Spatial and Temporal Variations in the Incidence of Dust Storms in Saudi Arabia Revealed from In Situ Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dust Storm and Climate Variable Data
2.2.1. Monthly Dust Storm Observations
2.2.2. Climate Variable Data
2.3. Statistical Analysis
3. Results
3.1. Inter-Annual Variation of Dust Storms
3.2. Spatio-Temporal Variability Analysis of Dust Storms in Saudi Arabia
3.3. Regional Differences in Seasonality of Dust Storms
3.4. Seasonal Variations across All Stations
3.5. Spatio-Temporal Variations in Wind Speed and Direction
4. Discussion
4.1. Inter-Annual Variation of Dust Storms
4.2. Spatio-Temporal Variability Analysis of Dust Storms in Saudi Arabia
4.3. Regional Differences in Seasonality of Dust Storms
4.4. Seasonal Variations across All Stations
4.4.1. The Relationship between Dust Storms and Temperature
4.4.2. The Relationship between Dust Storms and Precipitation
4.4.3. The Relationship between Dust Storms and Wind Speed
4.5. Spatio-Temporal Variations in Wind Speed and Direction
4.6. Large-Scale Trends and Drivers
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goudie, A.S.; Middleton, N.J. Saharan dust storms: Nature and consequences. Earth-Sci. Rev. 2001, 56, 179–204. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Hou, Q.; Zhou, C.H.; Liu, H.L.; Wang, Y.Q.; Niu, T. Sand/dust storm processes in Northeast Asia and associated large-scale circulations. Atmos. Chem. Phys. 2008, 8, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Rezazadeh, M.; Irannejad, P.; Shao, Y. Climatology of the Middle East dust events. Aeolian Res. 2013, 10, 103–109. [Google Scholar] [CrossRef]
- Knippertz, P.; Deutscher, C.; Kandler, K.; Müller, T.; Schulz, O.; Schütz, L. Dust mobilization due to density currents in the Atlas region: Observations from the Saharan Mineral Dust Experiment 2006 field campaign. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.D.; Kuciauskas, A.P.; Liu, M.; Ji, Q.; Reid, J.S.; Breed, D.W.; Walker, A.L.; Mandoos, A.A. Haboob dust storms of the southern Arabian Peninsula. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Pye, K. Aeolian Dust and Dust Deposits; Elsevier, Academic Press: London, UK, 2015; p. 334. [Google Scholar]
- Furman, H.K.H. Dust storms in the Middle East: Sources of origin and their temporal characteristics. Indoor Built Environ. 2003, 12, 419–426. [Google Scholar] [CrossRef]
- Washington, R.; Todd, M.; Middleton, N.J.; Goudie, A.S. Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations. Ann. Assoc. Am. Geogr. 2003, 93, 297–313. [Google Scholar] [CrossRef]
- Barnum, B.H.; Winstead, N.S.; Wesely, J.; Hakola, A.; Colarco, P.R.; Toon, O.B.; Ginoux, P.; Brooks, G.; Hasselbarth, L.; Toth, B. Forecasting dust storms using the CARMA-dust model and MM5 weather data. Environ. Model. Softw. 2004, 19, 129–140. [Google Scholar] [CrossRef]
- Prospero, J.M.; Bullard, J.E.; Hodgkins, R. High-latitude dust over the North Atlantic: Inputs from Icelandic proglacial dust storms. Science 2012, 335, 1078–1082. [Google Scholar] [CrossRef]
- Luo, C.; Mahowald, N.; Jones, C. Temporal variability of dust mobilization and concentration in source regions. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Al-Sanad, H.A.; Ismael, N.F.; Nayfeh, A.J. Geotechnical properties of dune sands in Kuwait. Eng. Geol. 1993, 34, 45–52. [Google Scholar] [CrossRef]
