, 3, 79–95. [Google Scholar]
- Beaucaire, C.; Michard, G. Origin of dissolved minor elements (Li, Rb, Sr, Ba) in superficial waters in a granitic area. Geochem. J. 1982, 16, 247–258. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, X.; Wang, L.; Wang, W.; Xu, J. Concentrations and potential health risks of strontium in drinking water from Xi’an, Northwest China. Ecotoxicol. Environ. Saf. 2018, 164, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Sankar, K.; Jagannath, B.; Sibasree, K. Boron Content in Shallow Ground Water of Andhra Pradesh and Telangana States, India. IOSR J. Environ. Sci. Toxicol. Food Technol. 2017, 11, 56–60. [Google Scholar] [CrossRef]
- Rout, G.R.; Sahoo, S. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 2015, 3, 1–24. [Google Scholar] [CrossRef]
- Chidambaram, S.; Karmegam, U.; Prasanna, M.V.; Sasidhar, P.; Vasanthvigar, M. A study on hydrochemical elucidation of coastal groundwater in and around Kalpakkam region, Southern India. Environ. Earth Sci. 2011, 64, 1419–1431. [Google Scholar] [CrossRef]
- Chubaka, C.E.; Whiley, H.; Edwards, J.W.; Ross, K.E. Lead, Zinc, Copper, and Cadmium content of water from South Australian Rainwater Tanks. Int. J. Environ. Res. Public Health 2018, 15, 1551. [Google Scholar] [CrossRef]
- Prasanna, M.V.; Praveena, S.M.; Chidambaram, S.; Nagarajan, R.; Elayaraja, A. Evaluation of water quality pollution indices for heavy metal contamination monitoring: A case study from Curtin Lake, Miri City, East Malaysia. Environ. Earth Sci. 2012, 67, 1987–2001. [Google Scholar] [CrossRef]
- Halder, J.N.; Islam, M.N. Water pollution and its impact on the human health. J. Environ. Hum. 2015, 2, 36–46. [Google Scholar] [CrossRef]
- Tiwari, A.; Dwivedi, A.C.; Mayank, P. Time scale changes in the water quality of the Ganga River, India and estimation of suitability for exotic and hardy fishes. Hydrol. Curr. Res. 2016, 7, 254. [Google Scholar]
- Chaturvedi, A.; Bhattacharjee, S.; Singh, A.K.; Kumar, V. A new approach for indexing groundwater heavy metal pollution. Ecol. Indic. 2018, 87, 323–331. [Google Scholar] [CrossRef]
- Van Vliet, M.T.H.; Flörke, M.; Harrison, J.A.; Hofstra, N.; Keller, V.; Ludwig, F.; Spanier, J.E.; Wada, M.S.Y.; Wen, Y.; Williams, R.J. Model inter-comparison design for large-scale water quality models. Curr. Opin. Environ. Sustain. 2019, 36, 59–67. [Google Scholar] [CrossRef]
- Larsen, D.; Swihart, G.H.; Xiao, Y. Hydrochemistry and isotope composition of springs in the Tecopa basin, southeastern California, USA. Chem. Geol. 2001, 179, 17–35. [Google Scholar] [CrossRef]
- Yolcubal, I.; Gunduz, O.C.A.; Kurtulus, N. Origin of salinization and pollution sources and geochemical processes in urban coastal aquifer (Kocaeli, NW Turkey). Environ. Earth Sci. 2019, 78, 181. [Google Scholar] [CrossRef]
- Fernandes, P.; Carvalho, M.R.; Silva, M.C.; Rebelo, A.; Zeferino, J. Application of nitrogen and boron isotopes for tracing sources of anthropogenic contamination in Monforte-Alter do Chao aquifer system, Portugal. Sustain. Water Resour. Manag. 2019, 5, 249–266. [Google Scholar] [CrossRef]
