Role of Salt Migration in Destabilization of Intra Permafrost Hydrates in the Arctic Shelf: Experimental Modeling
Abstract
:1. Introduction
2. Methods
- -
- Quarts fine sand (sand 1)
- -
- Silty sand (predominantly quartz composition) sampling during drilling operations on the Laptev Sea shelf (Buor-Khaya Bay in the area of the Muostakh island) (sand 2) (Table 1), where active gas emission was registered, and according to some indirect data there is a probability of the existence of natural hydrate formations in submarine permafrost [11,16,31,37,38].
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yakushev, V.S.; Collett, T.S. Gas Hydrates in Arctic Regions: Risk to Drilling and Production. In Proceedings of the Second International Offshore and Polar Engineering Conference, San Francisco, CA, USA, 14–19 June 1992; Volume 1, pp. 669–673. [Google Scholar] [CrossRef]
- Safronov, A.F.; Shits, E.Y.; Grigor’ev, M.N.; Semenov, M.E. Formation of Gas Hydrate Deposits in the Siberian Arctic Shelf. Russ. Geol. Geophys. 2010, 51, 83–87. [Google Scholar] [CrossRef]
- Paull, C.K.; Ussler, W.; Dallimore, S.R.; Blasco, S.M.; Lorenson, T.D.; Melling, H.; Medioli, B.E.; Nixon, F.M.; McLaughlin, F.A. Origin of Pingo-like Features on the Beaufort Sea Shelf and Their Possible Relationship to Decomposing Methane Gas Hydrates. Geophys. Res. Lett. 2007, 34, L01603:1–L01603:5. [Google Scholar] [CrossRef]
- Romanovskii, N.N.; Hubberten, H.W.; Gavrilov, A.V.; Eliseeva, A.A.; Tipenko, G.S.; Kholodov, A.L.; Romanovsky, V.E. Permafrost and Gas Hydrate Stability Zone Evolution on the Eastern Part of the Eurasia Arctic Sea Shelf in the Middle Pleistocene-Holocene (Published in Russian). Earth’s Cryosph. 2003, 7, 51–64. [Google Scholar]
- Andreassen, K.; Hubbard, A.; Winsborrow, M.; Patton, H.; Vadakkepuliyambatta, S.; Plaza-faverola, A.; Deryabin, A.; Mattingsdal, R.; Mienert, J. Gas Hydrate Regulate Methane Emissions from Arctic Petroleum Basins. In Proceedings of the 9th International Conference on Gas Hydrates (ICGH9), Denver, CO, USA, 25–30 June 2017; p. 2. [Google Scholar]
- Mau, S.; Romer, M.; Torres, M.E.; Bussmann, I.; Pape, T.; Damm, E.; Geprags, P.; Wintersteller, P.; Hsu, C.W.; Loher, M.; et al. Widespread Methane Seepage along the Continental Margin off Svalbard—From Bjornoya to Kongsfjorden. Sci. Rep. 2017, 7, 42997:1–42997:13. [Google Scholar] [CrossRef]
- Wood, W.T.; Gettrust, J.F.; Chapman, N.R.; Spence, G.D.; Hyndman, R.D. Decreased Stability of Methane Hydrates in Marine Sediments Owing to Phase-Boundary Roughness. Nature 2002, 420, 656–660. [Google Scholar] [CrossRef]
- Serov, P.; Vadakkepuliyambatta, S.; Mienert, J.; Patton, H.; Portnov, A.; Silyakova, A.; Panieri, G.; Carroll, M.L.; Carroll, J.; Andreassen, K.; et al. Postglacial Response of Arctic Ocean Gas Hydrates to Climatic Amelioration. Proc. Natl. Acad. Sci. USA 2017, 114, 6215–6220. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.F.; Middelburg, J.J.; Röckmann, T.; Aerts, R.; Blauw, L.G.; Egger, M.; Jetten, M.S.M.; de Jong, A.E.E.; Meisel, O.H.; Rasigraf, O.; et al. Methane Feedbacks to the Global Climate System in a Warmer World. Rev. Geophys. 2018, 56, 207–250. [Google Scholar] [CrossRef]
