Gas Seeps at the Edge of the Gas Hydrate Stability Zone on Brazil’s Continental Margin
Abstract
:1. Introduction
2. Gas Hydrate and Gas Venting Structures on Brazil’s Continental Margin
3. The Edge of the Stability Zone and Seafloor Gas Vents
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Breitburg, D.; Levin, L.A.; Oschlies, A.; Grégoire, M.; Chavez, F.P.; Conley, D.J.; Garçon, V.; Gilbert, D.; Gutiérrez, D.; Isensee, K.; et al. Declining oxygen in the global ocean and coastal waters. Science 2018, 359, eaam7240. [Google Scholar] [CrossRef]
- Dutkiewicz, S.; Morris, J.J.; Follows, M.J.; Scott, J.; Levitan, O.; Dyhrman, S.T.; Berman-Frank, I. Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim. Chang. 2015, 5, 1002–1006. [Google Scholar] [CrossRef]
- Bruno, J.F.; Bates, A.E.; Cacciapaglia, C.; Pike, E.P.; Amstrup, S.C.; van Hooidonk, R.; Henson, S.A.; Aronson, R.B. Climate change threatens the world’s marine protected areas. Nat. Clim. Chang. 2018, 8, 499–503. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the IPCC; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014; p. 112. [Google Scholar]
- Hunter, S.J.; Goldobin, D.S.; Haywood, A.M.; Ridgwell, A.; Rees, J.G. Sensitivity of the global submarine hydrate inventory to scenarios of future climate change. Earth Planet. Sci. Lett. 2013, 367, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Pinero, E.; Marquardt, M.; Hensen, C.; Haeckel, M.; Wallmann, K. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences 2013, 10, 959–975. [Google Scholar] [CrossRef] [Green Version]
- Dickens, G.R. Down the Rabbit Hole: Toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events. Clim. Past 2011, 7, 831–846. [Google Scholar] [CrossRef]
- Archer, D. Methane hydrate stability and anthropogenic climate change. Biogeosciences 2007, 4, 521–544. [Google Scholar] [CrossRef] [Green Version]
- Giustiniani, M.; Tinivella, U.; Jakobsson, M.; Rebesco, M. Arctic Ocean Gas Hydrate Stability in a Changing Climate. J. Geol. Res. 2013, 2013, 783969. [Google Scholar] [CrossRef]
- Ruppel, C.D. Methane Hydrates and Contemporary Climate Change. Nat. Educ. Knowl. 2011, 3, 29. [Google Scholar]
- Tinivella, U.; Giustiniani, M.; Accettella, D. BSR versus Climate Change and Slides. J. Geol. Res. 2011, 2011, 390547. [Google Scholar] [CrossRef]
- Thatcher, K.E.; Westbrook, G.K.; Sarkar, S.; Minshull, T.A. Methane release from warming-induced hydrate dissociation in the West Svalbard continental margin: Timing, rates, and geological controls. J. Geophys. Res. Solid Earth 2013, 118, 22–38. [Google Scholar] [CrossRef] [Green Version]
- Ferré, B.; Mienert, J.; Feseker, T. Ocean temperature variability for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales. J. Geophys. Res. 2012, 117, C10017. [Google Scholar] [CrossRef]
- Hautala, S.; Solomon, E.; Johnson, H.P.; Harris, R.N.; Miller, U.K. Dissociation of Cascadia margin gas hydrates in response to contemporary ocean warming. Geophys. Res. Lett. 2014, 41, 8486–8494. [Google Scholar] [CrossRef] [Green Version]
- Stranne, C.; O’Regan, M.; Dickens, G.R.; Crill, P.; Miller, C.; Preto, P.; Jakobsson, M. Dynamic simulations of potential methane release from East Siberian continental slope sediments. Geochem. Geophys. Geosyst. 2016, 17, 872–886. [Google Scholar] [CrossRef] [Green Version]
- Hornbach, M.J.; Saffer, D.M.; Holbrook, W.S. Critically pressured free-gas reservoirs below gas-hydrate provinces. Nature 2004, 427, 142–144. [Google Scholar] [CrossRef]