- Kohfahl, C.; Rodriguez, M.; Fenk, C.; Menz, C.; Benavente, J.; Hubberten, H.; Meyer, H.; Paul, L.; Knappe, A.; López-Geta, J.A.; et al. Characterising flow regime and interrelation between surface-water and ground-water in the Fuente de Piedra salt lake basin by means of stable isotopes, hydrogeochemical and hydraulic data. J. Hydrol. 2008, 351, 170–187. [Google Scholar] [CrossRef] [Green Version]
- Oyarzún, J.; Núñez, J.; Fairley, J.P.; Tapia, S.; Alvarez, D.; Maturana, H.; Arumí, J.L.; Aguirre, E.; Carvajal, A.; Oyarzún, R. Groundwater Recharge Assessment in an Arid, Coastal, Middle Mountain Copper Mining District, Coquimbo Region, North-central Chile. Mine Water Environ. 2019. [Google Scholar] [CrossRef]
- Saltel, M.; Rebeix, R.; Thomas, B.; Franceschi, M.; Lavielle, B.; Bertran, P. Paleoclimate variations and impact on groundwater recharge in multi-layer aquifer systems using a multi-tracer approach (northern Aquitaine basin, France). Hydrogeol. J. 2018. [Google Scholar] [CrossRef]
- Kanduč, T.; Mori, N.; Kocman, D.; Stibilj, V.; Grassa, F. Hydrogeochemistry of alpine springs from North Slovenia: Insights from stable isotopes. Chem. Geol. 2012, 300–301, 40–54. [Google Scholar]
- Madlala, T.; Kanyerere, T.; Oberholster, P.; Xu, Y. Application of multi-method approach to assess groundwater–surface water interactions, for catchment management. Int. J. Environ. Sci. Technol. 2019, 16, 2215–2230. [Google Scholar] [CrossRef]
- Pu, T.; He, Y.; Zhang, T.; Wu, J.; Zhu, G.; Chang, L. Isotopic and geochemical evolution of ground and river waters in a karst dominated geological setting: A case study from Lijiang basin, South-Asia monsoon region. Appl. Geochem. 2013, 33, 199–212. [Google Scholar] [CrossRef]
- Apollaro, C.; Dotsika, E.; Marini, L.; Barca, D.; Bloise, A.; de Rosa, R.; Doveri, M.; Lelli, M.; Muto, F. Chemical and isotopic characterization of the thermo mineral water of Terme Sibarite springs (Northern Calabria, Italy). Geochem. J. 2012, 46, 117–129. [Google Scholar] [CrossRef]
- Vespasiano, G.; Apollaro, C.; de Rosa, R.; Larosa, F.M.S.; Fiebig, J.; Mulch, A.; Marini, L. The Small Spring Method (SSM) for the definition of stable isotope—Elevation relationships in Northern Calabria (Southern Italy). Appl. Geochem. 2015, 63, 333–346. [Google Scholar] [CrossRef]
- Manikandan, K.; Kannan, P.; Sankar, M. Evaluation and Management of Groundwater in Coastal Regions. Earth Sci. India 2012, 5, 1–11. [Google Scholar]
- Manikandan, K.; Natarajan, S.; Sivasamy, R.; Sankar, M.; Dadhwal, K.S. Spatial and Temporal Variation in Groundwater Characteristics of the Coastal Regions of Tamil Nadu. Indian For. 2011, 137, 1009–1014. [Google Scholar]
- Piper, A.M. A Graphic Procedure I the Geo-Chemical Interpretation of Water Analysis; US Geological Survey Groundwater: Washington, DC, USA, 1953; p. 63.
- Gibbs, R.J. Mechanisms controlling world water chemistry. Sci. J. 1970, 170, 795–840. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2004; Volume 1. [Google Scholar]
- World Health Organization (WHO). Guidelines for Drinking Water Quality, 2nd ed.; World Health Organization: Geneva, Switzerland, 1998; p. 36. ISBN 9241545143. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011; Volume 216, pp. 303–304. [Google Scholar]