- James, R.H.; Bousquet, P.; Bussmann, I.; Haeckel, M.; Kipfer, R.; Leifer, I.; Niemann, H.; Ostrovsky, I.; Piskozub, J.; Rehder, G.; et al. Effects of Climate Change on Methane Emissions from Seafloor Sediments in the Arctic Ocean: A Review. Limnol. Oceanogr. 2016, S283–S299. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Sergienko, V.; Salyuk, A.; Kosmach, D.; Chernykh, D.; Stubbs, C.; Nicolsky, D.; Tumskoy, V.; et al. Ebullition and Storm-Induced Methane Release from the East Siberian Arctic Shelf. Nat. Geosci. 2014, 7, 64–70. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Salyuk, A.; Yusupov, V.; Kosmach, D.; Gustafsson, Ö. Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf. Science 2010, 327, 1246–1250. [Google Scholar] [CrossRef] [Green Version]
- Makogon, Y.F. Hydrates of Natural Gas (Published in Russian); Nedra: Moscow, Russia, 1974; p. 208. ISBN 978-364-214-233-8. [Google Scholar]
- Max, M. Natural Gas Hydrate in Oceanic and Permafrost Environments; Kluwer Academic Publishers: Washington, DC, USA, 2000; ISBN 978-1-4020-1362-1. [Google Scholar] [CrossRef]
- Shakhova, N.E.; Alekseev, V.A.; Semiletov, I.P. Erratum to: “Predicted Methane Emission on the East Siberian Shelf. ” Dokl. Earth Sci. 2013, 452, 1074. [Google Scholar] [CrossRef]
- Sergienko, V.I.; Lobkovskii, L.I.; Semiletov, I.P.; Dudarev, O.V.; Dmitrievskii, N.N.; Shakhova, N.E.; Romanovskii, N.N.; Kosmach, D.A.; Nikol’skii, D.N.; Nikiforov, S.L.; et al. The Degradation of Submarine Permafrost and the Destruction of Hydrates on the Shelf of East Arctic Seas as a Potential Cause of the “Methane Catastrophe”: Some Results of Integrated Studies in 2011. Dokl. Earth Sci. 2012, 446, 1132–1137. [Google Scholar] [CrossRef]
- Solov’yev, V.A.; Ginsburg, G.D. Formation of Submarine Gas Hydrates. Bull. Geol. Soc. Den. 1994, 41, 86–94. [Google Scholar]
- Romanovskii, N.N.; Hubberten, H.-W.; Gavrilov, A.V.; Eliseeva, A.A.; Tipenko, G.S. Offshore Permafrost and Gas Hydrate Stability Zone on the Shelf of East Siberian Seas. Geo-Mar. Lett. 2005, 25, 167–182. [Google Scholar] [CrossRef]
- Chuvilin, E.; Davletshina, D. Formation and Accumulation of Pore Methane Hydrates in Permafrost: Experimental Modeling. Geosciences 2018, 8, 467. [Google Scholar] [CrossRef]
- Yakushev, V.S. Natural Gas and Gas Hydrates in the Permafrost (Published in Russian); Gazprom VNIIGAZ: Moscow, Russia, 2009; p. 192. [Google Scholar]
- Solov’ev, V.A.; Ginsburg, G.D. Submarine Gas Hydrates (Published in Russian); VNII Oceanologii: St. Petersburg, Russia, 1994; ISBN 5-7173-0290-8. [Google Scholar]
- Solov’ev, V. A Global Estimate of the Amount of Gas in Submarine Accumulations of Gas Hydrates. Geol. Geophys. 2002, 43, 648–661. [Google Scholar]
- Chuvilin, E.; Bukhanov, B.; Davletshina, D.; Grebenkin, S.; Istomin, V. Dissociation and Self-Preservation of Gas Hydrates in Permafrost. Geosciences 2018, 8, 431. [Google Scholar] [CrossRef]
- Yakushev, V.S. Gas Hydrates in Cryolithozone (Published in Russian). Sov. Geol. Geophys. 1989, 1, 100–105. [Google Scholar]
- Chuvilin, E.M.; Yakushev, V.S.; Perlova, E.V. Gas and Possible Gas Hydrates in the Permafrost of Bovanenkovo Gas Field, Yamal Peninsula, West Siberia. Polarforschung 2000, 68, 215–219. [Google Scholar]
- Hachikubo, A.; Takeya, S.; Chuvilin, E.; Istomin, V. Preservation Phenomena of Methane Hydrate in Pore Spaces. Phys. Chem. Chem. Phys. 2011, 13, 17449–17452. [Google Scholar] [CrossRef]
- Istomin, V.; Yakushev, V.; Makhonina, N.; Kwon, V.G.; Chuvilin, E.M. Self-Preservation Phenomenon of Gas Hydrate (Published in Russian). Gas Ind. 2006, 36–46. Available online: https://istina.msu.ru/publications/article/2428015/ (accessed on 23 Aprial 2019).