- Berndt, C.; Feseker, T.; Treude, T.; Kraster, S.; Liebetrau, V.; Niemann, H.; Bertics, V.J.; Dumke, I.; Dünnbier, K.; Ferré, B.; et al. Temporal constraints on hydrate-controlled methane seepage off Svalbard. Science 2014, 343, 284–287. [Google Scholar] [CrossRef]
- Reeburgh, W.S. Oceanic methane biogeochemistry. Chem. Rev. 2007, 107, 486–513. [Google Scholar] [CrossRef]
- Regnier, P.; Dale, A.W.; Arndt, S.; La Rowe, D.E.; Mogollón, J.; Van Cappellen, P. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective. Earth Sci. Rev. 2011, 106, 105–130. [Google Scholar] [CrossRef]
- McGinnis, D.F.; Greinert, J.; Artemov, Y.; Beaubien, S.E.; Wuest, A. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? J. Geophys. Res. 2006, 111, C09007. [Google Scholar] [CrossRef]
- Mau, S.; Valentine, D.L.; Clark, J.F.; Reed, J.; Camilli, R.; Washburn, L. Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil Point, California. Geophys. Res. Lett. 2007, 34, L22603. [Google Scholar] [CrossRef]
- Leonte, M.; Kessler, J.D.; Kellermann, M.Y.; Arrington, E.C.; Valentine, D.L.; Sylva, S.P. Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in the waters of Hudson Canyon, US Atlantic Margin. Geochim. Cosmochim. Acta 2017, 204, 375–387. [Google Scholar] [CrossRef]
- Biastoch, A.; Treude, T.; Rüpke, L.H.; Riebesell, U.; Roth, C.; Burwicz, E.B.; Park, W.; Latif, M.; Böning, C.W.; Madec, G.; et al. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophys. Res. Lett. 2011, 38, L08602. [Google Scholar] [CrossRef]
- Boudreau, B.P.; Luo, Y.; Meysman, F.J.R.; Middelburg, J.J.; Dickens, G.R. Gas hydrate dissociation prolongs acidification of the Anthropocene oceans. Geophys. Res. Lett. 2015, 42, 9337A–9344A. [Google Scholar] [CrossRef]
- Maslin, M.; Owen, M.; Betts, R.; Day, S.; Jones, T.D.; Ridgwell, A. Gas hydrates: Past and future geohazard? Philos. Trans. R. Soc. A 2010, 368, 2369–2393. [Google Scholar] [CrossRef]
- Westbrook, G.K.; Thatcher, K.E.; Rohling, E.J.; Piotrowski, A.M.; Pälike, H.; Osborne, A.H.; Nisbet, E.G.; Minshull, T.A.; Lanoiselle, M.; James, R.H.; et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef]
- Skarke, A.; Ruppel, C.; Kodis, M.; Brothers, D.; Lobecker, E. Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nat. Geosci. 2014, 7, 657–661. [Google Scholar] [CrossRef] [Green Version]
- Johnson, H.P.; Miller, U.K.; Salmi, M.S.; Solomon, E.A. Analysis of bubble plume distributions to evaluate methane hydrate decomposition on the continental slope. Geochem. Geophys. Geosyst. 2015, 16, 3825–3839. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Spielhagen, R.F.; Werner, K.; Sørensen, S.A.; Zamelczyk, K.; Kandiano, E.; Budeus, G.; Husum, K.; Marchitto, T.M.; Hald, M. Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 2011, 331, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.R. Evidencias geofísicas da Presença de Hidratos de Gas na Bacia de Pelotas. In Proceedings of the 1st Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, 20 November 1989. [Google Scholar]
- Fontana, R.L.; Mussumeci, A. Hydrates offshore Brazil. In Annals of the New York Academy of Sciences, International Conference on Natural Gas Hydrates; New York Academy of Sciences: New York, NY, USA, 1994; Volume 715, pp. 106–113. [Google Scholar]
- Oliveira, S.; Vilhena, O.; da Costa, E. Time-frequency spectral signature of Pelotas Basin deep water gas hydrates system. Mar. Geophys. Res. 2010, 31, 89–97. [Google Scholar] [CrossRef]