- Prasanna, M.V.; Nagarajan, R.; Chidambaram, S.; Kumar, A.A.; Thivya, C. Evaluation of hydrogeochemical characteristics and the impact of weathering in seepage water collected within the sedimentary formation. Acta Geochim. 2017, 36, 44–51. [Google Scholar] [CrossRef]
- Chidambaram, S.; Sarathidasan, J.; Srinivasamoorthy, K.; Thivya, C.; Thilagavathi, R.; Prasanna, M.V.; Singaraja, C. Assessment of hydrogeochemical status of groundwater in a coastal region of Southeast coast of India. Appl. Water Sci. 2018, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Prasanna, M.V.; Chidambaram, S.; Hameed, A.S.; Srinivasamoorthy, K. Study of evaluation of groundwater in Gadilam Basin using hydrogeochemical and isotope data. Environ. Monit. Assess. 2010, 168, 63–90. [Google Scholar] [CrossRef]
- Veer, G. Geochemical Soil Survey of The Netherlands. Atlas of Major and Trace Elements in Topsoil and Parent Material; Assessment of Natural and Anthropegenic Enrichment Factors; No. 347; Utrecht University: Utrecht, The Netherlands, 2006. [Google Scholar]
- Nagasawa, H.; Schnetzler, C.C. Partitioning of rare earth, alkali and alkaline earth elements between phenocrysts and acidic igneous magma. Geochim. Cosmochim. Acta 1971, 35, 953–968. [Google Scholar] [CrossRef]
- Navrátil, T.; Skřivan, P.; Minařík, L.; ŽIgová, A. Beryllium geochemistry in the Lesni potok catchment (Czech Republic), 7 years of systematic study. Aquat. Geochem. 2002, 8, 121–133. [Google Scholar] [CrossRef]
- Kjøller, C.; Postma, D.; Larsen, F. Groundwater acidification and the mobilization of trace metals in a sandy aquifer. Environ. Sci. Technol. 2004, 38, 2829–2835. [Google Scholar] [CrossRef]
- Prasanna, M.V.; Chidambaram, S.; Srinivasamoorthy, K. Statistical analysis of the hydrogeochemical evolution of groundwater in hard and sedimentary aquifers system of Gadilam river basin, South India. J. King Saud Univ. (Sci.) 2010, 22, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Chidambaram, S.; Prasad, M.B.K.; Prasanna, M.V.; Manivannan, R.; Anandhan, P. Evaluation of metal pollution in groundwater in the industrialized environs in and around Dindigul, Tamilnadu, India. Water Qual. Expo. Health 2015, 7, 307–317. [Google Scholar] [CrossRef]
- Singh, S.K.; Subramanian, V.; Gibbs, R.J. Hydrous FE and MN oxides—Scavengers of heavy metals in the aquatic environment. Crit. Rev. Environ. Control 1984, 14, 33–90. [Google Scholar] [CrossRef]
- Trivedy, R.K. Encyclopedia of environmental pollution and control. Environ. Media 1995, 1, 342. [Google Scholar]
- Mohan, S.V.; Nithila, P.; Reddy, S.J. Estimation of heavy metals in drinking water and development of heavy metal pollution index. J. Environ. Sci. Health Part A 1996, 31, 283–289. [Google Scholar] [CrossRef]
- Edet, A.E.; Offiong, O.E. Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal 2002, 57, 295–304. [Google Scholar] [CrossRef]
- Prasad, B.; Bose, J. Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas. Environ. Geol. 2001, 41, 183–188. [Google Scholar] [CrossRef]
- Al-Ani, M.Y.; Al-Nakib, S.M.; Ritha, N.M.; Nouri, A.H. Water quality index applied to the classification and zoning of Al-Jaysh canal, Baghdad–Iraq. J. Environ. Sci. Health Part A 1987, 22, 305–319. [Google Scholar] [CrossRef]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, S.; Ransley, T.; Brodie, R.S.; Baker, P. Investigating groundwater–river interactions using environmental tracers. Aust. J. Earth Sci. 2009, 56, 13–19. [Google Scholar] [CrossRef]
