Molecular and Isotopic Composition of Hydrate-Bound, Dissolved and Free Gases in the Amazon Deep-Sea Fan and Slope Sediments, Brazil
Abstract
:1. Introduction
2. Study Area and Geological Setting
3. Samples and Methods
4. Results and Discussion
4.1. Amazon Fan
4.2. Northwest Continental Slope Area
4.3. Alteration of Hydrocarbon Gas
4.3.1. Mixing of Several Gas Sources
4.3.2. Anaerobic Oxidation of Methane
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arning, E.T.; van Berk, W.; Vaz dos Santos Neto, E.; Naumann, R.; Schulz, H.M. The quantification of methane formation in Amazon Fan sediments (ODP Leg 155, Site 938) by hydrogeochemical modeling solid—Aqueous solution—Gas interactions. J. S. Am. Earth Sci. 2013, 42, 205–215. [Google Scholar] [CrossRef]
- Sun, X.; Sun, C.; Xiang, J.; Jia, J.; Li, P.; Zhang, Z. Acidolysis hydrocarbon characteristics and significance of sediment samples from the ODP drilling legs of gas hydrate. Geosci. Front. 2012, 3, 515–521. [Google Scholar] [CrossRef] [Green Version]
- Boswell, R.; Collett, T.S. Current perspectives on gas hydrate resources. Energy Environ. Sci. 2011, 4, 1206–1215. [Google Scholar] [CrossRef]
- Chong, Z.R.; Hern, S.; Yang, B.; Babu, P.; Linga, P.; Li, X. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy 2016, 162, 1633–1652. [Google Scholar] [CrossRef]
- Makogon, Y.F. Natural gas hydrates—A promising source of energy. J. Nat. Gas Sci. Eng. 2010, 2, 49–59. [Google Scholar] [CrossRef]
- Archer, D. Methane hydrate stability and anthropogenic climate change. Biogeosci. Discuss. 2007, 4, 993–1057. [Google Scholar] [CrossRef]
- Archer, D.; Buffett, B.; Brovkin, V. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc. Natl. Acad. Sci. USA 2009, 106, 20596–20601. [Google Scholar] [CrossRef]
- Sultan, N.; Cochonat, P.; Foucher, J.P.; Mienert, J. Effect of gas hydrates melting on seafloor slope instability. Mar. Geol. 2004, 213, 379–401. [Google Scholar] [CrossRef]
- Reeburgh, W. Oceanic methane biogeochemistry. Am. Chem. Soc. 2007, 107, 486–513. [Google Scholar] [CrossRef]
- Hunter, S.J.; Goldobin, D.S.; Haywood, A.M.; Ridgwell, A.; Rees, J.G. Sensitivity of the global submarine hydrate inventory to scenarios of future climate change. Earth Planet. Sci. Lett. 2013, 367, 105e115. [Google Scholar] [CrossRef]
- Ribeiro, I.O.; de Souza, R.A.F.; Andreoli, R.V.; Kayano, M.T.; Costa, P. dos S. Spatiotemporal variability of methane over the Amazon from satellite observations. Adv. Atmos. Sci. 2016, 33, 852–864. [Google Scholar] [CrossRef]
- Dickens, G.R.; Castillo, M.M.; Walker, J.C.G. A blast of gas in the latest Paleo-cene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 1997, 25, 259e262. [Google Scholar] [CrossRef]
- Miller, D.J.; Ketzer, J.M.; Viana, A.R.; Kowsmann, R.O.; Freire, A.F.M.; Oreiro, S.G.; Augustin, A.H.; Lourega, R.V.; Rodrigues, L.F.; Heemann, R.; et al. Natural gas hydrates in the Rio Grande Cone (Brazil): A new province in the western South Atlantic. Mar. Pet. Geol. 2015, 67, 187–196. [Google Scholar] [CrossRef]
