Establishment of a Greek Food Database for Palaeodiet Reconstruction: Case Study of Human and Fauna Remains from Neolithic to Late Bronze Age from Greece
Abstract
:1. Introduction
1.1. Background on Stable Isotopes
1.2. Background on Ancient Greek Diet
2. Materials
3. Methods
4. Results and Discussion
Palaeodiet
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Katzenberg, M.A.; Schwarcz, H.P.; Knyf, M.; Melbye, F.J. Stable isotope evidence for maize horticulture and paleodiet in southern Ontario, Canada. Am. Antiq. 1995, 60, 335–350. [Google Scholar] [CrossRef]
- Murray, M.L.; Schoeninger, M.J. Diet, status, and complex social structure in Iron Age Central Europe: Some contributions of bone chemistry. In Tribe and Polity in Late Prehistoric Europe; Springer: Berlin/Heidelberg, Germany, 1988; pp. 155–176. [Google Scholar]
- DeNiro, M.J.; Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 1978, 42, 495–506. [Google Scholar] [CrossRef]
- DeNiro, M.J.; Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 1981, 45, 341–351. [Google Scholar] [CrossRef]
- Chisholm, B.S.; Nelson, D.E.; Schwarcz, H.P. Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 1982, 216, 1131–1132. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.L.; DeNiro, M.J. Stable nitrogen and carbon isotope ratios in bone collagen as indices of prehistoric dietary dependence on marine and terrestrial resources in southern California. Am. J. Phys. Anthropol. 1986, 71, 51–61. [Google Scholar] [CrossRef]
- Schwarcz, H.P. Some biochemical aspects of carbon isotopic paleodiet studies. In Biogeochemical Approaches to Paleodietary Analysis; Springer: Berlin/Heidelberg, Germany, 2002; pp. 189–209. [Google Scholar]
- DeNiro, M.J. Stable isotopy and archaeology. Am. Sci. 1987, 75, 182–191. [Google Scholar]
- White, C.D.; Healy, P.F.; Schwarcz, H.P. Intensive agriculture, social status, and Maya diet at Pacbitun, Belize. J. Anthropol. Res. 1993, 49, 347–375. [Google Scholar] [CrossRef]
- Katzenberg, M.A.; Saunders, S.R.; Fitzgerald, W.R. Age differences in stable carbon and nitrogen isotope ratios in a population of prehistoric maize horticulturists. Am. J. Phys. Anthropol. 1993, 90, 267–281. [Google Scholar] [CrossRef]
- Privat, K.L.; O’connell, T.C.; Richards, M.P. Stable isotope analysis of human and faunal remains from the Anglo-Saxon cemetery at Berinsfield, Oxfordshire: Dietary and social implications. J. Archaeol. Sci. 2002, 29, 779–790. [Google Scholar] [CrossRef]
- Richards, M.; Hedges, R.E.; Molleson, T.; Vogel, J. Stable isotope analysis reveals variations in human diet at the Poundbury Camp cemetery site. J. Archaeol. Sci. 1998, 25, 1247–1252. [Google Scholar] [CrossRef]
- Ubelaker, D.H.; Katzenberg, M.A.; Doyon, L.G. Status and diet in precontact highland Ecuador. Am. J. Phys. Anthropol. 1995, 97, 403–411. [Google Scholar]
- Dotsika, E.; Michael, D.E. Using stable isotope technique in order to assess the dietary habits of a Roman population in Greece. J. Archaeol. Sci. Rep. 2018, 22, 470–481. [Google Scholar]
- Dotsika, E.; Michael, D.E.; Iliadis, E.; Karalis, P.; Diamantopoulos, G. Isotopic reconstruction of diet in Medieval Thebes (Greece). J. Archaeol. Sci. Rep. 2018, 22, 482–491. [Google Scholar] [CrossRef]
- Herring, D.; Saunders, S.R.; Katzenberg, M.A. Investigating the weaning process in past populations. Am. J. Phys. Anthropol. 1998, 105, 425–439. [Google Scholar] [CrossRef]
- Petroutsa, E.I.; Manolis, S.K. Reconstructing Late Bronze Age diet in mainland Greece using stable isotope analysis. J. Archaeol. Sci. 2010, 37, 614–620. [Google Scholar] [CrossRef]
- Papathanasiou, A.; Richards, M.P.; Fox, S.C. Archaeodiet in the Greek World: Dietary Reconstruction from Stable Isotope Analysis; American School of Classical Studies: Athens, Greece, 2015; Volume 49. [Google Scholar]
- Katzenberg, M.A.; Weber, A. Stable isotope ecology and palaeodiet in the Lake Baikal region of Siberia. J. Archaeol. Sci. 1999, 26, 651–659. [Google Scholar]
- Larsen, C.S.; Schoeninger, M.J.; Van der Merwe, N.J.; Moore, K.M.; Lee-Thorp, J.A. Carbon and nitrogen stable isotopic signatures of human dietary change in the Georgia Bight. Am. J. Phys. Anthropol. 1992, 89, 197–214. [Google Scholar] [CrossRef]
- Lillie, M.C.; Richards, M. Stable isotope analysis and dental evidence of diet at the Mesolithic–Neolithic transition in Ukraine. J. Archaeol. Sci. 2000, 27, 965–972. [Google Scholar] [CrossRef]
- Krueger, H.W.; Sullivan, C.H. Models for Carbon Isotope Fractionation between Diet and Bone; ACS Publications: Washington, DC, USA, 1984. [Google Scholar]
- Manolagas, S.C. Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev. 2000, 21, 115–137. [Google Scholar] [CrossRef]
- Smith, B.N.; Epstein, S. Two categories of 13C/12C ratios for higher plants. Plant Physiol. 1971, 47, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Van der Merwe, N.J. Carbon Isotopes, Photosynthesis, and Archaeology: Different pathways of photosynthesis cause characteristic changes in carbon isotope ratios that make possible the study of prehistoric human diets. Am. Sci. 1982, 70, 596–606. [Google Scholar]