- Simpson, H.J.; Herczeg, A. Salinity and evaporation in the river Murray River basin, Australia. J. Hydrol. 1991, 124, 1–27. [Google Scholar] [CrossRef]
- Chidambaram, S.; Ramanathan, A.L.; Prasanna, M.V.; Anandhan, P.; Srinivasamoorthy, K.; Vasudevan, S. Identification of hydrogeochemically active regimes in groundwaters of Erode district, Tamilnadu—A statistical approach. Asian J. Water Environ. Pollut. 2007, 5, 93–102. [Google Scholar]
- Thivya, C.; Chidambaram, S.; Rao, M.S.; Gopalakrishnan, M.; Thilagavathi, R.; Prasanna, M.V.; Nepolian, M. Identification of recharge processes in groundwater in hard rock aquifers of Madurai district using stable isotopes. Environ. Process. 2016, 3, 463–477. [Google Scholar] [CrossRef]
- Deshpande, R.D.; Bhattacharya, S.K.; Jani, R.A.; Gupta, S.K. Distribution of oxygen and hydrogen isotopes in shallow groundwaters from Southern India: Influence of a dual monsoon system. J. Hydrol. 2003, 271, 226–239. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
Sample | Li | Be | B | Al | V | Cr | Mn | Fe | Ni | Co | Cu | Zn | As | Se | Rb | Sr | Mo | Ag | Cd | Sb | Ba | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | ||||||||||||||||||||||
1 | 1.13 | 0.02 | 39.75 | 143.31 | 2.69 | 1.70 | 13.21 | 135.98 | 5.54 | 0.32 | 5.72 | 2111.60 | 0.34 | 1.18 | 0.58 | 227.76 | 0.59 | 0.10 | 0.23 | 0.05 | 316.24 | 6.61 |
2 | 4.80 | 0.02 | 40.51 | 95.98 | 3.68 | 1.39 | 9.71 | 98.86 | 4.27 | 0.20 | 5.96 | 1128.84 | 0.30 | 1.64 | 0.91 | 178.98 | 0.81 | 0.15 | 0.17 | 0.13 | 123.83 | 4.88 |
3 | 4.29 | 0.02 | 39.96 | 44.24 | 2.12 | 1.12 | 5.96 | 54.35 | 2.82 | 0.10 | 4.91 | 333.44 | 0.26 | 1.60 | 0.52 | 159.90 | 0.55 | 0.14 | 0.09 | 0.15 | 28.48 | 3.60 |
4 | 4.56 | 0.02 | 40.25 | 68.24 | 2.87 | 1.28 | 7.71 | 75.04 | 3.82 | 0.14 | 5.39 | 697.05 | 0.28 | 1.62 | 0.70 | 168.62 | 0.67 | 0.15 | 0.13 | 0.14 | 72.07 | 4.18 |
5 | 4.82 | 0.02 | 40.53 | 92.24 | 3.62 | 1.43 | 9.46 | 95.73 | 4.83 | 0.19 | 5.87 | 1060.66 | 0.30 | 1.63 | 0.88 | 177.34 | 0.79 | 0.15 | 0.16 | 0.13 | 115.66 | 4.77 |
6 | 2.41 | 0.01 | 20.27 | 46.12 | 1.81 | 0.72 | 4.73 | 47.87 | 2.41 | 0.17 | 5.63 | 878.86 | 0.29 | 1.63 | 0.79 | 172.98 | 0.73 | 0.15 | 0.15 | 0.13 | 93.86 | 4.48 |
7 | 5.36 | 0.02 | 41.11 | 140.23 | 5.12 | 1.75 | 12.95 | 137.12 | 6.83 | 0.29 | 6.83 | 1787.88 | 0.33 | 1.67 | 1.24 | 194.78 | 1.03 | 0.16 | 0.23 | 0.11 | 202.84 | 5.94 |
8 | 4.72 | 0.02 | 40.43 | 91.24 | 3.52 | 1.33 | 9.36 | 94.73 | 3.83 | 0.19 | 5.87 | 1060.66 | 0.30 | 1.63 | 0.88 | 177.34 | 0.79 | 0.15 | 0.16 | 0.13 | 115.66 | 4.77 |
9 | 5.03 | 0.02 | 40.75 | 110.23 | 4.18 | 1.55 | 10.76 | 111.25 | 5.58 | 0.23 | 6.23 | 1333.37 | 0.31 | 1.65 | 1.01 | 183.88 | 0.88 | 0.15 | 0.19 | 0.12 | 148.35 | 5.21 |
10 | 4.87 | 0.02 | 40.59 | 100.73 | 3.85 | 1.44 | 10.06 | 102.99 | 4.70 | 0.21 | 6.05 | 1197.02 | 0.30 | 1.64 | 0.94 | 180.61 | 0.83 | 0.15 | 0.18 | 0.12 | 132.00 | 4.99 |
11 | 1.18 | 0.02 | 38.53 | 145.20 | 2.68 | 1.70 | 13.08 | 130.78 | 5.33 | 0.28 | 5.58 | 1827.76 | 0.28 | 0.95 | 0.85 | 175.07 | 0.89 | 0.11 | 0.20 | 0.04 | 223.16 | 5.73 |
