Application of SAR Interferometry Using ALOS-2 PALSAR-2 Data as Precise Method to Identify Degraded Peatland Areas Related to Forest Fire
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Location
3. Results
3.1. Degraded Peatland Areas Based on Synthetic Aperture Radar (SAR) Interferometry
3.2. Degraded Peatland Areas Based on Real-Time Water Table Depth Monitoring
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Susilo, G.E.; Yamamoto, K.; Imai, T.; Inoue, T. Effect of Canal Damming on the Surface Water Level Stability in the Tropical Peatland Area. J. Water Environ. Technol. 2013, 11, 263–274. [Google Scholar] [CrossRef]
- Law, E.A.; Bryan, B.A.; Meijaard, E.; Mallawaarachchi, T.; Struebig, M.; Wilson, K.A. Ecosystem services from a degraded peatland of Central Kalimantan: Implications for policy, planning, and management. Ecol. Appl. 2015, 25, 70–87. [Google Scholar] [CrossRef] [PubMed]
- Hooijer, A.; Silvius, M.; Wösten, H.; Page, S. PEAT-CO2. Assessment of CO2 emissions from drained peatlands in SE Asia; Delft Hydraulics: Delft, The Netherlands, 2006. [Google Scholar]
- Boehm, H.; Siegert, F. Ecological impact of the One Million Hectare Rice Project in Central Kalimantan, Indonesia, using Remote Sensing and GIS. In Proceedings of the 22nd Asian conference on Remote Sensing, Singapore, 5–9 November 2001. [Google Scholar]
- Taufik, M.; Veldhuizen, A.A.; Wösten, J.H.M.; van Lanen, H.A.J. Exploration of the importance of physical properties of Indonesian peatlands to assess critical groundwater table depths, associated drought and fire hazard. Geoderma 2019, 347, 160–169. [Google Scholar] [CrossRef]
- Weiss, R.; Shurpali, N.J.; Sallantaus, T.; Laiho, R.; Laine, J.; Alm, J. Simulation of water table level and peat temperatures in boreal peatlands. Ecol. Model. 2006, 192, 441–456. [Google Scholar] [CrossRef]
- Girkin, N.T.; Turner, B.L.; Ostle, N.; Craigon, J.; Sjögersten, S. Root exudate analogues accelerate CO2 and CH4 production in tropical peat. Soil Biol. Biochem. 2018, 117, 48–55. [Google Scholar] [CrossRef]
- Girkin, N.T.; Turner, B.L.; Ostle, N.; Sjögersten, S. Composition and concentration of root exudate analogues regulate greenhouse gas fluxes from tropical peat. Soil Biol. Biochem. 2018, 127, 280–285. [Google Scholar] [CrossRef]
- Krüger, J.P.; Leifeld, J.; Glatzel, S.; Szidat, S.; Alewell, C. Biogeochemical indicators of peatland degradation—A case study of a temperate bog in northern Germany. Biogeosciences 2015, 12, 2861–2871. [Google Scholar] [CrossRef]
- Carless, D.; Luscombe, D.J.; Gatis, N.; Anderson, K.; Brazier, R.E. Mapping landscape-scale peatland degradation using airborne lidar and multispectral data. Landsc. Ecol. 2019, 34, 1329–1345. [Google Scholar] [CrossRef]
- Widodo, J.; Izumi, Y.; Takahashi, A.; Kausarian, H.; Kuze, H.; Sumantyo, J.T.S. Detection of Dry-Flammable Peatland Area by Using Backscattering Coefficient Information of ALOS-2 Data L-Band Frequency. In Proceedings of the 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, Japan, 1–4 August 2018; pp. 916–920. [Google Scholar] [CrossRef]
- Izumi, Y.; Widodo, J.; Kausarian, H.; Demirci, S.; Takahashi, A.; Razi, P.; Nasucha, M.; Yang, H.; Tetuko, J. Potential of soil moisture retrieval for tropical peatlands in Indonesia using ALOS-2 L-band full-polarimetric SAR data. Int. J. Remote Sens. 2019, 40, 5938–5956. [Google Scholar] [CrossRef]
- Alshammari, L.; Large, D.J.; Boyd, D.S.; Sowter, A.; Anderson, R.; Andersen, R.; Marsh, S. Long-term peatland condition assessment via surface motion monitoring using the ISBAS DInSAR technique over the Flow Country, Scotland. Remote Sens. 2018, 10, 1103. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Z.; Waldron, S.; Tanaka, A. Monitoring peat subsidence and carbon emission in Indonesia peatlands using InSAR time series. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6797–6798. [Google Scholar] [CrossRef]
- Dahdal, B. The Use of Interferometric Spaceborne Radar and GIS to Measure Ground Subsidence in Peat Soils in Indonesia; Univ. Leicester: Leicester, UK, 2011; p. 378. [Google Scholar]
- Zhou, Z. The Applications of InSAR Time Series Analysis for Monitoring Long-Term Surface Change in Peatlands. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2013. [Google Scholar]
- Hooijer, A.; Page, S.; Jauhiainen, J.; Lee, W.A.; Lu, X.X.; Idris, A.; Anshari, G. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 2012, 9, 1053–1071. [Google Scholar] [CrossRef]
- Wösten, J.H.M.; Ismail, A.B.; van Wijk, A.L.M. Peat subsidence and its practical implications: A case study in Malaysia. Geoderma 1997, 78, 25–36. [Google Scholar] [CrossRef]
- Susilo, G.E.; Yamamoto, K.; Imai, T. Modeling Groundwater Level Fluctuation in the Tropical Peatland Areas under the Effect of El Nino. Procedia Environ. Sci. 2013, 17, 119–128. [Google Scholar] [CrossRef]
- Government of Indonesia. Government Regulation Number 71 of Year 2014 about Protection and Management of Peat Ecosystems; Government of Indonesia: Jakarta, Indonesia, 2014; pp. 1–25.