- Giongo, A.; Haag, T.; Simão, T.L.L.; Medina-Silva, R.; Utz, L.R.P.; Bogo, M.R.; Bonatto, S.L.; Zamberlan, P.M.; Augustin, A.H.; Lourega, R.V.; et al. Discovery of a chemosynthesis-based community in the western South Atlantic Ocean. Deep Res. Part I Oceanogr. Res. Pap. 2016, 112, 45–56. [Google Scholar] [CrossRef]
- Medina-Silva, R.; Oliveira, R.R.; Trindade, F.J.; Borges, L.G.A.; Lopes, S.T.; Augustin, A.H.; Valdez, F.P.; Constant, M.J.; Simundi, C.L.; Eizirik, E.; et al. Microbiota associated with tubes of Escarpia sp. from cold seeps in the southwestern Atlantic Ocean constitutes a community distinct from that of surrounding marine sediment and water. Antonie Van Leeuwenhoek 2018, 111, 533–550. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.F.; Ketzer, J.M.; Lourega, R.V.; Augustin, A.H.; Sbrissa, G.; Miller, D.; Heemann, R.; Viana, A.; Freire, A.F.M.; Morad, S. The influence of methane fluxes on the sulfate/methane interface in sediments from the Rio Grande Cone Gas Hydrate Province, Southern Brazil. Braz. J. Geol. 2017, 47, 369–381. [Google Scholar] [CrossRef]
- Rodrigues, L.F.; Macario, K.D.; Anjos, R.M.; Ketzer, J.M.M.; Augustin, A.H.; Moreira, V.N.; dos Santos, V.H.J.M.; Muniz, M.C.; Cardoso, R.P.; Viana, A.R.; et al. Origin of organic matter in hydrate-bearing sediments of the Rio Grande Cone: Evidence from TOC, TN, δ13C and 14C isotopes. In Proceedings of the 9th International Conference on Gas Hydrates, Denver, CO, USA, 25–30 June 2017. [Google Scholar]
- Flood, R.D.; Piper, D.J.W.; Klaus, A.; Burns, S.J.; Busch, W.H.; Cisowski, S.M.; Cramp, A.; Damuth, J.E.; Goñi, M.A.; Haberle, S.G.; et al. Proceedings of the Ocean Drilling Program, Scientific Results; Texas A & M University, Ocean Drilling Program: College Station, TX, USA, 1995; Volume 155, p. 695. ISSN 0884-5891. [Google Scholar]
- Hinrichs, K.-U.; Rullkotter, J. Terrigenous and marine lipids in Amazon Fan sediments: Implications for sedimentological reconstructions. Proc. Ocean Drill. Progr. Sci. Res. 1997, 155, 539–553. [Google Scholar] [CrossRef]
- Pirmez, C.; Flood, R.D.; Baptiste, J.; Yin, H.; Manley, P.L. Clay content, porosity and velocity of Amazon Fan sediments determined from ODP Leg 155 cores and wireline logs. Geophys. Res. Lett. 1997, 24, 317–320. [Google Scholar] [CrossRef]
- Ketzer, J.M.; Augustin, A.; Rodrigues, L.F.; Oliveira, R.; Praeg, D.; Pivel, M.A.P.; Reis, A.T.; Silva, C.; Leonel, B. Gas hydrates and gas seepage in the Amazon deep-sea fan. Geo-Mar. Lett. 2018, 38, 1–10. [Google Scholar] [CrossRef]
- Figueiredo, A.G.; Nittrouer, C.A.; de Alencar Costa, E. Gas-charged sediments in the Amazon submarine delta. Geo-Mar. Lett. 1996, 16, 31–35. [Google Scholar] [CrossRef]
- Maslin, M.; Vilela, C.; Mikkelsen, N.; Grootes, P. Causes of catastrophic sediment failures of the Amazon Fan. Quat. Sci. Rev. 2005, 24, 2180–2193. [Google Scholar] [CrossRef]
- Maslin, M.; Fleet, A.J. Equatorial western Atlantic Ocean circulation changes linked to the Heinrich events: deep-sea sediment evidence from the Amazon Fan. Geol. Evol. Ocean Basins Res. Ocean Drill. Progr. 1998, 131, 111–127. [Google Scholar] [CrossRef]