- Lee-Thorp, J.A.; Sealy, J.C.; Van Der Merwe, N.J. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J. Archaeol. Sci. 1989, 16, 585–599. [Google Scholar] [CrossRef]
- Schwarcz, H.P.; Melbye, J.; Katzenberg, M.A.; Knyf, M. Stable isotopes in human skeletons of southern Ontario: Reconstructing palaeodiet. J. Archaeol. Sci. 1985, 12, 187–206. [Google Scholar] [CrossRef]
- Ambrose, S.H.; Norr, L. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In Prehistoric Human Bone; Springer: Berlin/Heidelberg, Germany, 1993; pp. 1–37. [Google Scholar]
- Reitsema, L.J. Beyond diet reconstruction: Stable isotope applications to human physiology, health, and nutrition. Am. J. Hum. Biol. 2013, 25, 445–456. [Google Scholar]
- Clementz, M.T.; Fox-Dobbs, K.; Wheatley, P.V.; Koch, P.L.; Doak, D.F. Revisiting old bones: Coupled carbon isotope analysis of bioapatite and collagen as an ecological and palaeoecological tool. Geol. J. 2009, 44, 605–620. [Google Scholar] [CrossRef]
- Keenleyside, A.; Schwarcz, H.; Panayotova, K. Stable isotopic evidence of diet in a Greek colonial population from the Black Sea. J. Archaeol. Sci. 2006, 33, 1205–1215. [Google Scholar]
- Prowse, T.; Schwarcz, H.P.; Saunders, S.; Macchiarelli, R.; Bondioli, L. Isotopic paleodiet studies of skeletons from the Imperial Roman-age cemetery of Isola Sacra, Rome, Italy. J. Archaeol. Sci. 2004, 31, 259–272. [Google Scholar] [CrossRef]
- Craig, O.E.; Biazzo, M.; O’Connell, T.C.; Garnsey, P.; Martinez-Labarga, C.; Lelli, R.; Salvadei, L.; Tartaglia, G.; Nava, A.; Renò, L. Stable isotopic evidence for diet at the Imperial Roman coastal site of Velia (1st and 2nd Centuries AD) in Southern Italy. Am. J. Phys. Anthropol. 2009, 139, 572–583. [Google Scholar]
- Prowse, T.L.; Schwarcz, H.P.; Saunders, S.R.; Macchiarelli, R.; Bondioli, L. Isotopic evidence for age-related variation in diet from Isola Sacra, Italy. Am. J. Phys. Anthropol. 2005, 128, 2–13. [Google Scholar] [CrossRef]
- Schwarcz, H.P.; Schoeninger, M.J. Stable isotope analyses in human nutritional ecology. Am. J. Phys. Anthropol. 1991, 34, 283–321. [Google Scholar]
- Reed, D.M. Cuisine from Hun-Nal-Ye. In Reconstructing Ancient Maya Diet; University of Utah Press: Salt Lake, UT, USA, 1999; pp. 183–196. [Google Scholar]
- Ambrose, S.H. Isotopic analysis of palaeodiets: Methodological and interpretive consideration. In Investigation of Ancient Human Tissue; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Schoeninger, M.J.; DeNiro, M.J. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta 1984, 48, 625–639. [Google Scholar] [CrossRef]
- Lubell, D.; Jackes, M.; Schwarcz, H.; Knyf, M.; Meiklejohn, C. The Mesolithic-Neolithic transition in Portugal: Isotopic and dental evidence of diet. J. Archaeol. Sci. 1994, 21, 201–216. [Google Scholar] [CrossRef]
- White, C.D. Dietary dental pathology and cultural change in the Maya. In Strength in Diversity; Worcester Historical Museum: Worcester, MA, USA, 1994; pp. 279–302. [Google Scholar]
- Bocherens, H.; Grupe, G.; Mariotti, A.; Turban-Just, S. Molecular preservation and isotopy of Mesolithic human finds from the Ofnet cave (Bavaria, Germany). Anthropol. Anz. 1997, 55, 121–129. [Google Scholar]
- Drucker, D.; Bocherens, H.; Bridault, A.; Billiou, D. Carbon and nitrogen isotopic composition of red deer (Cervus elaphus) collagen as a tool for tracking palaeoenvironmental change during the Late-Glacial and Early Holocene in the northern Jura (France). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 195, 375–388. [Google Scholar]
- Wada, E.; Kadonaga, T.; Matsuo, S. 15N abundance in nitrogen of naturally occurring substances and global assessment of denitrification from isotopic viewpoint. Geochem. J. 1975, 9, 139–148. [Google Scholar]
- Cheng, H.; Bremner, J.; Edwards, A. Variations of nitrogen-15 abundance in soils. Science 1964, 146, 1574–1575. [Google Scholar]
- Mariotti, A.; Pierre, D.; Vedy, J.; Bruckert, S.; Guillemot, J. The abundance of natural nitrogen 15 in the organic matter of soils along an altitudinal gradient (Chablais, Haute Savoie, France). Catena 1980, 7, 293–300. [Google Scholar] [CrossRef]
- Hansen, J. Palaeoethnobotany and palaeodiet in the Aegean region: Notes on legume toxicity and related pathologies. In Palaeodiet in the Aegean; Oxbow: Oxford, UK, 2000; pp. 13–27. [Google Scholar]
- Tyree, E.L. Using phytoliths to identify plant remains from archaeological sites: A phytolith analysis of modern olive oil and wine sediment. In Palaeodiet in the Aegean (Wiener Laboratory Monograph); Oxbow: Oxford, UK, 1999; Volume 1, pp. 29–36. [Google Scholar]
- Lev-Tov, J. The influences of religion, social structure and ethnicity on diet: An example from Frankish Corinth. In Palaeodiet in the Aegean; Oxbow: Oxford, UK, 1999; pp. 85–98. [Google Scholar]