- Takeya, S.; Ebinuma, T.; Uchida, T.; Nagao, J.; Narita, H. Self-Preservation Effect and Dissociation Rates of CH4 Hydrate. J. Cryst. Growth 2002, 237, 379–382. [Google Scholar] [CrossRef]
- Ershov, E.D.; Lebedenko, Y.P.; Chuvilin, E.M.; Istomin, V.A.; Yakushev, V.S. Features of the Existence of Gas Hydrates in the Cryolithozone (Published in Russian). Rep. Acad. Sci. USSR 1991, 321, 788–791. [Google Scholar]
- Nicolsky, D.; Shakhova, N. Modeling Sub-Sea Permafrost in the East Siberian Arctic Shelf: The Dmitry Laptev Strait. Environ. Res. Lett. 2010, 5, 015006:1–015006:9. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Gustafsson, O.; Sergienko, V.; Lobkovsky, L.; Dudarev, O.; Tumskoy, V.; Grigoriev, M.; Chernykh, D.; Koshurnikov, A.; et al. Current Rates and Mechanisms of Subsea Permafrost Degradation in the East Siberian Arctic Shelf. Nat. Commun. 2017, 8, 15872:1–15872:13. [Google Scholar] [CrossRef]
- ACIA. Future Climate Change: Modeling and Scenarios; Cambridge University Press: Cambridge, UK, 2005; pp. 99–150. [Google Scholar]
- Westbrook, G.K.; Thatcher, K.E.; Rohling, E.J.; Piotrowski, A.M.; Pälike, H.; Osborne, A.H.; Nisbet, E.G.; Minshull, T.A.; Lanoisellé, M.; James, R.H.; et al. Escape of Methane Gas from the Seabed along the West Spitsbergen Continental Margin. Geophys. Res. Lett. 2009, 36, L15608:1–L15608:5. [Google Scholar] [CrossRef]
- Nicolsky, D.J.; Romanovsky, V.E.; Romanovskii, N.N.; Kholodov, A.L.; Shakhova, N.E.; Semiletov, I.P. Modeling Sub-Sea Permafrost in the East Siberian Arctic Shelf: The Laptev Sea Region. J. Geophys. Res. Earth Surf. 2012, 117, F03028:1–F03028:22. [Google Scholar] [CrossRef]
- Delisle, G. Temporal Variability of Subsea Permafrost and Gas Hydrate Occurrences as Function of Climate Change in the Laptev Sea, Siberia. Polarforschung 2000, 68, 221–225. [Google Scholar]
- Romanovskii, N.N.; Eliseeva, A.A.; Gavrilov, A.V.; Tipenko, G.S.; Hubberten, X. The Long-Term Dynamics of Frozen Strata and the Zone of Gas Hydrate Stability in the Rift Structures of the Arctic Shelf of Eastern Siberia (Report 2) (Published in Russian). Earth’s Cryosph. 2006, 10, 29–38. [Google Scholar]
- Chuvilin, E.M.; Tumskoy, V.E.; Tipenko, G.S.; Gavrilov, A.V.; Bukhanov, B.A.; Tkacheva, E.V.; Audibert-Hayet, A.; Cauquil, E. Relic Gas Hydrate and Possibility of Their Existence in Permafrost within the South-Tambey Gas Field. In Proceedings of the SPE Arctic and Extreme Environments Technical Conference and Exhibition, Moscow, Russia, 15–17 October 2013; pp. 166925:1–166925:9. [Google Scholar]
- Chuvilin, E.; Bukhanov, B.; Grebenkin, S.; Tymskoy, V.; Shakhova, N.; Dudarev, O.; Semiletov, I. Thermal Conductivity of Bottom Sediments in the East Siberian Arctic Seas: A Case Study in the Buor-Khaya Bay. In Proceedings of the 7th Canadian Permafrost Conference, Queébec City, QC, Canada, 21–23 September 2015; pp. ABS557:1–ABS557:6. [Google Scholar]
- Chuvilin, E.; Bukhanov, B. Thermal Conductivity of Frozen Sediments Containing Self-Preserved Pore Gas Hydrates at Atmospheric Pressure: An Experimental Study. Geosciences 2019, 9, 65. [Google Scholar] [CrossRef]
- Chuvilin, E.M.; Guryeva, O.M. Experimental Study of Self-Preservation Effect of Gas Hydrates in Frozen Sediments. In Proceedings of the 9th International Conference on Permafrost, Fairbanks, AK, USA, 28 June–3 July 2008; Volume 28. [Google Scholar]
- Shpolyanskaya, N.A.; Streletskaya, I.D.; Surkov, A. Cryolithogenesis within the Arctic Shelf (Modern and Ancient) (Published in Russian). Earth’s Cryosph. 2006, 10, 49–60. [Google Scholar]
- Chuvilin, E.; Bukhanov, B. Effect of Hydrate Formation Conditions on Thermal Conductivity of Gas-Saturated Sediments. Energy Fuels 2017, 31, 5246–5254. [Google Scholar] [CrossRef]