- Edgell, H.S. Arabian Deserts: Nature, Origin and Evolution; Springer Science & Business Media: Dordrecht, The Netherlands, 2006; pp. 201–238. [Google Scholar]
- Al-Bassam, A.M.; Zaidi, F.K.; Hussein, M.T. Natural hazards in Saudi Arabia: Extreme Natural Events, Disaster Risks and Societal Implications. In An Introduction to Signal Detection and Estimation; Poor, H., Ed.; Springer: New York, NY, USA, 2014; Chapter 4; pp. 243–251. [Google Scholar]
- Shepherd, G.; Terradellas, E.; Baklanov, A.; Kang, U.; Sprigg, W.; Nickovic, S.; Boloorani, A.D.; Al-Dousari, A.; Basart, S.; Benedetti, A.; et al. Global Assessment of Sand and Dust Storms; United Nations Environment Programme: Nairobi, Kenya, 2016. [Google Scholar]
- Glennie, K.W.; Singhvi, A.K. Event stratigraphy, paleoenvironment and chronology of SE Arabian deserts. Quat. Sci. Rev. 2002, 21, 853–869. [Google Scholar] [CrossRef]
- Rao, P.G.; Hatwar, H.R.; Al-Sulaiti, M.H.; Al-Mulla, A.H. Summer shamals over the Arabian Gulf. Weather 2003, 58, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, K.S. Dust Storm Forecasting for Al Udeid AB, Qatar: An Empirical Analysis. Master’s Thesis, Department of Engineering Physics, Air Force Institute of Technology, Air University, Islamabad, Pakistan, 2004. [Google Scholar]
- Babikir, A.A.A. Some aspects of climate and economic activities in the Arab Gulf States. GeoJournal 1986, 13, 211–222. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.G.; Sepehr, A. Statistical evaluation of the dust events at selected stations in Southwest Asia: From the Caspian Sea to the Arabian Sea. Catena 2018, 165, 590–603. [Google Scholar] [CrossRef]
- Orlovsky, L.; Orlovsky, N.; Durdyev, A. Dust storms in Turkmenistan. J. Arid Environ. 2005, 60, 83–97. [Google Scholar] [CrossRef]
- Awad, A.M.; Mashat, A.W.S. Synoptic characteristics of spring dust days over northern Saudi Arabia. Air Qual. Atmos. Health 2016, 9, 41–50. [Google Scholar] [CrossRef]
- Mashat, A.W.S.; Alamoudi, A.O.; Awad, A.M.; Assiri, M.E. Seasonal variability and synoptic characteristics of dust cases over southwestern Saudi Arabia. Int. J. Climatol. 2018, 38, 105–124. [Google Scholar] [CrossRef]
- Rashki, A.; Arjmand, M.; Kaskaoutis, D.G. Assessment of dust activity and dust-plume pathways over Jazmurian Basin, southeast Iran. Aeolian Res. 2017, 24, 145–160. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.G.; Mofidi, A.; Minvielle, F.; Chiapello, I.; Legrand, M.; Dumka, U.C.; Francois, P. Effects of Monsoon, Shamal and Levar winds on dust accumulation over the Arabian Sea during summer—The July 2016 case. Aeolian Res. 2019, 36, 27–44. [Google Scholar] [CrossRef]
- Goudie, A.S.; Middleton, N.J. The changing frequency of dust storms through time. Clim. Chang. 1992, 20, 197–225. [Google Scholar] [CrossRef]
- Goudie, A.S. Dust storms: Recent developments. J. Environ. Manag. 2009, 90, 89–94. [Google Scholar] [CrossRef]
- Bastan, M.; Abdollahi, F.; Shokoufi, K. Analysis of Iran’s dust emission with system dynamics methodology. Tech. J. Eng. Appl. Sci. 2013, 3, 3515–3524. [Google Scholar]
- Pirsaheb, M.; Zinatizadeh, A.; Khosravi, T.; Atafar, Z.; Dezfulinezhad, S. Natural Airborne Dust and Heavy Metals: A Case Study for Kermanshah, Western Iran (2005–2011). Iran. J. Public Health 2014, 43, 460. [Google Scholar]
- Cao, H.; Amiraslani, F.; Liu, J.; Zhou, N. Identification of dust storm source areas in West Asia using multiple environmental datasets. Sci. Total Environ. 2015, 502, 224–235. [Google Scholar] [CrossRef]