- Reis, A.T.; Perovano, R.; Silva, C.G.; Vendeville, B.C.; Araujo, E.; Gorini, C.; Oliveira, V. Two-scale gravitational collapse in the Amazon Fan: A coupled system of gravity tectonics and mass-transport processes. J. Geol. Soc. Lond. 2010, 167, 593–604. [Google Scholar] [CrossRef]
- Danmuth, J.E.; Kumar, N. Amazon Cone: Morphology, sedimentats, and growth pattern. Geol. Soc. Am. Bull. 1975, 86, 863–878. [Google Scholar] [CrossRef]
- Manley, P.L.; Flood, R.D. Cyclic sediment deposition within Amazon deep-sea fan. Am. Assoc. Pet. Geol. Bull. 1988, 72, 912–925. [Google Scholar] [CrossRef]
- Tanaka, M.D.; Silva, C.G.; Clennell, M.B. Gas Hydrates on the Amazon Submarine Fan, Foz do Amazonas Basin, Brazil. In Proceedings of the AAPG Annual Convention, Salt Lake, UT, USA, 11–14 May 2003; pp. 3–5. [Google Scholar]
- Carvalho, G.C.R.d.; Gomes, C.J.S.; Martins Neto, M.A. O Cone do Amazonas, bacia da Foz do Amazonas: Uma nova discussão. Rem Revista Escola de Minas 2011, 64, 429–437. [Google Scholar] [CrossRef]
- Richey, J.E.; Brock, J.T.; Naiman, R.J.; Wissmar, R.C.; Stallard, R.F. Organic Carbon: Oxidation and Transport in the Amazon River. Science 1980, 207, 1348–1351. [Google Scholar] [CrossRef]
- IsoTech Labs Inc. Procedure for Taking Cuttings Samples in IsoJars®. Weatherford Laboratories. 2018. Available online: http://www.isotechlabs.com/customersupport/samplingprocedures/IsoJarSM.pdf (accessed on 14 June 2018).
- Oung, J.N.; Lee, C.Y.; Lee, C.S.; Kuo, C.L. Geochemical Study on Hydrocarbon Gases in Seafloor Sediments, Southwestern Offshore Taiwan—Implications in the Potential Occurrence of Gas Hydrates. Terr. Atmos. Ocean. Sci. 2006, 17, 921–931. [Google Scholar] [CrossRef]
- Rodrigues, L.F.; Goudinho, F.S.; Laroque, D.O.; Lourega, R.V.; Heemann, R.; Ketzer, J.M.M. An Alternative Gas Chromatography Setting for Geochemical Analysis. J. Chem. Eng. Process Technol. 2014, 5, 208. [Google Scholar] [CrossRef]
- Bernard, B.B.; Brooks, J.M.; Sackett, W.M. Natural gas seepage in the Gulf of Mexico. Earth Planet. Sci. Lett. 1976, 31, 48–54. [Google Scholar] [CrossRef]
- Whiticar, M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 1999, 161, 291–314. [Google Scholar] [CrossRef]
- Paull, C.K.; Lorenson, T.D.; Borowski, W.S.; Ussler, W., III; Olsen, K.; Rodriguez, N.M. Isotopic Composition of CH4, CO2 Species, and Sedimentary Organic Matter Within Samples From the Blake Ridge: Gas Source Implications. Proc. Ocean Drill. Program. Sci. Results 2000, 164, 67–78. [Google Scholar] [CrossRef]
- Pape, T.; Bahr, A.; Rethemeyer, J.; Kessler, J.D.; Sahling, H.; Hinrichs, K.U.; Klapp, S.A.; Reeburgh, W.S.; Bohrmann, G. Molecular and isotopic partitioning of low-molecular-weight hydrocarbons during migration and gas hydrate precipitation in deposits of a high-flux seepage site. Chem. Geol. 2010, 269, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Römer, M.; Sahling, H.; Pape, T.; Bahr, A.; Feseker, T.; Wintersteller, P.; Bohrmann, G. Geological control and magnitude of methane ebullition from a high-flux seep area in the Black Sea—The Kerch seep area. Mar. Geol. 2012, 319, 57–74. [Google Scholar] [CrossRef]