- Triantaphyllou, S. A Bioarchaeological Approach to Prehistoric Cemetery Populations from Central and Western Greek Macedonia; British Archaeological Reports Limited: Oxford, UK, 2001; Volume 976. [Google Scholar]
- Triantaphyllou, S.; Richards, M.P.; Touchais, G.; Philippa-Touchais, A.; Voutsaki, S. Analyses of Middle Helladic Skeletal Material from Aspis, Argos, 2. Stable Isotope Analysis of Human Remains. Bull. Corresp. Hellénique 2006, 130, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Triantaphyllou, S.; Richards, M.P.; Zerner, C.; Voutsaki, S. Isotopic dietary reconstruction of humans from Middle Bronze age Lerna, Argolid, Greece. J. Archaeol. Sci. 2008, 35, 3028–3034. [Google Scholar] [CrossRef]
- Papathanasiou, A. Health, diet and social implications in Neolithic Greece from the study of human osteological material. In Human Bioarchaeology of the Transition to Agriculture; Wiley-Blackwell: Chichester, UK, 2011; pp. 87–106. [Google Scholar]
- Halstead, P. Land use in postglacial Greece: Cultural causes and environmental effects. In Landscape and Land Use in Postglacial Greece; Sheffield Academic Press: Sheffield, UK, 2000; Volume 3, pp. 110–130. [Google Scholar]
- Halstead, P. Between a rock and a hard place: Coping with marginal colonisation in the later Neolithic and early Bronze Age of Crete and the Aegean. In Escaping the Labyrinth: The Cretan Neolithic in Context; Oxbow Books: Oxford, UK, 2008; pp. 229–257. [Google Scholar]
- Bonsall, C.; Lennon, R.; McSweeney, K.; Stewart, C.; Harkness, D.; Boroneanţ, V.; Bartosiewicz, L.; Payton, R.; Chapman, J. Mesolithic and Early Neolithic in the Iron Gates: A palaeodietary perspective. J. Eur. Archaeol. 1997, 5, 50–92. [Google Scholar] [CrossRef]
- Bocherens, H.; Tresset, A.; Wiedemann, F.; Giligny, F.; Lafage, F.; Lanchon, Y.; Mariotti, A. Diagenetic evolution of mammal bones in two French Neolithic sites. Bull. Soc. Geol. Fr. 1997, 168, 555–564. [Google Scholar]
- Garnsey, P. Food and Society in Classical Antiquity; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Papathanasiou, A. Stable isotope analysis in Neolithic Greece and possible implications on human health. Int. J. Osteoarchaeol. 2003, 13, 314–324. [Google Scholar]
- Papathanasiou, A. A Bioarchaeological Analysis of Neolithic Alepotrypa Cave, Greece; British Archaeological Reports Ltd.: Oxford, UK, 2001; Volume 961. [Google Scholar]
- Kontopoulos, I.; Sampson, A. Prehistoric diet on the island of Euboea, Greece: An isotopic investigation. Mediterr. Archaeol. Archaeom. 2015, 15, 97–111. [Google Scholar]
- Petroutsa, E.I. An Investigation in the Nuitrition of Bronze Age Poplulations in Greece. Ph.D. Thesis, Biology Department, National University of Athens, Athens, Greece, 2007. (In Greek). [Google Scholar]
- Petroutsa, E.I.; Richards, M.P.; Manolis, S.K. Stable isotope analysis of human remains from the Early Helladic site of Perachora, Korinth, Greece. In Cooking Up the Past; Oxbow: Oxford, UK, 2007; pp. 290–296. [Google Scholar]
- Ingvarsson-Sundström, A.; Richards, M.P.; Voutsaki, S. Stable isotope analysis of the Middle Helladic population from two cemeteries at Asine: Barbouna and the east cemetery. Mediterr. Archaeol. Archaeom. 2009, 9, 1–14. [Google Scholar]
- Lagia, A.; Petroutsa, E.; Manolis, S. Health and Diet During the MBA in the Peloponnese: The site of Kouphovouno. In Cooking Up the Past: Food and Culinary Practices in the Neolithic and Bronze Age Aegean; Renard, E.J., Ed.; Oxbow Books Limited: Oxford, UK, 2007; pp. 313–328. [Google Scholar]
- Vika, E. From Diet to Society: Stable Isotope Analysis and Its Cultural Context in Bronze Age Peloponnese, Greece. Ph.D. Dissertation, University of Bradford, Bradford, UK, 2002. [Google Scholar]
- Petroutsa, E.I.; Richards, M.P.; Kolonas, L.; Manolis, S.K. Isotope Paleodietary Analysis of Humans and Fauna from the Late Bronze Age Site of Voudeni. Hesperia Suppl. 2009, 43, 237–243. [Google Scholar]
- Vika, E.; Theodoropoulou, T. Re-investigating fish consumption in Greek antiquity: Results from δ13C and δ15N analysis from fish bone collagen. J. Archaeol. Sci. 2012, 39, 1618–1627. [Google Scholar] [CrossRef]
- Stergiou, K.I.; Karpouzi, V.S. Feeding habits and trophic levels of Mediterranean fish. Rev. Fish Biol. Fish. 2002, 11, 217–254. [Google Scholar] [CrossRef]
- Ambrose, S.H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 1990, 17, 431–451. [Google Scholar] [CrossRef]
- Tykot, R.H. Stable isotopes and diet: You are what you eat. Available online: http://luna.cas.usf.edu/~rtykot/PR39%20-%20Enrico%20Fermi%20isotopes.pdf (accessed on 10 February 2019).
- Van Klinken, G.J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 1999, 26, 687–695. [Google Scholar] [CrossRef]
- DeNiro, M.J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 1985, 317, 806–809. [Google Scholar] [CrossRef]
- Suess, H.E. The radioactivity of the atmosphere and hydrosphere. Annu. Rev. Nucl. Sci. 1958, 8, 243–256. [Google Scholar] [CrossRef]