- Notaro, M.; Yu, Y.; Kalashnikova, O.V. Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought. J. Geophys. Res. Atmos. 2015, 120. [Google Scholar] [CrossRef]
- Mohammad, M.S.A. Dust Storm Phenomena and Their Environmental Impacts in Kuwait. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 1989. [Google Scholar]
- Zhang, X.Y.; Gong, S.L.; Zhao, T.L.; Arimoto, R.; Wang, Y.Q.; Zhou, Z.J. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Akbary, M.; Farahbakhshi, M. Analyzing and Tracing of Dust Hazard in Recent Years in Kermanshah Province. Int. J. Environ. Res. 2015, 9, 673–682. [Google Scholar]
- Notaro, M.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Trajectory analysis of Saudi Arabian dust storms. J. Geophys. Res. Atmos. 2013, 118, 6028–6043. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Notaro, M.; Liu, Z.; Kalashnikova, O.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Assessing temporal and spatial variations in atmospheric dust over Saudi Arabia through satellite, radiometric, and station data. J. Geophys. Res. Atmos. 2013, 118. [Google Scholar] [CrossRef]
- Albugami, S.; Palmer, S.; Meersmans, J.; Waine, T. Evaluating MODIS Dust-Detection Indices over the Arabian Peninsula. Remote Sens. 2018, 10, 1993. [Google Scholar] [CrossRef]
- Yu, Y.; Notaro, M.; Liu, Z.; Wang, F.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Climatic controls on the interannual to decadal variability in Saudi Arabian dust activity: Toward the development of a seasonal dust prediction model. J. Geophys. Res. Atmos. 2015, 120, 1739–1758. [Google Scholar] [CrossRef] [Green Version]
- Zahran, M.A. Introduction to Plant Ecology and Vegetation Types of Saudi Arabia; King Abdul Aziz University Press: Jeddah, Saudi Arabia, 1983. [Google Scholar]
- Alaamer, A.S. Measurement of natural radioactivity in sand samples collected from Ad-Dahna desert in Saudi Arabia. World J. Nuclear Sci. Technol. 2012, 2, 187. [Google Scholar] [CrossRef]
- Puthan Purakkal, J.; Kalenderski, S.; Stenchikov, G.L. Simulation of the Radiative Impact of High Dust Loading during a Dust Storm in March 2012. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2013. [Google Scholar]
- De Pauw, E. An Agroecological Exploration of the Arabian Peninsula; ICARDA: Aleppo, Syria, 2002. [Google Scholar]
- Kamel, M.; Böer, B.; Michael, C.; Brook, Z.A.; Clüsener-Godt, M.; Wadid, S. Policy Perspectives for Ecosystem and Water Management in the Arabia Peninsula; UNESCO, Doha & United Nations University: Hamilton, ON, USA, 2006; Chapter 1; pp. 1–16. [Google Scholar]
- Goyal, M.R.; Harmsen, E.W. (Eds.) Evapotranspiration: Principles and Applications for Water Management; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- McKinney, W. Pandas: A foundational Python library for data analysis and statistics. In Proceedings of the Python for High Performance and Scientific Computing, Tsukuba, Japan, 1–3 June 2011; p. 14. [Google Scholar]