- Manley, P.L.; Flood, R.D. Cyclic sediment deposition within Amazon deep-sea fan. Am. Assoc. Petrol. Geol. Bull. 1988, 72, 912–925. [Google Scholar]
- Tanaka, M.D.; Silva, C.G.; Clennell, M.B. Gas hydrates on the Amazon Submarine Fan, Foz do Amazonas Basil, Brazil. In Proceedings of the AAPG Search and Discovery Article #90013, AAPG Annual Meeting, Salt Lake City, UT, USA, 11–14 May 2003. [Google Scholar]
- Berryman, J.; Kearns, H.; Rodriguez, K. Foz do Amazonas Basin—A case for oil generation from geothermal gradient modelling. First Break 2015, 33, 91–95. [Google Scholar]
- Matsuda, N.S.; Freire, A.F.M. The Bottom Simulating Reflector (BSR) along the Brazilian Atlantic Coast: A New Perspective for Gas Hydrates Exploration in the Southern Hemisphere. In Proceedings of the AAPG International Conference and Exhibition, Cape Town, South Africa, 26–29 October 2008. [Google Scholar]
- Martins, L.R.; Melo, U.; França, A.M.C.; Santana, C.I.; Martins, I.R. Distribuicao Faciologica da Margem Continental Sul Riograndense. In Proceedings of the XXVI Congresso Brasileiro de Geologia, Belem, Brazil, 26 October 1972; Volume 2, pp. 115–132. [Google Scholar]
- Hernándes-Molina, F.J.; Soto, M.; Piola, A.R.; Tomasini, J.; Preu, B.; Thompson, P.; Badalini, G.; Creaser, A.; Violante, R.A.; Morales, E.; et al. A contourite depositional system along the Uruguayan continental margin: Sedimentary, oceanographic and paleoceanographic implications. Mar. Geol. 2016, 378, 333–349. [Google Scholar] [CrossRef]
- Viana, A.R. Seismic expression of shallow- to deep-water contourites along the south-eastern Brazilian margin. Mar. Geophys. Res. 2002, 22, 509–521. [Google Scholar] [CrossRef]
- Figueiredo, J.; Hoorn, C.; van der Ven, P.; Soares, E. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology 2009, 37, 619–622. [Google Scholar] [CrossRef]
- Damuth, J.E.; Kumar, N. Amazon cone, morphology, sediments, age, and growth pattern. Geol. Soc. Am. Bull. 1975, 86, 863–878. [Google Scholar] [CrossRef]
- Reis, A.T.; Araújo, E.; Silva, C.G.; Cruz, A.M.; Gorini, C.; Droz, L.; Migeon, S.; Perovano, R.; King, I.; Bache, F. Effects of a regional décollement level for gravity tectonics on late Neogene to recent large-scale slope instabilities in the Foz do Amazonas Basin, Brazil. Mar. Petrol. Geol. 2016, 75, 29–52. [Google Scholar] [CrossRef]
- Sad, A.R.E.; Silveira, D.P.; Machado, D.A.P.; Silva, S.R.P.; Maciel, R.R. Marine gas hydrates evidence along the Brazilian coast. In Proceedings of the AAPG International Conference and Exhibition, Rio de Janeiro, Brazil, 8–11 November 1998. [Google Scholar]
- Miller, D.J.; Ketzer, J.M.; Viana, A.R.; Kowsmann, R.O.; Freire, A.F.; Oreiro, S.G.; Augustin, A.H.; Lourega, R.V.; Rodrigues, L.F.; Heemann, R.; et al. Natural gas hydrates in the Rio Grande Cone (Brazil): A new province in the western South Atlantic. Mar. Petrol. Geol. 2015, 67, 187–196. [Google Scholar] [CrossRef]
- Ketzer, J.M.; Augustin, A.; Rodrigues, L.F.; Oliveira, R.; Praeg, D.; Pivel, M.A.G.; Reis, A.T.; Silva, C.G.; Leonel, B. Gas seeps and gas hydrates in the Amazon deep-sea fan. Geo-Mar. Lett. 2018, 38, 429–438. [Google Scholar] [CrossRef]
- Dickens, G.R.; Quinby-Hunt, M.S. Methane hydrate stability in sea- water. Geophys. Res. Lett. 1994, 21, 2115–2118. [Google Scholar] [CrossRef]
- Boyer, T.P.; Baranova, O.K.; Coleman, C.; Garcia, H.E.; Grodsky, A.; Locarnini, R.A.; Mishonov, A.V.; O’Brien, T.D.; Paver, C.R.; Reagan, J.R.; et al. World Ocean Database 2018; Mishonov, A., Ed.; NOAA: Silver Spring, MD, USA, 2018; 209p.