- O’Connell, T.C.; Hedges, R.E.; Healey, M.; Simpson, A. Isotopic comparison of hair, nail and bone: Modern analyses. J. Archaeol. Sci. 2001, 28, 1247–1255. [Google Scholar] [CrossRef]
- Richards, M.P.; Hedges, R.E. Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic coast of Europe. J. Archaeol. Sci. 1999, 26, 717–722. [Google Scholar]
- Bocherens, H.; Polet, C.; Toussaint, M. Palaeodiet of Mesolithic and Neolithic populations of Meuse Basin (Belgium): Evidence from stable isotopes. J. Archaeol. Sci. 2007, 34, 10–27. [Google Scholar] [CrossRef]
- Goude, G.; Fontugne, M. Carbon and nitrogen isotopic variability in bone collagen during the Neolithic period: Influence of environmental factors and diet. J. Archaeol. Sci. 2016, 70, 117–131. [Google Scholar] [CrossRef]
- Milner, N.; Craig, O.E.; Bailey, G.N.; Pedersen, K.; Andersen, S.H. Something fishy in the Neolithic? A re-evaluation of stable isotope analysis of Mesolithic and Neolithic coastal populations. Antiquity 2004, 78, 9–22. [Google Scholar] [CrossRef]
- Polet, C.; Katzenberg, M.A. Reconstruction of the diet in a mediaeval monastic community from the coast of Belgium. J. Archaeol. Sci. 2003, 30, 525–533. [Google Scholar]
- Tauber, H. 13C evidence for dietary habits of prehistoric man in Denmark. Nature 1981, 292, 332–333. [Google Scholar] [CrossRef] [PubMed]
Site | Period | Key Bibliographic Conclusions | Bibliography |
---|---|---|---|
Theopetra | E.Neolithic | Primarily a C3 terrestrial diet. Very little of the dietary protein had a marine origin | [58] |
Fragthi | E.Neolithic | Primarily a C3 terrestrial diet. More significant amounts of meat and dairy products, and possibly marine foods. | [58] |
Alepotrypa | L.Neolithic | Poor diet based mainly on C3 terrestrial resources with insignificant consumption of marine resources | [58,59] |
Kouveleiki | L.Neolithic | Primarily a C3 terrestrial diet. Very little of the dietary protein had a marine origin | [58] |
Tharrounia | L.Neolithic | Terrestrial C3 plants and some consumption of animal protein (i.e. meat and/or milk produce). | [60] |
Kefalas | L.Neolithic | Primarily a C3 terrestrial diet. More significant amounts of meat and dairy products, and possibly marine foods. | [58] |
Manika | EBA | C3 and few fish, consuming animal products (meat and/or milk) in high amounts | [60,61] |
Perachora | EBA | Mix of terrestrial and marine resources, partial C4 | [61,62] |
Asine | MBA | C3 (meat, milk, dairy products) | [63] |
Argos | MBA | Homogenous C3 terrestrial diet | [50,61] |
Koufovouno | MBA | C3 resource consumption, ranging from wheat and legumes to dairy products and meat. | [61,64] |
Korinos | LBA | Homogenous C3 terrestrial diet | [49] |
Rymnio | LBA | Homogenous C3 terrestrial diet | [49] |
Spathes | LBA | Homogenous C3 terrestrial diet | [49] |
Pineiada | LBA | Partial C4, C3 (meat, milk, dairy products) | [61] |
Voudeni | LBA | C3 plants and or animals and milk. No significant consumption of marine source | [17,61,65,66] |
Kalapodi | LBA | C3 (meat, milk, dairy products) | [17,61] |
Zeli | LBA | C3 (meat, milk, dairy products) | [17,61] |
Ag. Triada | LBA | Partial C4, C3 (meat, milk, dairy products) | [17,61] |
Kritika | LBA | C3 (meat, milk, dairy products) | [61] |
Almyri | LBA | Partial C4, C3 (meat, milk, dairy products) | [17,61] |
Trianta | LBA | C3 (meat, milk, dairy products) | [61] |
Gender | Location | Coordinates | δ13C | δ15N |
---|---|---|---|---|
male | Naxos-Damarionas | 37.05, 25.47 | −21.0 | 9.0 |
male | Naxos-Damarionas | 37.05, 25.47 | −20.4 | 8.5 |
female | Naxos-Damarionas | 37.05, 25.47 | −21.1 | 9.3 |
female | Naxos-Damarionas | 37.05, 25.47 | −21.8 | 9.4 |
female | Imathia-Alexandria | 40.62, 22.44 | −20.1 | 9.3 |
male | Imathia-Alexandria | 40.62, 22.44 | −20.5 | 8.6 |
male | Corinthia-Manna | 37.98, 22.51 | −21.2 | 7.6 |
female | Corinthia-Manna | 37.98, 22.51 | −21.9 | 7.6 |
male | Corinthia-Kamari | 38.09, 22.57 | −21.1 | 8.8 |
male | Arta | 39.15, 20.98 | −21.6 | 9.0 |
female | Xios | 38.38, 26.04 | −20.1 | 9.5 |
female | Amfilochia-Stanos | 38.80, 21.17 | −20.1 | 8.9 |
female | Messenia-Kopanaki | 37.28, 21.81 | −21.7 | 8.4 |
male | Messenia-Kopanaki | 37.28, 21.81 | −22.0 | 7.8 |
male | Messenia-Kopanaki | 37.28, 21.81 | −21.7 | 7.7 |
female | Messenia-Kopanaki | 37.28, 21.81 | −21.7 | 8.5 |
female | Messenia-Manesis | 37.08, 21.89 | −20.7 | 8.0 |
female | Messenia-Avramiou | 37.67, 21.46 | −20.5 | 8.4 |
female | Halkidiki-Polygyros | 40.37, 23.44 | −20.2 | 8.7 |
male | Halkidiki-Polygyros | 40.37, 23.44 | −20.8 | 8.9 |
female | Aetolia-Acarnania Chrisovitsa | 38.57, 21.70 | −21.8 | 8.1 |
male | Kavala-Mirtofito | 40.82, 24.19 | −21.3 | 8.2 |
female | Attiki-Athens | 37.98, 23.73 | −21.2 | 9.3 |
Herbivore | δ13C | δ15N | Location | Lat. | Lon. | C/N | Collagen Yield (mg/g) | |
Sheep, Ovis aries | −20.9 | 5.2 | Domestic | Karditsa | 39.37 | 21.93 | 3.00 | 190 |
Sheep, Ovis aries | −20.1 | 5.8 | Domestic | Heraklion | 35.34 | 25.14 | 3.12 | 191 |
Sheep, Ovis aries | −20.9 | 5.3 | Domestic | Heraklion | 35.34 | 25.14 | 3.19 | 187 |