- Milkov, A.V. Molecular and stable isotope compositions of natural gas hydrates: A revised global dataset and basic interpretations in the context of geological settings. Org. Geochem. 2005, 36, 681–702. [Google Scholar] [CrossRef]
- Taylor, S.W.; Sherwood Lollar, B.; Wassenaar, I. Bacteriogenic Ethane in Near-Surface Aquifers: Implications for Leaking Hydrocarbon Well Bores. Environ. Sci. Technol. 2000, 34, 4727–4732. [Google Scholar] [CrossRef]
- Kvenvolden, K.A. A review of the geochemistry of methane in gas hydrate. Org. Geochem. 1995, 23, 997–1008. [Google Scholar] [CrossRef]
- Pallasser, R.J. Recognizing biodegradation in gas/oil accumulations through the d13C compositions of gas components. Org. Geochem. 2000, 31, 1363–1373. [Google Scholar] [CrossRef]
- Waseda, A.; Iwano, H. Characterization of natural gases in Japan based on molecular and carbon isotope compositions. Geofluids 2008, 8, 286–292. [Google Scholar] [CrossRef]
- James, A.T.; Burns, B.J. Microbial alteration of subsurface natural gas accumulations. Am. Assoc. Pet. Geol. Bull. 1984, 68, 957–960. [Google Scholar]
- Horstad, I.; Larter, S.R. Petroleum migration, alteration, and remigration within Troll Field, Norwegian North Sea. Bull. Am. Assoc. Petrol. Geol. 1997, 81, 222–248. [Google Scholar] [CrossRef]
- Boreham, C.J.; Hope, J.M.; Hartung-Kagi, B. Understanding source, distribution and preservation of Australian natural gas: A geochemical perspective. Aust. Pet. Prod. Explor. Assoc. J. 2001, 41, 523–547. [Google Scholar] [CrossRef]
- Head, I.M.; Jones, D.M.; Larter, S.R. Biological activity in the deep subsurface and the origin of heavy oil. Nature 2003, 426, 344–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pohlman, J.W.; Bauer, J.E.; Canuel, E.A.; Grabowski, K.S.; Knies, D.L.; Mitchell, C.S.; Whiticar, M.J.; Coffin, R.B. Methane sources in gas hydrate-bearing cold seeps: Evidence from radiocarbon and stable isotopes. Mar. Chem. 2009, 115, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Whiticar, M.J.; Faber, E.; Schoell, M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs acetate fermentation—Isotope evidence. Geochim. Cosmochim. Acta 1986, 50, 693–709. [Google Scholar] [CrossRef]
- Choi, J.; Kim, J.H.; Torres, M.E.; Hong, W.L.; Lee, J.W.; Yi, B.Y.; Bahk, J.J.; Lee, K.E. Gas origin and migration in the Ulleung Basin, East Sea: Results from the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2). Mar. Pet. Geol. 2013, 47, 113–124. [Google Scholar] [CrossRef]
- Prinzhofer, A.; Pernaton, É. Isotopically light methane in natural gas: Bacterial imprint or diffusive fractionation? Chem. Geol. 1997, 142, 193–200. [Google Scholar] [CrossRef]
- Wilson, R.M.; Macelloni, L.; Simonetti, A.; Lapham, L.; Lutken, C.; Sleeper, K.; D’Emidio, M.; Pizzi, M.; Knapp, J.; Chanton, J. Subsurface methane sources and migration pathways within a gas hydrate mound system, Gulf of Mexico. Geochem. Geophys. Geosyst. 2014, 15, 89–107. [Google Scholar] [CrossRef] [Green Version]