- Giongo, A.; Haag, T.; Lopes Simao, T.L.; Medina-Silva, R.; Utz, L.R.P.; Bogo, M.R.; Bonatto, S.; Zamberlan, P.; Augustin, A.H.; Lourega, R.V.; et al. Discovery of a chemosynthesis-based community in the western South Atlantic Ocean. Deep Sea Res. Part Oceanograph. Res. Pap. 2016, 112, 45–56. [Google Scholar] [CrossRef]
- Medina-Silva, R.; Oliviera, R.R.; Trindade, F.J.; Trindade, F.J.; Borges, L.G.A.; Simao, T.L.L.; Augustin, A.H.; Valdez, F.P.; Constant, M.; Simundi, C.; et al. Microbiota associated with tubes of Escarpia sp. from cold seeps in the southwestern Atlantic Ocean constitutes a community distinct from that of surrounding marine sediment and water. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2017, 111, 533–550. [Google Scholar] [CrossRef]
- Rodrigues, L.F.; Ketzer, J.M.; Lourega, R.V.; Augustin, A.H.; Sbrissa, G.; Miller, D.J.; Heemann, R.; Viana, A.R.; Freire, A.F.M.; Morad, S. The influence of methane fluxes on the sulfate/methane interface in sediments from the Rio Grande Cone Gas Hydrate Province, southern Brazil. Braz. J. Geol. 2017, 47, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Bayon, G.; Henderson, G.M.; Bohn, M. U–Th stratigraphy of a cold seep carbonate crust. Chem. Geol. 2009, 260, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Portilho-Ramos, R.C.; Cruz, A.P.S.; Barbosa, C.F.; Rathburn, A.E.; Mulitza, S.; Venancio, I.M.; Schwenk, T.; Rühlemann, C.; Vidal, L.; Chiessi, C.M.; et al. Methane release from the southern Brazilian margin during the last glacial. Sci. Rep. 2018, 8, 5948. [Google Scholar] [CrossRef]
- Rodrigues, L.F.; Ketzer, J.M.; Oliveira, R.R.; Santos, V.H.J.M.; Augustin, A.H.; Cupertino, J.A.; Viana, A.R.; Leonel, B.; Dorle, W. Molecular and isotopic composition of hydrate-bound, dissolved and free gases in the Amazon deep-sea fan and slope sediments, Brazil. Geosciences 2019, 9, 73. [Google Scholar] [CrossRef]
- Haacke, R.R.; Hyndman, R.D.; Park, K.P.; Yoo, D.G.; Stoian, I.; Schmidt, U. Migration and venting of deep gases into the ocean through hydrate choked chimneys offshore Korea. Geology 2009, 37, 531–534. [Google Scholar] [CrossRef]
- Liu, X.; Flemings, P.B. Dynamic multiphase flow model of hydrate formation in marine sediments. J. Geophys. Res. Solid Earth 2007, 112, B03101. [Google Scholar] [CrossRef]
- Hornbach, M.J.; Ruppel, C.; Van Dover, C.L. Three dimensional structure of fluid conduits sustaining an active deep marine cold seep. Geophys. Res. Lett. 2007, 34, L05601. [Google Scholar] [CrossRef]
- Riedel, M.; Tréhu, A.M.; Spence, G.D. Characterizing the thermal regime of cold vents at the northern Cascadia margin from bottom simulating reflector distributions, heat probe measurements and borehole temperature data. Mar. Geophys. Res. 2010, 31, 1–16. [Google Scholar] [CrossRef]
- Stranne, C.; O’Regan, M.; Jakobsson, M. Modeling fracture propagation and seafloor gas release during seafloor warming-induced hydrate dissociation. Geophys. Res. Lett. 2017, 44, 8510–8519. [Google Scholar] [CrossRef]
- Gorman, A.R.; Senger, K. Defining the updip extent of the gas hydrate stability zone on continental margins with low geothermal gradients. J. Geophys. Res. 2010, 115, B07105. [Google Scholar] [CrossRef]