- Chuvilin, E.M.; Kozlova, E.V.; Skolotneva, T.S. Experimental Simulation of Frozen Hydrate-Containing Sediments Formation. In Proceedings of the Fifth International Conference on Gas Hydrates, Trondheim, Norway, 13–16 June 2005; pp. 1561–1567. [Google Scholar]
- Chuvilin, E.M. Migration of ions of chemical elements in freezing and frozen soils. Polar Record. 1999, 35, 59–66. [Google Scholar]
- Chuvilin, E.M.; Ershov, E.D.; Smirnova, O.G. Ionic Migration in Frozen Soils and Ice. In Proceedings of the 7th International Permafrost Conference, Yellowknife, NT, Canada, 23–27 June 1998; pp. 167–171. [Google Scholar]
- Lebedenko, Y.P. Cryogenic Migration of Ions and Bound Moisture in Ice-Saturated Frozen Rocks (Published in Russian). Eng. Geol. 1989, 4, 21–30. [Google Scholar]
- Andersland, O.B.; Biggar, K.W. Site Investigations of Fuel Spill Migration into Permafrost. J. Cold Reg. Eng. 2002, 13, 165–166. [Google Scholar] [CrossRef]
- Ershov, E.D.; She, Z.S.; Lebedenko, Y.; Chuvilin, E.M.; Kryuchkov, K.Y. Mass Transfer and Deformation Processes in Frozen Rocks Interacting with Aqueous Salt Solutions (Published in Russian). In Proceedings of the III Scientific and Technical Workshop “Engineering-Geological Study and Evaluation of Frozen, Freezing and Thawing Soils (IGK-92)”, St. Petersburg, Russia, 1993; pp. 67–77. Available online: https://istina.msu.ru/publications/article/2627661/ (accessed on 23 April 2019).
- Winiger, P.; Barrett, T.E.; Sheesley, R.J.; Huang, L.; Sharma, S.; Barrie, L.A.; Yttri, K.E.; Evangeliou, N.; Eckhardt, S.; Stohl, A.; et al. Source Apportionment of Circum-Arctic Atmospheric Black Carbon from Isotopes and Modeling. Sci. Adv. 2019, 5, eaau8052:1–eaau8052:10. [Google Scholar] [CrossRef]
- Chuvilin, E.M.; Grebenkin, S.I.; Sacleux, M. Influence of Moisture Content on Permeability of Frozen and Unfrozen Soils. Kriosf. Zemli 2016, 20, 66–72. [Google Scholar]
Sample | Sampling Site | Particle Size Distribution, % | Mineralogy | |||||
---|---|---|---|---|---|---|---|---|
1–0.5 | 0.5–0.25 | 0.25–0.1 | 0.1–0.05 | 0.05–0.001 | <0.001 | |||
Sand 1 | - | 6.5 | 6.5 | 79.6 | 2.2 | 3.1 | 2.1 | >90% quartz |
Sand 2 | Laptev Sea shelf (well 1D-11, 40–46 m) | 1 | 9 | 52 | 20 | 16 | 2 | 54% quartz 41% microcline + albite 4% illite |
Sample | Anions, mEq/100 g | Cations, mEq/100 g | Salinity, % | |||||
---|---|---|---|---|---|---|---|---|
pH | HCO3− | Cl− | SO42− | Ca2+ | Mg2+ | Na+ + K+ | ||
Sand 1 | 7.1 | 0.075 | 0.025 | 0.06 | 0.025 | - | 0.135 | 0.01 |
Sand 2 | 8.4 | 0.89 | 5.00 | - | 0.4 | 4.9 | 0.6 | 0.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuvilin, E.; Ekimova, V.; Bukhanov, B.; Grebenkin, S.; Shakhova, N.; Semiletov, I. Role of Salt Migration in Destabilization of Intra Permafrost Hydrates in the Arctic Shelf: Experimental Modeling. Geosciences 2019, 9, 188. https://doi.org/10.3390/geosciences9040188
Chuvilin E, Ekimova V, Bukhanov B, Grebenkin S, Shakhova N, Semiletov I. Role of Salt Migration in Destabilization of Intra Permafrost Hydrates in the Arctic Shelf: Experimental Modeling. Geosciences. 2019; 9(4):188. https://doi.org/10.3390/geosciences9040188
Chicago/Turabian StyleChuvilin, Evgeny, Valentina Ekimova, Boris Bukhanov, Sergey Grebenkin, Natalia Shakhova, and Igor Semiletov. 2019. "Role of Salt Migration in Destabilization of Intra Permafrost Hydrates in the Arctic Shelf: Experimental Modeling" Geosciences 9, no. 4: 188. https://doi.org/10.3390/geosciences9040188
APA StyleChuvilin, E., Ekimova, V., Bukhanov, B., Grebenkin, S., Shakhova, N., & Semiletov, I. (2019). Role of Salt Migration in Destabilization of Intra Permafrost Hydrates in the Arctic Shelf: Experimental Modeling. Geosciences, 9(4), 188. https://doi.org/10.3390/geosciences9040188