12 | 1.04 | 0.01 | 34.01 | 92.67 | 1.85 | 1.52 | 7.59 | 83.39 | 3.55 | 0.17 | 5.06 | 1014.93 | 0.16 | 0.58 | 0.30 | 111.42 | 0.36 | 0.08 | 0.09 | 0.05 | 92.45 | 4.20 |
13 | 1.09 | 0.01 | 40.97 | 141.42 | 2.70 | 1.70 | 13.34 | 141.18 | 5.74 | 0.29 | 5.59 | 1892.26 | 0.30 | 1.06 | 0.52 | 204.49 | 0.55 | 0.09 | 0.20 | 0.05 | 271.49 | 6.13 |
14 | 2.87 | 0.02 | 36.92 | 131.71 | 4.29 | 1.57 | 13.05 | 125.54 | 5.38 | 0.23 | 5.40 | 1424.54 | 0.27 | 1.27 | 0.74 | 176.46 | 0.64 | 0.13 | 0.18 | 0.08 | 169.68 | 5.24 |
15 | 1.08 | 0.02 | 37.53 | 142.20 | 2.68 | 1.70 | 13.08 | 120.78 | 5.33 | 0.35 | 5.85 | 2330.93 | 0.37 | 1.30 | 0.63 | 251.03 | 0.64 | 0.10 | 0.26 | 0.06 | 361.00 | 7.10 |
16 | 1.09 | 0.01 | 36.88 | 117.99 | 2.27 | 1.61 | 10.40 | 109.69 | 4.54 | 0.24 | 5.39 | 1563.26 | 0.25 | 0.88 | 0.44 | 169.59 | 0.47 | 0.09 | 0.16 | 0.05 | 204.35 | 5.41 |
17 | 1.05 | 0.01 | 32.60 | 111.72 | 1.34 | 1.60 | 9.95 | 110.18 | 4.41 | 0.23 | 3.92 | 1411.85 | 0.19 | 0.73 | 0.56 | 140.12 | 0.34 | 0.12 | 0.15 | 0.03 | 143.21 | 4.87 |
18 | 1.18 | 0.02 | 36.76 | 182.45 | 3.20 | 1.79 | 17.44 | 170.61 | 7.21 | 0.37 | 5.57 | 2288.68 | 0.33 | 0.84 | 0.65 | 345.48 | 0.60 | 0.21 | 0.26 | 0.04 | 276.59 | 6.75 |
19 | 1.14 | 0.02 | 47.94 | 190.18 | 3.56 | 1.89 | 19.09 | 198.97 | 7.94 | 0.41 | 6.11 | 2769.59 | 0.45 | 1.53 | 0.75 | 297.56 | 0.74 | 0.11 | 0.31 | 0.06 | 450.52 | 8.06 |
20 | 1.00 | 0.02 | 48.04 | 228.08 | 1.42 | 2.04 | 22.25 | 244.46 | 9.67 | 0.48 | 5.59 | 3267.50 | 0.33 | 1.46 | 0.97 | 385.41 | 0.38 | 0.09 | 0.36 | 0.08 | 684.80 | 9.81 |
21 | 1.31 | 0.02 | 43.04 | 197.73 | 3.52 | 1.89 | 18.57 | 178.17 | 7.12 | 0.38 | 6.11 | 2640.59 | 0.40 | 1.31 | 1.40 | 238.71 | 1.43 | 0.14 | 0.30 | 0.04 | 353.87 | 7.26 |
22 | 1.51 | 0.03 | 40.27 | 202.20 | 1.65 | 1.89 | 18.85 | 193.13 | 8.35 | 0.44 | 5.77 | 2571.51 | 0.39 | 1.26 | 0.64 | 330.46 | 0.75 | 0.14 | 0.28 | 0.04 | 257.63 | 7.14 |
23 | 1.65 | 0.03 | 40.60 | 201.07 | 1.70 | 1.88 | 18.59 | 194.11 | 8.42 | 0.45 | 5.02 | 2504.64 | 0.42 | 1.35 | 0.60 | 352.47 | 0.80 | 0.14 | 0.28 | 0.04 | 248.80 | 7.00 |
24 | 1.37 | 0.03 | 39.94 | 203.33 | 1.61 | 1.89 | 19.11 | 192.15 | 8.29 | 0.43 | 6.52 | 2638.39 | 0.37 | 1.16 | 0.68 | 308.45 | 0.70 | 0.14 | 0.28 | 0.04 | 266.46 | 7.29 |
25 | 0.98 | 0.02 | 36.27 | 184.14 | 3.13 | 1.80 | 17.84 | 169.13 | 7.11 | 0.36 | 6.69 | 2388.99 | 0.29 | 0.70 | 0.71 | 312.47 | 0.52 | 0.21 | 0.26 | 0.04 | 289.83 | 6.97 |
26 | 1.09 | 0.03 | 39.29 | 205.59 | 1.52 | 1.91 | 19.63 | 190.18 | 8.15 | 0.42 | 8.02 | 2772.14 | 0.31 | 0.97 | 0.75 | 264.43 | 0.60 | 0.14 | 0.28 | 0.05 | 284.12 | 7.59 |
27 | 0.54 | 0.04 | 37.98 | 210.10 | 1.35 | 1.94 | 20.68 | 186.26 | 7.89 | 0.38 | 11.02 | 3039.63 | 0.21 | 0.59 | 0.90 | 176.39 | 0.41 | 0.14 | 0.29 | 0.05 | 319.45 | 8.18 |
28 | 0.87 | 0.02 | 37.55 | 167.77 | 1.70 | 1.79 | 16.03 | 156.46 | 6.51 | 0.40 | 9.90 | 2939.32 | 0.25 | 0.73 | 0.84 | 209.41 | 0.48 | 0.14 | 0.28 | 0.05 | 306.20 | 7.96 |
29 | 0.82 | 0.04 | 38.64 | 207.84 | 1.43 | 1.93 | 20.16 | 188.22 | 8.02 | 0.40 | 9.52 | 2905.88 | 0.26 | 0.78 | 0.82 | 220.41 | 0.51 | 0.14 | 0.28 | 0.05 | 301.78 | 7.89 |
30 | 0.68 | 0.04 | 38.31 | 208.97 | 1.39 | 1.94 | 20.42 | 187.24 | 7.95 | 0.39 | 10.27 | 2972.76 | 0.23 | 0.68 | 0.86 | 198.40 | 0.46 | 0.14 | 0.28 | 0.05 | 310.61 | 8.04 |