- Bahk, J.J.; Kim, J.H.; Kong, G.S.; Park, Y.; Lee, H.; Park, Y.; Park, K.P. Occurrence of near-seafloor gas hydrates and associated cold vents in the Ulleung Basin, East Sea. Geosci. J. 2009, 13, 371–385. [Google Scholar] [CrossRef]
- Haacke, R.R.; Hyndman, R.D.; Park, K.P.; Yoo, D.G.; Stoian, I.; Schmidt, U. Migration and venting of deep gases into the ocean through hydrate-choked chimneys offshore Korea. Geology 2009, 37, 531–534. [Google Scholar] [CrossRef]
- Horozal, S.; Lee, G.H.; Yi, B.Y.; Yoo, D.G.; Park, K.P.; Lee, H.Y.; Kim, W.; Kim, H.J.; Lee, K. Seismic indicators of gas hydrate and associated gas in the Ulleung Basin, East Sea (Japan Sea) and implications of heat flows derived from depths of the bottom-simulating reflector. Mar. Geol. 2009, 258, 126–138. [Google Scholar] [CrossRef]
- Ruffine, L.; Donval, J.P.; Croguennec, C.; Bignon, L.; Birot, D.; Battani, A.; Bayon, G.; Caprais, J.C.; Lantéri, N.; Levaché, D.; et al. Gas seepage along the edge of the Aquitaine shelf (France): Origin and local fluxes. Geofluids 2017, 2017. [Google Scholar] [CrossRef]
- Lorenson, T.D.; Claypool, G.E.; Dougherty, J.A. Natural gas geochemistry of sediments drilled on the 2005 Gulf of Mexico JIP cruise. Mar. Pet. Geol. 2008, 25, 873–883. [Google Scholar] [CrossRef]
- Horstad, I.; Larter, S.R.; Mills, N. A quantitative model of biological petroleum degradation within the Brent Group reservoir in the Gullfaks Field, Norwegian North Sea. Org. Geochem. 1992, 19, 107–117. [Google Scholar] [CrossRef]
- Larter, S.; di Primio, R. Effects of biodegradation on oil and gas field PVT properties and the origin of oil rimmed gas accumulations. Org. Geochem. 2005, 36, 299–310. [Google Scholar] [CrossRef]
- Milkov, A.V. Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs. Org. Geochem. 2011, 42, 184–207. [Google Scholar] [CrossRef]
- Feisthauer, S.; Siegert, M.; Seidel, M.; Richnow, H.H.; Zengler, K.; Gründger, F.; Krüger, M. Isotopic fingerprinting of methane and CO2 formation from aliphatic and aromatic hydrocarbons. Org. Geochem. 2010, 41, 482–490. [Google Scholar] [CrossRef]
- Aggarwal, P.K.; Fuller, M.E.; Gurgas, M.M.; Manning, J.F.; Dillon, M.A. Use of stable oxygen and carbon isotope analyses for monitoring the pathways and rates of intrinsic and enhanced in situ biodegradation. Environ. Sci. Technol. 1997, 31, 590–596. [Google Scholar] [CrossRef]
- Zyakun, A.M.; Kosheleva, I.A.; Zakharchenko, V.N.; Kudryavtseva, A.I.; Peshenko, V.A.; Filonov, A.E.; Boronin, A.M. The use of the [13C]/[12C] ratio for the assay of the microbial oxidation of hydrocarbons. Microbiology 2003, 72, 592–596. [Google Scholar] [CrossRef]
- Jones, D.M.; Head, I.M.; Gray, N.D.; Adams, J.J.; Rowan, A.K.; Aitken, C.M.; Bennett, B.; Huang, H.; Brown, A.; Bowler, B.F.J.; et al. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 2008, 451, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Clayton, C.J.; Hay, S.J.; Baylis, S.A.; Dipper, B. Alteration of natural gas during leakage from a North Sea salt diapir field. Mar. Geol. 1997, 137, 69–80. [Google Scholar] [CrossRef]