Sheep, Ovis aries | −21.3 | 5.1 | Domestic | Heraklion | 35.34 | 25.14 | 3.17 | 192 |
Sheep, Ovis aries | −20.7 | 4.1 | Domestic | Kozani | 40.18 | 21.47 | 3.15 | 189 |
Sheep, Ovis aries | −20.6 | 6.3 | Domestic | Karditsa | 39.37 | 21.93 | 3.20 | 190 |
Sheep, Ovis aries | −20.7 | 6.4 | Domestic | Karditsa | 39.37 | 21.93 | 2.97 | 188 |
Sheep, Ovis aries | −20.4 | 6.3 | Domestic | Karditsa | 39.37 | 21.93 | 3.11 | 189 |
Sheep, Ovis aries | −20.6 | 6.2 | Domestic | Heraklion | 35.34 | 25.14 | 3.15 | 191 |
Sheep, Ovis aries | −20.6 | 6.3 | Domestic | Heraklion | 35.34 | 25.14 | 3.21 | 192 |
Sheep, Ovis aries | −20.3 | 6.3 | Domestic | Heraklion | 35.34 | 25.14 | 3.19 | 190 |
Sheep, Ovis aries | −20.4 | 6.4 | Domestic | Heraklion | 35.34 | 25.14 | 2.99 | 187 |
Sheep, Ovis aries | −23.6 | 4.1 | Domestic | Sparti | 37.08 | 22.43 | 3.00 | 189 |
Sheep, Ovis aries | −24.0 | 4.5 | Domestic | Sparti | 37.08 | 22.43 | 3.13 | 186 |
Sheep, Ovis aries | −23.9 | 5.1 | Domestic | Sparti | 37.08 | 22.43 | 3.08 | 191 |
Sheep, Ovis aries | −22.8 | 5.1 | Domestic | Sparti | 37.08 | 22.43 | 3.09 | 188 |
Sheep, Ovis aries | −23.3 | 4.7 | Domestic | Sparti | 37.08 | 22.43 | 3.14 | 191 |
Sheep, Ovis aries | −21.3 | 6.4 | Domestic | Chalkidiki | 40.51 | 23.63 | 3.18 | 189 |
Sheep, Ovis aries | −21.5 | 5.6 | Domestic | Chalkidiki | 40.51 | 23.63 | 3.04 | 190 |
Tortoise, Testudinidae | −23.4 | 6.1 | Wild | Kozani | 40.18 | 21.47 | 3.19 | 189 |
Hare, Lepus sp. | −21.8 | 5.8 | Wild | Karditsa | 39.37 | 21.93 | 3.21 | 181 |
Rabbit, Oryctolagus cuniculus | −23.5 | 3.9 | Domestic | Karditsa | 39.37 | 21.93 | 3.15 | 179 |
Wild boar, Sus scrofa | −19.9 | 4.9 | Wild | Karditsa | 39.37 | 21.93 | 3.21 | 220 |
Wild boar, Sus scrofa | −19.4 | 5.1 | Wild | Karditsa | 39.37 | 21.93 | 3.15 | 222 |
Wild boar, Sus scrofa | −19.6 | 5.3 | Wild | Karditsa | 39.37 | 21.93 | 3.02 | 224 |
Pig, Sus scrofa domesticus | −19.5 | 4.3 | Domestic | Karditsa | 39.37 | 21.93 | 2.95 | 230 |
Pig, Sus scrofa domesticus | −20.5 | 4.4 | Domestic | Karditsa | 39.37 | 21.93 | 2.99 | 221 |
Pig, Sus scrofa domesticus | −20.5 | 5.1 | Domestic | Kozani | 40.18 | 21.47 | 3.05 | 225 |
Pig, Sus scrofa domesticus | −19.5 | 4.3 | Domestic | Chalkidiki | 40.51 | 23.63 | 3.10 | 226 |
Pig, Sus scrofa domesticus | −20.5 | 4.4 | Domestic | Chalkidiki | 40.51 | 23.63 | 3.11 | 229 |
Pig, Sus scrofa domesticus | −20.1 | 4.1 | Domestic | Chalkidiki | 40.51 | 23.63 | 3.08 | 222 |
Pig, Sus scrofa domesticus | −23.1 | 3.0 | Domestic | Sparti | 37.08 | 22.43 | 3.19 | 224 |
Pig, Sus scrofa domesticus | −24.1 | 2.8 | Domestic | Sparti | 37.08 | 22.43 | 3.21 | 223 |
Pig, Sus scrofa domesticus | −23.6 | 2.6 | Domestic | Sparti | 37.08 | 22.43 | 3.07 | 229 |
Pig, Sus scrofa domesticus | −23.8 | 2.9 | Domestic | Sparti | 37.08 | 22.43 | 3.04 | 228 |
Cow, Bos taurus | −21.5 | 5.1 | Domestic | Karditsa | 39.37 | 21.93 | 2.80 | 181 |
Cow, Bos taurus | −21.4 | 5.1 | Domestic | Attiki | 37.92 | 23.86 | 2.81 | 190 |
Cow, Bos taurus | −20.9 | 4.8 | Domestic | Attiki | 37.92 | 23.86 | 2.80 | 185 |
Cow, Bos taurus | −21.2 | 5.3 | Domestic | Attiki | 37.92 | 23.86 | 2.79 | 187 |
Cow, Bos taurus | −23.2 | 3.7 | Domestic | Sparti | 37.08 | 22.43 | 2.82 | 188 |
Cow, Bos taurus | −23.0 | 3.3 | Domestic | Sparti | 37.08 | 22.43 | 2.81 | 184 |
Cow, Bos taurus | −22.9 | 3.5 | Domestic | Sparti | 37.08 | 22.43 | 2.82 | 189 |
Cow, Bos taurus | −21.7 | 5.2 | Domestic | Karditsa | 39.37 | 21.93 | 2.81 | 191 |
Cow, Bos taurus | −21.4 | 5.6 | Domestic | Karditsa | 39.37 | 21.93 | 2.79 | 183 |
Cow, Bos taurus | −21.6 | 4.9 | Domestic | Karditsa | 39.37 | 21.93 | 2.79 | 181 |
Cow, Bos taurus | −21.3 | 5.1 | Domestic | Karditsa | 39.37 | 21.93 | 2.80 | 185 |
Cow, Bos taurus | −21.4 | 5.8 | Domestic | Karditsa | 39.37 | 21.93 | 2.81 | 186 |
Cow, Bos taurus | −21.2 | 5.1 | Domestic | Karditsa | 39.37 | 21.93 | 2.82 | 182 |
Calf, Bos taurus | −19.2 | 9.9 | Domestic | Karditsa | 39.37 | 21.93 | 2.80 | 189 |
Horse, Equus caballus | −21.4 | 2.6 | Domestic | Karditsa | 39.37 | 21.93 | 2.99 | 171 |
Horse, Equus caballus | −20.3 | 4.5 | Domestic | Kozani | 40.18 | 21.47 | 2.95 | 169 |
Horse, Equus caballus | −18.8 | 4.2 | Domestic | Kozani | 40.18 | 21.47 | 3.05 | 173 |
Deer, Capreolus capreolus | −19.4 | 3.1 | Wild | Kozani | 40.18 | 21.47 | 3.06 | 195 |
Deer, Capreolus capreolus | −19.8 | 3.4 | Wild | Kozani | 40.18 | 21.47 | 3.11 | 198 |
Carnivore | δ13C | δ15N | ||||||
Bear, Ursus Arctos | −20.4 | 5.2 | Wild | Kozani | 40.18 | 21.47 | 3.15 | 176 |
Bear, Ursus Arctos | −20.2 | 6.6 | Wild | Kozani | 40.18 | 21.47 | 3.19 | 180 |
Bear, Ursus Arctos | −20.2 | 6.9 | Wild | Kozani | 40.18 | 21.47 | 3.01 | 177 |
Bear, Ursus Arctos | −19.8 | 8.7 | Wild | Kozani | 40.18 | 21.47 | 3.00 | 181 |
Bear, Ursus Arctos | −21.2 | 5.8 | Wild | Kozani | 40.18 | 21.47 | 3.10 | 179 |
Bear, Ursus Arctos | −20.6 | 6.4 | Wild | Kozani | 40.18 | 21.47 | 3.07 | 176 |
Wolf, Canis lupus | −18.5 | 10.2 | Wild | Kozani | 40.18 | 21.47 | 2.99 | 200 |