31 | 1.28 | 0.01 | 47.84 | 152.28 | 5.70 | 1.73 | 15.93 | 153.48 | 6.21 | 0.34 | 6.64 | 2271.68 | 0.56 | 1.61 | 0.52 | 209.72 | 1.09 | 0.13 | 0.27 | 0.04 | 216.23 | 6.31 |
32 | 1.14 | 0.02 | 47.94 | 190.18 | 3.56 | 1.89 | 19.09 | 198.97 | 7.94 | 0.41 | 6.11 | 2769.59 | 0.45 | 1.53 | 0.75 | 297.56 | 0.74 | 0.11 | 0.31 | 0.06 | 450.52 | 8.06 |
33 | 1.31 | 0.02 | 43.04 | 197.73 | 3.52 | 1.89 | 18.57 | 178.17 | 7.12 | 0.38 | 6.11 | 2640.59 | 0.40 | 1.31 | 1.40 | 238.71 | 1.43 | 0.14 | 0.30 | 0.04 | 353.87 | 7.26 |
34 | 4.69 | 0.02 | 40.39 | 80.24 | 3.24 | 1.36 | 8.58 | 85.39 | 4.33 | 0.17 | 5.63 | 878.86 | 0.29 | 1.63 | 0.79 | 172.98 | 0.73 | 0.15 | 0.15 | 0.13 | 93.86 | 4.48 |
35 | 1.35 | 0.02 | 38.25 | 243.18 | 1.33 | 2.04 | 21.21 | 202.87 | 8.02 | 0.43 | 5.58 | 3009.50 | 0.24 | 1.02 | 2.28 | 267.71 | 1.77 | 0.15 | 0.33 | 0.03 | 491.50 | 8.22 |
36 | 1.07 | 0.01 | 36.78 | 126.57 | 2.02 | 1.65 | 11.64 | 125.68 | 5.08 | 0.39 | 10.08 | 2956.04 | 0.24 | 0.71 | 0.85 | 203.91 | 0.47 | 0.14 | 0.28 | 0.05 | 308.41 | 8.00 |
37 | 0.86 | 0.01 | 33.25 | 162.69 | 4.74 | 1.69 | 16.04 | 148.08 | 6.06 | 0.26 | 4.75 | 1652.06 | 0.24 | 0.89 | 0.54 | 172.30 | 0.44 | 0.10 | 0.18 | 0.04 | 207.35 | 5.50 |
38 | 0.76 | 0.01 | 31.25 | 152.69 | 4.74 | 1.69 | 15.04 | 138.08 | 6.06 | 0.31 | 5.36 | 2005.85 | 0.27 | 0.42 | 0.66 | 360.50 | 0.44 | 0.28 | 0.23 | 0.04 | 295.54 | 6.35 |
39 | 0.61 | 0.04 | 38.15 | 209.53 | 1.37 | 1.94 | 20.55 | 186.75 | 7.92 | 0.39 | 10.65 | 3006.19 | 0.22 | 0.63 | 0.88 | 187.40 | 0.43 | 0.14 | 0.28 | 0.05 | 315.03 | 8.11 |
Quartzo-Feldspathic Rock (Number of Samples, 11) | Epidote Hornblende Gneiss (Number of Samples, 6) | Charnockite (Number of Samples, 2) | Syenite Complex (Number of Samples, 1) | Basic/Ultra Mafic (Number of Samples, 1) | Granite Felsite/Pink Migmatite (Number of Samples, 3) | Amphibolite (Number of Samples, 1) | ||
---|---|---|---|---|---|---|---|---|
δ 18O | Max | −3.1 | −0.82 | −3.51 | - | - | −2.18 | - |
Min | −5.36 | −5.49 | −4.41 | - | - | −4.28 | - | |
Avg | −4.33 | −3.52 | −3.96 | −4.13 | −4.24 | −3.41 | −4.46 | |
δ D | Max | −17.54 | −10.76 | −21.18 | - | - | −9.81 | - |
Min | −33.19 | −35.98 | −27.4 | - | - | −25.38 | - | |
Avg | −25.64 | −23.43 | −24.29 | −24.47 | −25.72 | −18.92 | −26.58 |
Name | Formula | Abundance | Solutes |
---|---|---|---|
Quartz | SiO2 | 14.6% | — |
Plagioclase Feldspar (Albite) | NaAlSi3O8 | 21.1% | Si, Na, Ca, Sr, Ba (Pb) |
Potassium Feldspar (Microcline) | KAlSi3O8 | 10.0% | Si, K, Rb, Li, Ba (Pb) |
Hornblende | Na0.9K0.4Ca1.6Mg2.9Fe1.4Ti0.5Al2.4Si6O24 | 6.5% | Na, K, Ca, Mg, Si, Fe, Ti (Cr, V) |
Hydrobiotite | Mg2.3Fe3+0.6K0.3Ca0.1Si2.8Al1.2O10(OH)1.8F0.2.3(H2O) | 8.3% | K, Mg, Ca, Fe, Si |
Illite | K0.6(H3O)0.4Al1.3Mg0.3Fe2+0.1Si3.5O10(OH)2.(H2O) | 5.8% | K, Mg, Fe, Si |
Chlorite | (Mg,Fe)3(Si,Al)4O10(OH)2.(Mg,Fe)3(OH)6 | 1.4% | Mg, Fe, Si |
Calcite | CaCO3 | 22.1% | Ca, Mg, Sr |
Dolomite | CaMg(CO3)2 | — | Ca, Mg, Sr |
Ankerite | CaMg0.27Fe0.73(CO3)2 | — | Ca, Mg, Fe, Sr |
Component | |||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
pH | −0.365 | −0.108 | 0.274 | −0.323 | −0.049 | 0.066 | 0.099 |
EC | −0.043 | 0.971 | 0.054 | 0.182 | −0.076 | −0.041 | −0.001 |