- Samanta, S.; Pal, D.K.; Lohar, D.; Pal, B. Interpolation of climate variables and temperature modeling. Theor. Appl. Climatol. 2012, 107, 35–45. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). International Codes—Volume, I.1 Part A: Alphanumeric Codes; Secretariat of the World Meteorological Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Mahringer, G. Terminal aerodrome forecast verification in Austro Control using time windows and ranges of forecast conditions. Meteorol. Appl. 2008, 15, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, A.; Katsafados, P. Verification of operational weather forecasts from the POSEIDON system across the Eastern Mediterranean. Nat. Hazards Earth Syst. Sci. 2009, 9, 1299–1306. [Google Scholar] [CrossRef] [Green Version]
- Rao, C.R.; Rao, C.R.; Statistiker, M.; Rao, C.R.; Rao, C.R. Linear Statistical Inference and Its Applications; Wiley: New York, NY, USA, 1973; Volume 2, pp. 263–270. [Google Scholar]
- Alharbi, B.H.; Maghrabi, A.; Tapper, N. The March 2009 dust event in Saudi Arabia: Precursor and supportive environment. Bull. Am. Meteorol. Soc. 2013, 94, 515–528. [Google Scholar] [CrossRef]
- Nabavi, S.O.; Haimberger, L.; Samimi, C. Climatology of dust distribution over West Asia from homogenized remote sensing data. Aeolian Res. 2016, 21, 93–107. [Google Scholar] [CrossRef] [Green Version]
- Mashat, A. Study of Dust Storms over Yanbu City. J. King Abdulaziz Univ. Meteorol. Environ. Arid Land Agric. Sci. 2011, 22. [Google Scholar] [CrossRef]
- Hasanean, H.; Almazroui, M. Rainfall: Features and variations over Saudi Arabia, a review. Climate 2015, 3, 578–626. [Google Scholar] [CrossRef]
- Littmann, T. Dust storm frequency in Asia: Climatic control and variability. Int. J. Climatol. 1991, 11, 393–412. [Google Scholar] [CrossRef]
- McTainsh, G.H.; Lynch, A.W.; Tews, E.K. Climatic controls upon dust storm occurrence in eastern Australia. J. Arid Environ. 1998, 39, 457–466. [Google Scholar] [CrossRef]
- Qian, W.; Quan, L.; Shi, S. Variations of the dust storm in China and its climatic control. J. Clim. 2002, 15, 1216–1229. [Google Scholar] [CrossRef]
- Maley, J. Dust, clouds, rain types, and climatic variations in tropical North Africa. Quat. Res. 1982, 18, 1–16. [Google Scholar] [CrossRef]
- Goudie, A.S. Dust storms in space and time. Prog. Phys. Geogr. 1983, 7, 502–530. [Google Scholar] [CrossRef]
- Middleton, N.J. Dust storms in the Middle East. J. Arid Environ. 1986, 10, 83–96. [Google Scholar] [CrossRef]
- Giuggio, V.M. How Dust Storms Work. 2012. Available online: http://science.howstuffwoks.com/nature/climate-wheather/storms/dust-storm1.htm (accessed on 28 March 2019).
- Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M.R.; Djurdjevic, V.; Dacic, M.; Prasad, A.K.; El-Askary, H.M.; Paris, B.C.; et al. Numerical simulation of “An American Haboob”. Atmos. Chem. Phys. Discuss. 2013, 13, 26175–26215. [Google Scholar] [CrossRef]
- Zender, C.S.; Kwon, E.Y. Regional contrasts in dust emission responses to climate. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Namdari, S.; Karimi, N.; Sorooshian, A.; Mohammadi, G.; Sehatkashani, S. Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos. Environ. 2018, 173, 265–276. [Google Scholar] [CrossRef]
- Yang, B.; Bräuning, A.; Zhang, Z.; Dong, Z.; Esper, J. Dust storm frequency and its relation to climate changes in Northern China during the past 1000 years. Atmos. Environ. 2007, 41, 9288–9299. [Google Scholar] [CrossRef]
- Unescap.org. Sand and Dust Storms in Asia and the Pacific: Opportunities for Regional Cooperation and Action|United Nations ESCAP. 2018. Available online: https://www.unescap.org/resources/sand-and-dust-storms-asia-and-pacific-opportunities-regional-cooperation-and-action (accessed on 28 March 2019).