Wolf, Canis lupus | −17.0 | 10.0 | Wild | Kozani | 40.18 | 21.47 | 2.95 | 202 |
Marine low | δ13C | δ15N | ||||||
Anchovy, Engraulis encrasicolus | −17.6 | 6.2 | Free−range | |||||
Anchovy, Engraulis encrasicolus | −18.0 | 9.4 | Free−range | |||||
Anchovy, Engraulis encrasicolus | −17.4 | 9.1 | Free−range | |||||
Sardene, Sardina Pilchardus | −17.1 | 6.3 | Free−range | |||||
Sardene, Sardina Pilchardus | −19.0 | 9.0 | Free−range | |||||
Sardene, Sardina Pilchardus | −18.1 | 7.3 | Free−range | |||||
Sardene, Sardina Pilchardus | −18.5 | 8.2 | Free−range | |||||
Mussel, Mytilus galloprovincialis | −21.4 | 5.3 | Free−range | |||||
Mussel, Mytilus galloprovincialis | −20.3 | 4.7 | Free−range | |||||
Bogue, Boops boops | −16.4 | 10.6 | Free−range | |||||
Bogue, Boops boops | −18.5 | 11.2 | Free−range | |||||
Anchovy, Engraulis encrasicolus in olive oil | −24.3 | 13.0 | Free−range | |||||
Marine high | δ13C | δ15N | ||||||
Sargus, Dilplodus sargus | −18.2 | 11.7 | Free−range | |||||
Sargus, Dilplodus sargus | −17.1 | 11.5 | Free−range | |||||
Gilt−head bream, Sparus aurata | −17.5 | 11.7 | Fish−farm | |||||
Gilt−head bream, Sparus aurata | −18.1 | 11.3 | Fish−farm | |||||
Gilt−head bream, Sparus aurata | −13.9 | 6.4 | Free−range | |||||
Mullet, Mugil Cephalus | −13.8 | 7.3 | Free−range | |||||
Sole, Solea vulgaris | −18.1 | 12.4 | Free−range | |||||
Red porgy, Pagrus Pagrus | −18.0 | 11.5 | Fish−farm | |||||
Sea bass, Dicentrarchus labrax | −17.9 | 11.7 | Fish−farm | |||||
Sea bass, Dicentrarchus labrax | −18.0 | 10.0 | Fish−farm | |||||
Chub mackerel, Scomber japonicus | −17.8 | 10.5 | Free−range | |||||
Sand smelt, Atherina boyeri | −19.8 | 11.1 | Free−range | |||||
Sand smelt, Atherina boyeri | −18.0 | 10.7 | Free−range | |||||
Grouper, Epinephelus aeneus | −19.0 | 13.3 | Free−range | |||||
Red mullet, Mullus barbatus barbatus | −19.7 | 8.4 | Free−range | |||||
Red scorpionfish, Scorpaena scrofa | −16.2 | 10.4 | Free−range | |||||
Octopus, Octοpus vulgaris | −16.8 | 11.1 | Free−range | |||||
Octopus, Octοpus vulgaris | −18.2 | 11.3 | Free−range | |||||
Octopus, Octοpus vulgaris | −16.9 | 10.9 | Free−range | |||||
Bonito, Euthynnus pelamis in olive oil | −26.2 | 12.0 | Free−range | |||||
Freshwater Fish | δ13C | δ15N | ||||||
Trout, Salmo trutta | −25.2 | 8.4 | Free−range | |||||
Trout, Salmo trutta | −23.4 | 8.0 | Free−range | |||||
Trout, Salmo trutta | −24.2 | 7.8 | Free−range | |||||
Carp, Ciprinidi sp. | −19.8 | 7.5 | Free−range | |||||
Carp, Ciprinidi sp. | −18.7 | 8.1 | Free−range | |||||
Common carp, Cyprinus carpio | −23.5 | 12.1 | Free−range | |||||
Common carp, Cyprinus carpio | −23.9 | 13.3 | Free−range | |||||
Common carp, Cyprinus carpio | −24.4 | 13.1 | Free−range | |||||
Birds | δ13C | δ15N | ||||||
Chicken, Gallus gallus domesticus | −21.8 | 6.4 | Domestic | Kozani | 40.18 | 21.47 | ||
Duck, Anas platyrhynchos | −15.5 | 7.5 | Domestic | Kozani | 40.18 | 21.47 | ||
Duck, Anas platyrhynchos | −22.7 | 12.0 | Free−range | Kozani | 40.18 | 21.47 | ||
Duckling, Anas platyrhynchos | −26.0 | 8.0 | Domestic | Kozani | 40.18 | 21.47 | ||
Goose, Anserini sp. | −18.1 | 9.1 | Domestic | Kozani | 40.18 | 21.47 |
C3 Plants | δ13C | δ15N | Location | Lat. | Lon. |
Chios gum, Pistacia lentiscus | −23.7 | 6.1 | Chios Isl. | 38.26 | 25.97 |
Chios gum, Pistacia lentiscus | −23.8 | 6.2 | Chios Isl | 38.26 | 25.97 |
Propolis | −28.7 | 7.0 | Attika | 38.17 | 23.85 |
Propolis | −28.6 | 7.2 | Attika | 38.17 | 23.85 |
Tomato, Solanum lycopersicum | −28.7 | 7.3 | Ilia | 37.84 | 21.28 |
Tomato, Solanum lycopersicum | −27.9 | 8.3 | Ilia, organic cultivation | 37.84 | 21.28 |
Orange, Citrus sinensis | −24.8 | 6.4 | Heraklion, Crete | 35.33 | 25.14 |
Orange, Citrus sinensis | −24.9 | 6.3 | Heraklion, Crete | 35.33 | 25.14 |
Orange, Citrus sinensis | −25.9 | 5.2 | Sparti | 37.07 | 22.43 |
Orange, Citrus sinensis | −25.9 | 5.0 | Sparti | 37.07 | 22.43 |
Orange, Citrus sinensis | −26.1 | 4.8 | Sparti | 37.07 | 22.43 |
Orange, Citrus sinensis | −25.2 | 5.5 | Sparti | 37.07 | 22.43 |
Orange, Citrus sinensis | −25.8 | 4.2 | Peloponissos, Kiato | 38.01 | 22.75 |
Orange, Citrus sinensis | −26.1 | 2.1 | Peloponissos, Kiato | 38.01 | 22.75 |
Orange, Citrus sinensis | −26.8 | 1.9 | Peloponissos, Kiato | 38.01 | 22.75 |
Peach, Prunus persica | −26.1 | 2.0 | Peloponissos, Kiato | 38.01 | 22.75 |
Peach, Prunus persica | −25.9 | 1.9 | Peloponissos, Kiato | 38.01 | 22.75 |
Peach, Prunus persica | −25.5 | 1.3 | Peloponissos, Kiato | 38.01 | 22.75 |
Peach, Prunus persica | −25.4 | 2.2 | Peloponissos, Kiato | 38.01 | 22.75 |
Peach, Prunus persica | −26.7 | 1.4 | Naousa | 40.63 | 22.07 |
Peach, Prunus persica | −26.6 | 0.2 | Naousa | 40.63 | 22.07 |
Peach, Prunus persica | −25.8 | −1.1 | Naousa | 40.63 | 22.07 |
Grape, Vitis venifera | −26.2 | 3.8 | Amynteo | 40.69 | 21.68 |
Grape, Vitis venifera | −25.3 | 3.6 | Nemea | 37.82 | 22.66 |
Honey | −25.1 | 1.8 | Chalkidiki | 40.42 | 23.50 |
Honey | −24.9 | 1.8 | Vitina, Arkadia | 37.67 | 22.18 |