TDS | −0.043 | 0.971 | 0.054 | 0.182 | −0.076 | −0.041 | −0.001 |
Ca | 0.252 | 0.663 | −0.030 | 0.153 | 0.088 | −0.100 | 0.424 |
Mg | −0.359 | 0.691 | 0.067 | 0.053 | 0.080 | 0.145 | −0.130 |
Na | −0.072 | 0.501 | 0.042 | −0.114 | −0.337 | 0.080 | −0.095 |
K | −0.212 | 0.404 | −0.202 | −0.038 | 0.027 | −0.239 | −0.628 |
Cl | −0.126 | 0.951 | 0.084 | −0.151 | −0.087 | 0.059 | 0.035 |
HCO3 | 0.190 | 0.024 | 0.037 | 0.813 | −0.024 | −0.178 | −0.124 |
SO4 | 0.069 | 0.333 | −0.271 | −0.387 | 0.011 | 0.153 | 0.662 |
Li | −0.723 | 0.286 | 0.445 | −0.007 | 0.219 | 0.280 | 0.043 |
Be | 0.393 | −0.020 | −0.001 | 0.016 | 0.805 | 0.010 | 0.123 |
B | 0.418 | 0.160 | 0.726 | −0.244 | 0.141 | 0.006 | 0.015 |
Al | 0.961 | −0.074 | −0.057 | 0.042 | 0.138 | 0.119 | 0.006 |
V | −0.252 | 0.137 | 0.524 | 0.248 | −0.352 | 0.151 | 0.102 |
Cr | 0.936 | −0.008 | −0.026 | −0.055 | 0.114 | 0.032 | 0.051 |
Mn | 0.949 | −0.064 | 0.014 | 0.076 | 0.196 | 0.075 | 0.002 |
Fe | 0.969 | −0.029 | 0.078 | 0.013 | 0.133 | 0.038 | 0.031 |
Ni | 0.929 | −0.019 | 0.119 | 0.057 | 0.225 | 0.041 | 0.046 |
Co | 0.957 | −0.137 | 0.023 | 0.090 | 0.111 | 0.025 | 0.072 |
Cu | 0.309 | −0.271 | 0.240 | 0.071 | 0.745 | 0.000 | 0.097 |
Zn | 0.938 | 0.165 | 0.089 | 0.044 | 0.197 | 0.052 | 0.070 |
As | 0.341 | 0.092 | 0.829 | 0.151 | 0.253 | 0.010 | 0.056 |
Se | 0.374 | 0.150 | 0.815 | −0.159 | 0.019 | 0.239 | 0.051 |
Rb | 0.256 | 0.089 | −0.019 | −0.021 | 0.142 | 0.930 | 0.077 |
Sr | 0.706 | 0.120 | 0.241 | 0.411 | −0.163 | −0.079 | 0.188 |
Mo | 0.115 | 0.038 | 0.352 | 0.025 | −0.203 | 0.845 | −0.058 |
Ag | 0.072 | 0.156 | 0.095 | 0.880 | 0.103 | 0.206 | 0.045 |
Cd | 0.924 | −0.095 | 0.129 | 0.105 | 0.153 | 0.182 | 0.094 |
Sb | 0.775 | 0.222 | 0.374 | 0.051 | 0.300 | 0.125 | 0.165 |
Ba | 0.890 | 0.034 | 0.032 | −0.097 | −0.031 | 0.116 | 0.172 |
Pb | 0.924 | 0.099 | −0.034 | 0.009 | 0.230 | 0.051 | 0.141 |
Total | 11.684 | 4.649 | 3.003 | 2.212 | 2.065 | 2.040 | 1.256 |
% of Variance | 36.51 | 14.53 | 9.38 | 6.91 | 6.45 | 6.38 | 3.93 |
Cumulative % | 36.51 | 51.04 | 60.42 | 67.34 | 73.79 | 80.17 | 84.09 |
S.NO | Cd | Mean Deviation | % Deviation | HPI | Mean Deviation | % Deviation |
---|---|---|---|---|---|---|
1 | 116.58 | 33.45 | 40.24 | 127.58 | 38.23 | 42.79 |
2 | 82.71 | −0.42 | −0.50 | 67.01 | −22.34 | −25.00 |
3 | 54.59 | −28.54 | −34.33 | −5.07 | −94.42 | −105.68 |
4 | 67.83 | −15.30 | −18.40 | 29.50 | −59.85 | −66.98 |
5 | 81.08 | −2.05 | −2.46 | 64.08 | −25.27 | −28.28 |
6 | 67.25 | −15.88 | −19.10 | 30.50 | −58.85 | −65.87 |
7 | 107.58 | 24.45 | 29.41 | 133.24 | 43.89 | 49.12 |
8 | 79.94 | −3.19 | −3.84 | 59.34 | −30.01 | −33.58 |
9 | 91.02 | 7.89 | 9.49 | 90.01 | 0.66 | 0.74 |
10 | 85.48 | 2.35 | 2.83 | 74.68 | −14.67 | −16.42 |
11 | 102.73 | 19.60 | 23.58 | 100.18 | 10.83 | 12.12 |
12 | 69.67 | −13.46 | −16.20 | 6.76 | −82.59 | −92.43 |
13 | 109.87 | 26.74 | 32.17 | 109.43 | 20.08 | 22.47 |
14 | 93.93 | 10.80 | 13.00 | 83.47 | −5.88 | −6.59 |
15 | 122.29 | 39.16 | 47.10 | 143.47 | 54.12 | 60.57 |
16 | 93.12 | 9.99 | 12.02 | 67.17 | −22.18 | −24.82 |
17 | 84.94 | 1.81 | 2.18 | 58.00 | −31.35 | −35.08 |
18 | 126.07 | 42.94 | 51.66 | 161.16 | 71.81 | 80.37 |
19 | 150.08 | 66.95 | 80.54 | 212.10 | 122.75 | 137.38 |