- Aili, A.; Oanh, N.T.K.; Abuduwaili, J. Variation Trends of Dust Storms in Relation to Meteorological Conditions and Anthropogenic Impacts in the Northeast Edge of the Taklimakan Desert, China. Open J. Air Pollut. 2016, 5, 127. [Google Scholar] [CrossRef]
- Membery, D.A. Low level wind profiles during the Gulf Shamal. Weather 1983, 38, 18–24. [Google Scholar] [CrossRef]
- Middleton, N.J. A geography of dust storms in South-west Asia. Int. J. Climatol. 1986, 6, 183–196. [Google Scholar] [CrossRef]
- Shao, Y. A model for mineral dust emission. J. Geophys. Res. Atmos. 2001, 106, 20239–20254. [Google Scholar] [CrossRef] [Green Version]
- Goudie, A.S.; Middleton, N.J. Desert Dust in the Global System; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Al Senafi, F.; Anis, A. Shamals and climate variability in the Northern Arabian/Persian Gulf from 1973 to 2012. Int. J. Climatol. 2015, 35, 4509–4528. [Google Scholar] [CrossRef] [Green Version]
- Doronzo, D.M.; Khalaf, E.A.; Dellino, P.; de Tullio, M.D.; Dioguardi, F.; Gurioli, L.; Mele, D.; Pascazio, G.; Sulpizio, R. Local impact of dust storms around a suburban building in arid and semi-arid regions: Numerical simulation examples from Dubai and Riyadh, Arabian Peninsula. Arab. J. Geosci. 2015, 8, 7359–7369. [Google Scholar] [CrossRef]
- Alqurashi, A.F.; Kumar, L. Land use and land cover change detection in the Saudi Arabian desert cities of Makkah and Al-Taif using satellite data. Adv. Remote. Sens. 2014, 3, 106–119. [Google Scholar] [CrossRef]
- Rahman, M.T. Detection of land use/land cover changes and urban sprawl in Al-Khobar, Saudi Arabia: An analysis of multi-temporal remote sensing data. ISPRS Int. J. GeoInf. 2016, 5, 15. [Google Scholar] [CrossRef]
- Solomos, S.; Ansmann, A.; Mamouri, R.H.; Binietoglou, I.; Patlakas, P.; Marinou, E.; Amiridis, V. Remotesensing and modelling analysis of the extreme dust storm hitting the Middle East and eastern Mediterranean in September 2015. Atmos. Chem. Phys. 2017, 17, 4063–4079. [Google Scholar] [CrossRef]
- Al-Dousari, A.; Doronzo, D.; Ahmed, M. Types, Indications and Impact Evaluation of Sand and Dust Storms Trajectories in the Arabian Gulf. Sustainability 2017, 9, 1526. [Google Scholar] [CrossRef]
- Du, M.; Yonemura, S.; Den, H.; Shen, Z.; Shen, Y. Relationship between the climate change and dust storm occurrence in China. J. Arid Land Stud. 2009, 19, 149–152. [Google Scholar]
- Parolari, A.J.; Li, D.; Bou-Zeid, E.; Katul, G.G.; Assouline, S. Climate, not conflict, explains extreme Middle East dust storm. Environ. Res. Lett. 2016, 11, 114013. [Google Scholar] [CrossRef] [Green Version]
- Rousta, I.; Doostkamian, M.; Taherian, A.; Haghighi, E.; Ghafarian Malamiri, H.; Ólafsson, H. Investigation of the spatio-temporal variations in atmosphere thickness pattern of iran and the middle east with special focus on precipitation in Iran. Climate 2017, 5, 82. [Google Scholar] [CrossRef]