- Horozal, S.; Bahk, J.J.; Urgeles, R.; Kim, G.Y.; Cukur, D.; Kim, S.P.; Lee, G.H.; Lee, S.H.; Ryu, B.J.; Kim, J.H. Mapping gas hydrate and fluid flow indicators and modeling gas hydrate stability zone (GHSZ) in the Ulleung Basin, East (Japan) Sea: Potential linkage between the occurrence of mass failures and gas hydrate dissociation. Mar. Pet. Geol. 2017, 80, 171–191. [Google Scholar] [CrossRef]
- Schmidtko, S.; Johnson, G. Multidecadal Warming and Shoaling of Antarctic Intermediate Water. J. Clim. 2012, 25, 207–221. [Google Scholar] [CrossRef]
- Stranne, C.; O’Regan, M.; Jakobsson, M. Overestimating climate warming-induced methane gas escape from the seafloor by neglecting multiphase flow dynamics. Geophys. Res. Lett. 2016, 43, 8703–8712. [Google Scholar] [CrossRef]
- Phrampus, B.J.; Hornback, M.J. Recent changes to the Gulf Stream causing widespread gas hydrate destabilization. Nature 2012, 490, 527–529. [Google Scholar] [CrossRef]
- Maslin, M.; Vilela, C.; Mikkelsen, N.; Grootes, P. Causes of catastrophic sediment failures of the Amazon fan. Quat. Sci. Rev. 2005, 24, 2180–2193. [Google Scholar] [CrossRef]
- Reis, A.T.; Silva, C.G.; Gorini, M.A.; Leao, R.; Pinto, N.; Perovano, R.; Santos, M.V.M.; Guerra, J.V.; Jeck, I.K.; Tavares, A.A. The Chui Megaslide Complex: Regional-Scale Submarine Landslides on the Southern Brazilian Margin. In Submarine Mass Movements and their Consequences, Advances in Natural and Technological Hazards Research 41; Lamarche, G., Mountjoy, J., Bull, S., Hubble, T., Krastel, S., Lane, E., Micallef, A., Moscardelli, L., Mueller, C., Pecher, I., et al., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Chiessi, C.M.; Mulitza, S.; Paul, A.; Pätzold, J.; Groeneveld, J.; Wefer, G. South Atlantic interocean exchange as the trigger for the Bølling warm event. Geology 2008, 36, 919–922. [Google Scholar] [CrossRef]
- Milkov, A.V.; Sassen, R.; Novikova, I.; Mikhailov, E. Gas hydrates at minimum stability water depths in the Gulf of Mexico: Significance to Geohazard Assessment. Gulf Coast Assoc. Geol. Soc. Trans. L 2000, 50, 217–224. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ketzer, M.; Praeg, D.; Pivel, M.A.G.; Augustin, A.H.; Rodrigues, L.F.; Viana, A.R.; Cupertino, J.A. Gas Seeps at the Edge of the Gas Hydrate Stability Zone on Brazil’s Continental Margin. Geosciences 2019, 9, 193. https://doi.org/10.3390/geosciences9050193
Ketzer M, Praeg D, Pivel MAG, Augustin AH, Rodrigues LF, Viana AR, Cupertino JA. Gas Seeps at the Edge of the Gas Hydrate Stability Zone on Brazil’s Continental Margin. Geosciences. 2019; 9(5):193. https://doi.org/10.3390/geosciences9050193
Chicago/Turabian StyleKetzer, Marcelo, Daniel Praeg, Maria A.G. Pivel, Adolpho H. Augustin, Luiz F. Rodrigues, Adriano R. Viana, and José A. Cupertino. 2019. "Gas Seeps at the Edge of the Gas Hydrate Stability Zone on Brazil’s Continental Margin" Geosciences 9, no. 5: 193. https://doi.org/10.3390/geosciences9050193
APA StyleKetzer, M., Praeg, D., Pivel, M. A. G., Augustin, A. H., Rodrigues, L. F., Viana, A. R., & Cupertino, J. A. (2019). Gas Seeps at the Edge of the Gas Hydrate Stability Zone on Brazil’s Continental Margin. Geosciences, 9(5), 193. https://doi.org/10.3390/geosciences9050193