20 | 183.27 | 100.14 | 120.47 | 264.81 | 175.46 | 196.37 |
21 | 135.79 | 52.66 | 63.35 | 193.60 | 104.25 | 116.68 |
22 | 136.64 | 53.51 | 64.37 | 190.03 | 100.68 | 112.68 |
23 | 134.45 | 51.32 | 61.74 | 189.92 | 100.57 | 112.55 |
24 | 138.83 | 55.70 | 67.00 | 190.13 | 100.78 | 112.80 |
25 | 129.36 | 46.23 | 55.61 | 161.33 | 71.98 | 80.55 |
26 | 143.21 | 60.08 | 72.27 | 190.35 | 101.00 | 113.04 |
27 | 151.96 | 68.83 | 82.80 | 190.79 | 101.44 | 113.53 |
28 | 142.38 | 59.25 | 71.27 | 177.83 | 88.48 | 99.03 |
29 | 147.58 | 64.45 | 77.53 | 190.57 | 101.22 | 113.29 |
30 | 149.77 | 66.64 | 80.17 | 190.68 | 101.33 | 113.41 |
31 | 116.89 | 33.76 | 40.61 | 159.39 | 70.04 | 78.38 |
32 | 150.08 | 66.95 | 80.54 | 212.10 | 122.75 | 137.38 |
33 | 135.79 | 52.66 | 63.35 | 193.60 | 104.25 | 116.68 |
34 | 74.46 | −8.67 | −10.43 | 46.79 | −42.56 | −47.63 |
35 | 154.69 | 71.56 | 86.09 | 227.82 | 138.47 | 154.97 |
36 | 136.67 | 53.54 | 64.40 | 165.50 | 76.15 | 85.23 |
37 | 102.39 | 19.26 | 23.17 | 92.25 | 2.90 | 3.25 |
38 | 114.11 | 30.98 | 37.26 | 130.26 | 40.91 | 45.78 |
39 | 150.87 | 67.74 | 81.48 | 190.74 | 101.39 | 113.47 |
Min | 54.59 | −5.07 | ||||
Max | 183.27 | 264.81 |
Index Method | Category | Degree of Pollution | No. of Samples | % | Samples |
---|---|---|---|---|---|
Cd | <80 | Low | 6 | 15% | 3,4,6,8,12,34 |
80–160 | Medium | 32 | 82% | 1,2,5,7,9,10,11,13–19,21–33,35–39 | |
>160 | High | 1 | 2% | 20 | |
HPI | <120 | Low | 16 | 41% | 2–6,8–14, 16,17,34,37 |
120–240 | Medium | 22 | 56% | 1,7,15,18,19,21–33,35,36,38,39 | |
>240 | High | 1 | 3% | 20 |
Parameters | Cd | HPI |
---|---|---|
Li | −0.662 | −0.587 |
Be | 0.494 | 0.474 |
B | 0.387 | 0.442 |
Al | 0.943 | 0.941 |
V | −0.323 | −0.228 |
Cr | 0.89 | 0.879 |
Mn | 0.945 | 0.945 |
Fe | 0.953 | 0.957 |
Ni | 0.929 | 0.941 |
Co | 0.971 | 0.976 |
cu | 0.52 | 0.453 |
Zn | 0.985 | 0.965 |
As | 0.266 | 0.394 |
Se | −0.359 | −0.244 |
Rb | 0.329 | 0.394 |
Sr | 0.66 | 0.711 |
Mo | 0.072 | 0.206 |
Ag | −0.025 | 0.035 |
Cd | 0.97 | 0.993 |
Sb | −0.655 | −0.622 |
Ba | 0.908 | 0.891 |
Pb | 0.993 | 0.969 |
Cd | 1 | 0.984 |
HPI | 0.984 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manikandan, S.; Chidambaram, S.; Prasanna, M.V.; Ganayat, R.R. Assessment of Heavy Metals Pollution and Stable Isotopic Signatures in Hard Rock Aquifers of Krishnagiri District, South India. Geosciences 2019, 9, 200. https://doi.org/10.3390/geosciences9050200
Manikandan S, Chidambaram S, Prasanna MV, Ganayat RR. Assessment of Heavy Metals Pollution and Stable Isotopic Signatures in Hard Rock Aquifers of Krishnagiri District, South India. Geosciences. 2019; 9(5):200. https://doi.org/10.3390/geosciences9050200
Chicago/Turabian StyleManikandan, S., S. Chidambaram, M. V. Prasanna, and Rakesh Roshan Ganayat. 2019. "Assessment of Heavy Metals Pollution and Stable Isotopic Signatures in Hard Rock Aquifers of Krishnagiri District, South India" Geosciences 9, no. 5: 200. https://doi.org/10.3390/geosciences9050200
APA StyleManikandan, S., Chidambaram, S., Prasanna, M. V., & Ganayat, R. R. (2019). Assessment of Heavy Metals Pollution and Stable Isotopic Signatures in Hard Rock Aquifers of Krishnagiri District, South India. Geosciences, 9(5), 200. https://doi.org/10.3390/geosciences9050200