Honey | −25.9 | 1.6 | Sparti | 37.07 | 22.43 |
Honey | −26.0 | 1.6 | Sparti | 37.07 | 22.43 |
Honey | −25.6 | 1.8 | Sparti | 37.07 | 22.43 |
Honey | −26.1 | 2.0 | Sparti | 37.07 | 22.43 |
Honey | −26.1 | 2.1 | Kithira | 36.24 | 22.99 |
Honey | −26.3 | 2.1 | Kithira | 36.24 | 22.99 |
Honey | −27.0 | 1.9 | Kithira | 36.24 | 22.99 |
Honey | −25.4 | 1.3 | Attiki | 37.98 | 23.73 |
Chestnut, Castanea sativa | −27.4 | 2.4 | Domnista | 38.58 | 21.85 |
Chestnut, Castanea sativa | −27.2 | 2.0 | Domnista | 38.58 | 21.85 |
Chestnut, Castanea sativa | −27.1 | 1.6 | Domnista | 38.58 | 21.85 |
Chestnut, Castanea sativa | −27.0 | 1.7 | Domnista | 38.58 | 21.85 |
Chestnut, Castanea sativa | −27.3 | 2.1 | Domnista | 38.58 | 21.85 |
Chestnut, Castanea sativa | −27.3 | 3.7 | Domnista | 38.58 | 21.85 |
Chestnut, Castanea sativa | −26.9 | 3.9 | Domnista | 38.58 | 21.85 |
Cercis | −27.4 | 3.3 | Parnitha | 38.13 | 23.81 |
Cercis | −27.3 | 3.4 | Parnitha | 38.13 | 23.81 |
Cercis | −27.5 | 3.5 | Parnitha | 38.13 | 23.81 |
Cercis | −27.3 | 2.6 | Parnitha | 38.13 | 23.81 |
Cercis | −27.6 | 3.0 | Parnitha | 38.13 | 23.81 |
Cercis | −27.2 | 3.2 | Parnitha | 38.13 | 23.81 |
Plane tree, Plataneus orientalis | −30.1 | 2.1 | Parnitha | 38.13 | 23.81 |
Plane tree, Plataneus orientalis | −29.1 | 2.3 | Parnitha | 38.13 | 23.81 |
Plane tree, Plataneus orientalis | −28.9 | 2.4 | Parnitha | 38.13 | 23.81 |
Plane tree, Plataneus orientalis | −28.9 | 2.2 | Parnitha | 38.13 | 23.81 |
Plane tree, Plataneus orientalis | −26.4 | 3.8 | Parnitha | 38.13 | 23.81 |
Plane tree, Plataneus orientalis | −28.2 | 2.8 | Parnitha | 38.13 | 23.81 |
Plane tree, Plataneus orientalis | −27.8 | 2.5 | Parnitha | 38.13 | 23.81 |
Pine tree, Pinus Pinea | −28.8 | 10.6 | Parnitha | 38.13 | 23.81 |
Pine tree, Pinus Pinea | −28.5 | 11.0 | Parnitha | 38.13 | 23.81 |
Pine tree, Pinus Pinea | −29.1 | 9.8 | Parnitha | 38.13 | 23.81 |
Oak, Quercus sp. | −28.2 | 0.0 | Domnista | 38.58 | 21.85 |
Oak, Quercus sp. | −28.7 | 0.1 | Domnista | 38.58 | 21.85 |
Oak, Quercus sp. | −28.5 | 0.6 | Domnista | 38.58 | 21.85 |
Oak, Quercus sp. | −28.5 | 0.5 | Domnista | 38.58 | 21.85 |
Oak, Quercus sp. | −28.0 | 0.7 | Domnista | 38.58 | 21.85 |
Oak, Quercus sp. | −28.3 | 0.4 | Domnista | 38.58 | 21.85 |
Mallow tree, Malva sylvestris | −29.1 | 8.4 | Parnitha | 38.13 | 23.81 |
Mallow tree, Malva sylvestris | −28.7 | 7.9 | Parnitha | 38.13 | 23.81 |
Mallow tree, Malva sylvestris | −29.3 | 8.8 | Parnitha | 38.13 | 23.81 |
Olive tree, Olea europea | −26.5 | 7.4 | Parnitha | 38.13 | 23.81 |
Olive tree, Olea europea | −26.3 | 7.1 | Parnitha | 38.13 | 23.81 |
Olive tree, Olea europea | −25.9 | 6.8 | Parnitha | 38.13 | 23.81 |
Chios gum, Pistacia lentiscus | −28.5 | 9.4 | Parnitha | 38.13 | 23.81 |
Walnut tree, Juglans regia | −28.4 | 1.3 | Karpenisi | 38.92 | 21.78 |
Walnut tree, Juglans regia | −28.0 | 2.1 | Karpenisi | 38.92 | 21.78 |
Hazel tree, Corylus avellava | −27.7 | 1.1 | Karpenisi | 38.92 | 21.78 |
Hazel tree, Corylus avellava | −28.1 | 1.7 | Karpenisi | 38.92 | 21.78 |
Crocus, Crocus sativus | −26.1 | 1.3 | Kozani | 40.30 | 21.79 |
Crocus, Crocus sativus | −26.3 | 1.2 | Kozani | 40.30 | 21.79 |
Crocus, Crocus sativus | −25.9 | 1.2 | Kozani | 40.30 | 21.79 |
Crocus, Crocus sativus | −25.9 | 1.5 | Kozani | 40.30 | 21.79 |
Crocus, Crocus sativus | −25,7 | 1.1 | Kozani | 40.30 | 21.79 |
Crocus, Crocus sativus | −26.2 | 1.6 | Kozani | 40.30 | 21.79 |
Spruce, Picea abies | −30.2 | 3.4 | Attiki | 37.98 | 23.73 |
Pine tree, Pinus Pinea | −27.1 | 3.7 | Attiki | 37.98 | 23.73 |
Pine tree, Pinus Pinea | −24.7 | −4.5 | Meteora | 39.71 | 21.63 |
Olive tree, Olea europea | −28.1 | −4.5 | Criti, Irakleio | 35.33 | 25.07 |
Olive tree, Olea europea | −28.6 | −4.3 | Criti, Irakleio | 35.33 | 25.07 |
Olive tree, Olea europea | −27.4 | −4.1 | Criti, Irakleio | 35.33 | 25.07 |
Olive tree, Olea europea | −28.3 | −4.2 | Criti, Irakleio | 35.33 | 25.07 |
Olive tree, Olea europea | −28.2 | −4.0 | Criti, Irakleio | 35.33 | 25.07 |
Olive tree, Olea europea | −28.4 | 2.1 | Criti, Chania | 35.52 | 24.02 |
Olive tree, Olea europea | −28.3 | 2.2 | Criti, Chania | 35.52 | 24.02 |
Olive tree, Olea europea | −29.7 | 4.3 | Analipsi, Messinia | 37.02 | 21.97 |
Olive tree, Olea europea | −29.3 | 3.4 | Analipsi, Messinia | 37.02 | 21.97 |
Olive tree, Olea europea | −30.1 | 1.2 | Vasilada, Messinia | 37.09 | 21.94 |
Olive tree, Olea europea | −29.2 | 1.1 | Velika, Messinia | 37.01 | 21.93 |
Olive tree, Olea europea | −28.9 | 1.7 | Diodia, Messinia | 37.08 | 21.86 |
Olive tree, Olea europea | −28.8 | 2.6 | Lykotrafos, Messinia | 37.05 | 21.95 |
Olive tree, Olea europea | −29.3 | 2.1 | Lykotrafos, Messinia | 37.05 | 21.95 |
Olive tree, Olea europea | −29.4 | 1.1 | Madena, Messinia | 37.04 | 21.96 |
Olive tree, Olea europea | −29,4 | 2.8 | Neochori, Messinia | 37.03 | 21.92 |
Olive tree, Olea europea | −29.9 | −0.2 | Neochori, Messinia | 37.03 | 21.92 |
Olive tree, Olea europea | −28.6 | 4.1 | Pilalistra, Messinia | 37.07 | 21.97 |