- Yoshinaga, M.Y.; Holler, T.; Goldhammer, T.; Wegener, G.; Pohlman, J.W.; Brunner, B.; Kuypers, M.M.M.; Hinrichs, K.U.; Elvert, M. Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane. Nat. Geosci. 2014, 7, 190–194. [Google Scholar] [CrossRef]
- Boetius, A.; Ravenschlag, K.; Schubert, C.J.; Rickert, D.; Widdel, F.; Gieseke, A.; Amann, R.; Jørgensen, B.B.; Witte, U.; Pfannkuche, O. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 2000, 407, 623–626. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, A.W.A.; Alimi, H.M.; Jenden, P.D. Geochemistry of Los Angeles Basin oil and gas systems. Act. Margin Basins Aapg Mem. 1991, 52, 197–219. [Google Scholar]
Piston Core | Depth (mbsf) | 13C-CH4 | D-CH4 | 13C-C2H6 | 13C-CO2 | C1 (%) | C2 (%) | C3 (%) | = C3 (%) | = C4 (%) | C4 (%) | C5 (%) | CO2 (%) | C1/C+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PUC 03 | 0.3 | −76 | −175 | n.d. | −44.5 | 96.12 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 3.88 | 18,336 |
1 | −75.5 | −177 | n.d. | −41.1 | 96.52 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 3.48 | 9955 | |
2 | −74.4 | −195 | n.d. | −45.2 | 96.91 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 3.09 | 13,030 | |
3 | −73.9 | −167 | n.d. | −43.4 | 97.16 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 2.84 | 22,484 | |
4 | −73.7 | −179 | n.d. | −48.6 | 92.19 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 7.81 | 1214 | |
5 | −82.8 | −176 | n.d. | −46.2 | 94.22 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 5.78 | 847 | |
6 | −94.8 | −168 | n.d. | −49.7 | 91.06 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 8.94 | 18,679 | |
PUCH01B | 0.3 (HG) | −59.2 | −205 | −30.8 | −21.4 | 98.88 | 1.12 | n.d. | 0.002 | n.d. | n.d. | n.d. | n.d | 98.1 |
0.3 (HG) | −61.7 | −206 | −31.5 | −21.8 | 98.75 | 1.23 | n.d. | 0.02 | n.d. | n.d. | n.d. | n.d | 89.2 | |
0.7 | −64.9 | −182 | n.d. | −41.2 | 98.54 | 1.42 | n.d. | 0.04 | n.d. | n.d. | n.d. | n.d | 77.1 | |
1 | −65.6 | −178 | n.d. | −41.5 | 98.49 | 1.29 | 0.005 | 0.017 | n.d. | n.d. | n.d. | 0.2 | 92.7 | |
1.4 | −66.3 | −175 | n.d. | −38.7 | 96.77 | 1.47 | n.d. | n.d. | n.d. | n.d. | n.d. | 1.8 | 65.8 | |
1.9 | −65.5 | −166 | n.d. | −45.3 | 94.49 | 1.43 | n.d. | n.d. | 1.33 | 1.05 | n.d. | 1.71 | 24.84 | |
0.4 | −81.1 | −181 | n.d. | −52.8 | 90.61 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 9.39 | 16,429 | |
PUC35B | 1.4 | −83.9 | −183 | n.d. | −49.7 | 91.88 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 8.12 | 13,010 |
2.6 | −84 | −174 | n.d. | −33.9 | 93.31 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 6.69 | 14,039 | |
0.2 | −74.6 | −182 | n.d. | −9.3 | 93 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 7 | 43,905 | |
1 | −74.8 | −182 | n.d. | −7.7 | 81.05 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 18.5 | 19,017 | |