Station | Parameter | Significance Level | ||
---|---|---|---|---|
Value | Uncertainty | |||
Turaif | 0.1083 | 0.1323 | ||
Arar | 0.3249 | 0.2358 | ||
Al-Qurayyat | 0.055 | 0.1579 | ||
Al Jouf | 0.3763 | 0.2368 | ||
Rafha | 0.1696 | 0.274 | ||
Hail | −0.3944 | 0.1094 | *** | |
Qaisumah | −1.1019 | 0.419 | *** | |
Hafar Al-Batin | −0.8023 | 0.407 | ** | |
Al-Ahsa | 1.7066 | 0.7068 | ** | |
Riyadh | 0.0225 | 0.1675 | ||
Al Qassim | −0.3583 | 0.1551 | ** | |
Wadi ad-Dawasir | −0.2355 | 0.1924 | ||
Jeddah | 0.3745 | 0.1031 | *** | |
Yanbu | 0.0237 | 0.2589 | ||
Jizan | 0.2364 | 0.2665 | ||
Sharorah | 0.0823 | 0.1455 | ||
Najran | −0.0252 | 0.1055 | ||
Bisha | −0.1525 | 0.0898 | ||
Level of Significance | ||||
Color Code | p < 0.10 | p < 0.05 | p < 0.01 | |
Increase over time | Positive | * | ** | *** |
Decrease over time | Negative | * | ** | *** |
Stations | Precipitation | Temperature | Wind Speed |
---|---|---|---|
Overall | 0.490 | 0.236 | 0.686 ** |
Riyadh | 0.529 ** | 0.195 | 0.490 |
Jeddah | 0.195 | −0.548 ** | 0.262 |
Hail | 0.511 ** | 0.066 | 0.751 ** |
Al-Qassem | 0.298 | 0.128 | 0.748 ** |
Jizan | 0.236 | 0.693 ** | 0.546 ** |
Yanbu | −0.696 ** | 0.686 ** | 0.842 ** |
Al-Jouf | 0.257 | −0.280 | 0.408 |
Bisha | 0.740 ** | 0.189 | 0.338 |
Turaif | 0.276 | −0.125 | 0.499 ** |
Hafr Al-Batin | 0.104 | 0.018 | 0.799 ** |
Arar | 0.314 | 0.094 | 0.322 |
Rafha | 0.223 | 0.109 | 0.756 ** |
Najran | 0.805 ** | 0.140 | 0.173 |
Al Qurrayat | 0.277 | −0.110 | −0.023 |
Sharurah | 0.506 ** | 0.317 | 0.705 ** |
Al-Ahsa | 0.300 | 0.003 | 0.772 ** |
Wadi ad-Dawasir | 0.894 ** | 0.096 | 0.461 |
Al-Qaysumah | −0.038 | 0.284 | 0.697 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albugami, S.; Palmer, S.; Cinnamon, J.; Meersmans, J. Spatial and Temporal Variations in the Incidence of Dust Storms in Saudi Arabia Revealed from In Situ Observations. Geosciences 2019, 9, 162. https://doi.org/10.3390/geosciences9040162
Albugami S, Palmer S, Cinnamon J, Meersmans J. Spatial and Temporal Variations in the Incidence of Dust Storms in Saudi Arabia Revealed from In Situ Observations. Geosciences. 2019; 9(4):162. https://doi.org/10.3390/geosciences9040162
Chicago/Turabian StyleAlbugami, Sarah, Steven Palmer, Jonathan Cinnamon, and Jeroen Meersmans. 2019. "Spatial and Temporal Variations in the Incidence of Dust Storms in Saudi Arabia Revealed from In Situ Observations" Geosciences 9, no. 4: 162. https://doi.org/10.3390/geosciences9040162
APA StyleAlbugami, S., Palmer, S., Cinnamon, J., & Meersmans, J. (2019). Spatial and Temporal Variations in the Incidence of Dust Storms in Saudi Arabia Revealed from In Situ Observations. Geosciences, 9(4), 162. https://doi.org/10.3390/geosciences9040162