Olive tree, Olea europea | −29.8 | 4.0 | Polylofos, Messinia | 37.09 | 21.91 |
Olive tree, Olea europea | −29.7 | −1.2 | Strefi, Messinia | 37.05 | 21.89 |
Olive tree, Olea europea | −29,5 | 4.3 | Avramio, Messinia | 37.03 | 22.03 |
Olive tree, Olea europea | −28.7 | 3.5 | Avramio, Messinia | 37.03 | 22.03 |
Olive tree, Olea europea | −29.1 | 1.1 | Avramio, Messinia | 37.03 | 22.03 |
Olive tree, Olea europea | −29.6 | 3.2 | Messini, Messinia | 37.05 | 22.01 |
Olive tree, Olea europea | −26.9 | −1.5 | Nemea | 37.82 | 22.66 |
Olive tree, Olea europea | −25.3 | −1.0 | Nemea | 37.82 | 22.66 |
Olive tree, Olea europea | −26.9 | −1.1 | Nemea | 37.82 | 22.66 |
Olive tree, Olea europea | −26.7 | −1.2 | Nemea | 37.82 | 22.66 |
Olive tree, Olea europea | −26.3 | −1.2 | Nemea | 37.82 | 22.66 |
Olive tree, Olea europea | −26.6 | −1.5 | Nemea | 37.82 | 22.66 |
Olive tree, Olea europea | −26.7 | −1.5 | Nemea | 37.82 | 22.66 |
Wheat, Triticum dicoccum | −25.3 | 2.3 | Phthiotis | 38.90 | 22.53 |
Wheat, Triticum dicoccum | −24.0 | 3.0 | Phthiotis | 38.90 | 22.53 |
Rye, Secale cereale | −24.2 | 3.4 | Phthiotis | 38.90 | 22.53 |
Oat, Avena sativa | −28.6 | 2.6 | Phthiotis | 38.90 | 22.53 |
Chickpea, Cicer arietinum L. | −25.2 | 2.9 | Phthiotis | 38.90 | 22.53 |
Linen, Linum sp. | −27.8 | 5.8 | Phthiotis | 38.90 | 22.53 |
Grass pea, Lathyrus sativus L. | −24.6 | 1.3 | Phthiotis | 38.90 | 22.53 |
Lentil, Lens culinaris | −24.7 | 2.0 | Phthiotis | 38.90 | 22.53 |
Mung bean, Vigna radiata | −20.7 | 0.1 | Phthiotis | 38.90 | 22.53 |
Green Bean, Phaseolus vulgaris | −25.8 | 2.3 | Phthiotis | 38.90 | 22.53 |
C4 Plants | δ13C | δ15N | Lat. | Lon. | |
Zea mays | −12.2 | 4.0 | Macedonia, Ptolemaida | 40.51 | 21.68 |
Corn, Zea mays | −13.1 | 5.0 | Macedonia | 40.75 | 22.90 |
Corn, Zea mays | −12.8 | 5.2 | Macedonia | 40.75 | 22.90 |
Corn, Zea mays | −13.8 | 6.1 | Macedonia | 40.75 | 22.90 |
Corn, Zea mays | −12.8 | 5.6 | Macedonia | 40.75 | 22.90 |
Corn, Zea mays | −12.9 | 5.2 | Macedonia | 40.75 | 22.90 |
Corn, Zea mays | −13.2 | 5.3 | Macedonia | 40.75 | 22.90 |
Corn, Zea mays | −13.6 | 6.0 | Macedonia | 40.75 | 22.90 |
Corn, Zea mays | −12.8 | 5.9 | Macedonia | 40.75 | 22.90 |
Mosses, Bryophyta | −12.1 | 8.2 | Kechries, Corinth | 37.88 | 22.99 |
Mosses, Bryophyta | −10.0 | 5.5 | Pidna | 40.39 | 22.56 |
Mosses, Bryophyta | −12.2 | 4.9 | Anavissos | 37.73 | 23.94 |
Mosses, Bryophyta | −12.0 | 11.5 | Agathoupoli | 40.46 | 22.58 |
δ13C (Human Bone) | Neolithic (Early/Late) | EBA | MBA | LBA | Recent |
#marine low diet | - | - | - | - | −13.4 * |
C3 plant diet | −20.3/−20.1 | −20.0 | −20.1 | −20.1 | −21.5 |
Carnivore diet | −19.3/−19.1 | −19.0 | −19.1 | −19.1 | −20.5 |
marine high diet | −12.4/−12.4 | −11.0 ** | −9.6 | −17.3 | −12.4 * |
δ15N (Human Bone) | Neolithic | EBA | MBA | LBA | Recent |
#marine low diet | - | - | - | - | 10.9 * |
C3 plant diet | 5.3 | 5.8 | 4.5 | 4.7 | 5.0 |
Carnivore diet | 7.7 | 8.8 | 7.5 | 7.7 | 8.0 |
marine high diet | 11.0 | 11.0 ** | 11.0 | 10.7 | 13.5 * |
δ13C ‰ | Early Neolithic | Late Neolithic | EBA | MBA | LBA |
Terrestrial | −21.9 to −18.0 | −21.7 to −17.3 | −20.7 to −19.5 | −21.2 to −19.1 | −23.2 to −16.9 |
Marine | - | −14.7 to −9.3 | - | −12.0 to −9.2 | −16.5 to −10.1 |
δ15N ‰ | Early Neolithic | Late Neolithic | EBA | MBA | LBA |
Terrestrial | 6.8 to 3.8 | 8.5 to 3.2 | 7.5 to 3.4 | 5.8 to 3.4 | 7.1 to 3.4 |
Marine | - | 9.2 to 3.6 | - | 9.2 to 6.8 | 11.6 to 6.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dotsika, E.; Diamantopoulos, G.; Lykoudis, S.; Gougoura, S.; Kranioti, E.; Karalis, P.; Michael, D.; Samartzidou, E.; Palaigeorgiou, E. Establishment of a Greek Food Database for Palaeodiet Reconstruction: Case Study of Human and Fauna Remains from Neolithic to Late Bronze Age from Greece. Geosciences 2019, 9, 165. https://doi.org/10.3390/geosciences9040165
Dotsika E, Diamantopoulos G, Lykoudis S, Gougoura S, Kranioti E, Karalis P, Michael D, Samartzidou E, Palaigeorgiou E. Establishment of a Greek Food Database for Palaeodiet Reconstruction: Case Study of Human and Fauna Remains from Neolithic to Late Bronze Age from Greece. Geosciences. 2019; 9(4):165. https://doi.org/10.3390/geosciences9040165
Chicago/Turabian StyleDotsika, Elissavet, Georgios Diamantopoulos, Spyridon Lykoudis, Sofia Gougoura, Elena Kranioti, Petros Karalis, Dimitra Michael, Eleni Samartzidou, and Emmanouil Palaigeorgiou. 2019. "Establishment of a Greek Food Database for Palaeodiet Reconstruction: Case Study of Human and Fauna Remains from Neolithic to Late Bronze Age from Greece" Geosciences 9, no. 4: 165. https://doi.org/10.3390/geosciences9040165
APA StyleDotsika, E., Diamantopoulos, G., Lykoudis, S., Gougoura, S., Kranioti, E., Karalis, P., Michael, D., Samartzidou, E., & Palaigeorgiou, E. (2019). Establishment of a Greek Food Database for Palaeodiet Reconstruction: Case Study of Human and Fauna Remains from Neolithic to Late Bronze Age from Greece. Geosciences, 9(4), 165. https://doi.org/10.3390/geosciences9040165