AMZ119 | 2.9 | −74.2 | −188 | n.d. | −8.1 | 91.86 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 8.14 | 36,842 |
4 | −74.6 | −179 | n.d. | −10.4 | 87.38 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 12.62 | 22,283 | |
5.3 | −74.6 | −183 | n.d. | −10.3 | 91.49 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 8.51 | 31,049 | |
AMZ121 | 0.6 | −102.2 | −190 | n.d. | −64.7 | 91.35 | 0.244 | n.d. | n.d. | n.d. | n.d. | n.d. | 8.41 | 375 |
1.8 | −84.9 | −192 | n.d. | −35.2 | 94.04 | 0.285 | n.d. | n.d. | n.d. | n.d. | n.d. | 5.68 | 330 | |
2.8 | −84.6 | −188 | n.d. | −36.6 | 99.47 | 0.03 | 0.007 | n.d. | n.d. | n.d. | n.d. | 0.49 | 3413 | |
3.0 | −83.7 | −192 | n.d. | −33.1 | 97.17 | n.d. | 0.05 | 0.065 | n.d. | n.d. | n.d. | 2.72 | 1974 | |
3.2 | −83.7 | −186 | n.d. | −35.1 | 99.65 | 0.02 | 0.005 | n.d. | n.d. | n.d. | n.d. | 0.32 | 5536 | |
3.5 (HG) | −81.1 | −190 | n.d. | −35.0 | 98.88 | 0.01 | n.d. | n.d. | n.d. | n.d. | n.d. | 1.11 | 7936 | |
AMZ319R | 1.0 | −78.8 | −173 | n.d. | −42.6 | 98.33 | 0.08 | n.d. | n.d. | n.d. | n.d. | n.d. | 1.59 | 1301 |
1.5 (HG) | −80.9 | −186 | n.d. | −37.2 | 99.36 | 0.04 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.60 | 2406 | |
2.4 | −78.9 | −150 | n.d. | −42.0 | 98.02 | 0.08 | 0.03 | n.d. | n.d. | n.d. | n.d. | 1.82 | 1169 | |
3.5 | −79.9 | −162 | n.d. | −39.4 | 97.87 | 0.08 | n.d. | n.d. | n.d. | 0.06 | n.d. | 1.99 | 1241 | |
3.7 | −79.1 | −152 | n.d. | −43.0 | 97.14 | 0.10 | 0.05 | n.d. | n.d. | n.d. | n.d. | 2.64 | 1010 | |
3.4 (HG) | −77.3 | −188 | n.d. | −43.2 | 99.84 | 0.04 | 0.002 | 0.003 | n.d. | n.d. | n.d. | 0.11 | 2299 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, L.F.; Ketzer, J.M.; Oliveira, R.R.; dos Santos, V.H.J.M.; Augustin, A.H.; Cupertino, J.A.; Viana, A.R.; Leonel, B.; Dorle, W. Molecular and Isotopic Composition of Hydrate-Bound, Dissolved and Free Gases in the Amazon Deep-Sea Fan and Slope Sediments, Brazil. Geosciences 2019, 9, 73. https://doi.org/10.3390/geosciences9020073
Rodrigues LF, Ketzer JM, Oliveira RR, dos Santos VHJM, Augustin AH, Cupertino JA, Viana AR, Leonel B, Dorle W. Molecular and Isotopic Composition of Hydrate-Bound, Dissolved and Free Gases in the Amazon Deep-Sea Fan and Slope Sediments, Brazil. Geosciences. 2019; 9(2):73. https://doi.org/10.3390/geosciences9020073
Chicago/Turabian StyleRodrigues, Luiz F., João M. Ketzer, Rafael R. Oliveira, Victor H.J.M. dos Santos, Adolpho H. Augustin, Jose A. Cupertino, Adriano R. Viana, Bruno Leonel, and Wilhelm Dorle. 2019. "Molecular and Isotopic Composition of Hydrate-Bound, Dissolved and Free Gases in the Amazon Deep-Sea Fan and Slope Sediments, Brazil" Geosciences 9, no. 2: 73. https://doi.org/10.3390/geosciences9020073
APA StyleRodrigues, L. F., Ketzer, J. M., Oliveira, R. R., dos Santos, V. H. J. M., Augustin, A. H., Cupertino, J. A., Viana, A. R., Leonel, B., & Dorle, W. (2019). Molecular and Isotopic Composition of Hydrate-Bound, Dissolved and Free Gases in the Amazon Deep-Sea Fan and Slope Sediments, Brazil. Geosciences, 9(2), 73. https://doi.org/10.3390/geosciences9020073