- Government of Indonesia. Government Regulation 57 of Year 2016 about Amendment to Government Regulation Number 71 of Year 2014 about Protection and Management of Peat Ecosystems; Government of Indonesia: Jakarta, Indonesia, 2016.
- Usup, A.; Hashimoto, Y.; Takahashi, H.; Hayasaka, H. Combustion and thermal characteristics of peat fire in tropical peatland in Central Kalimantan, Indonesia. Tropics 2004, 14, 1–19. [Google Scholar]
- Takahashi, H.; Usup, A.; Hayasaka, H.; Limin, S.H. Estimation of ground water level in a peat swamp forest as an index of peat/forest fire. In Proceedings of the International Symposium L. Manag. Biodivers, Southeast Asia, Montreal, Canada, 8–10 November 2001; pp. 311–314. [Google Scholar]
- Rieley, J.O.; Page, A.S.E.; Jauhiainen, J. Wise Use of Tropical Peatlands: Focus on Southeast Asia: Synthesis of Results and Conclusions of the UK Darwin Initiative and the EU INCO EUTROP, STRAPEAT AND RESTORPEAT Partnerships Together with Proposals for Implementing Wise Use of Tropical Peatlands; Wageningen University and the EU INCO STRAPEAT and RESTORPEAT Partnerships; Alterre: Wageningen, The Netherlands, 2005. [Google Scholar]
- Atwood, E.C.; Englhart, S.; Lorenz, E.; Halle, W.; Wiedemann, W.; Siegert, F. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird). PLoS ONE 2016, 11, e0159410. [Google Scholar] [CrossRef]
- Li, Z.; Bethel, J. Image Coregistration in SAR Interferometry. XXXVII. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 3–11 July 2008; pp. 433–438. [Google Scholar]
- Lei, L.; Perissin, D.; Qin, Y. Change detection with spaceborne InSAR technique in Hong Kong. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; pp. 338–341. [Google Scholar] [CrossRef]
- Wang, T.; Liao, M.; Perissin, D. InSAR coherence-decomposition analysis. IEEE Geosci. Remote Sens. Lett. 2010, 7, 156–160. [Google Scholar] [CrossRef]
- Giardina, G.; Milillo, P.; DeJong, M.J.; Perissin, D.; Milillo, G. Evaluation of InSAR monitoring data for post-tunnelling settlement damage assessment. Struct. Control Health Monit. 2019, 26, 1–19. [Google Scholar] [CrossRef]
- Yu, H.; Lan, Y.; Yuan, Z.; Xu, J.; Lee, H. Phase Unwrapping in InSAR. IEEE Geosci. Remote Sens. Mag. 2019, 7, 40–58. [Google Scholar] [CrossRef]
- Widodo, J.; Izumi, Y.; Takahashi, A.; Kausarian, H.; Perissin, D.; Sumantyo, J.T.S. Detection of Peat Fire Risk Area Based on Impedance Model and DInSAR Approaches Using ALOS-2 PALSAR-2 Data. IEEE Access 2019, 7, 22395–22407. [Google Scholar] [CrossRef]
- BPS-Statistics of Pulang Pisau Regency. Pulang Pisau Regency in Figures 2018; BPS-Statistics of Pulang Pisau Regency: Central Kalimantan, Indonesia, 2018. [Google Scholar]
- BPS-Statistics of Kapuas Regency. Statistik Daerah Kabupaten Kapuas 2018; BPS-Statistics of Kapuas Regency: Central Kalimantan, Indonesia, 2018. [Google Scholar]
- Morishita, Y.; Hanssen, R.F. Temporal Decorrelation in L-, C-, and X-band Satellite Radar Interferometry for Pasture on Drained Peat Soils. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1096–1104. [Google Scholar] [CrossRef]
- Jung, J.; Kim, D.J.; Lavalle, M.; Yun, S.H. Coherent change detection using temporal decorrelation model for volcanic ash detection. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3394–3397. [Google Scholar] [CrossRef]
- Wei, M.; Sandwell, D.T. Decorrelation of L-Band and C-Band Interferometry Over Vegetated Areas in California. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2942–2952. [Google Scholar]
- Zebker, H.A.; Member, S.; Villasenor, J. Decorrelation in Interferometric Radar Echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Askne, J.I.H.; Dammert, P.B.G.; Ulander, L.M.H.; Smith, G. C-Band Repeat-Pass Interferometric SAR Observations of the Forest. IEEE Trans. Geosci. Remote Sens. 1997, 35, 25–35. [Google Scholar] [CrossRef]
- Haniy, S.U.; Hamzah, H.; Hanifa, M. Intense Forest Fires Threaten to Derail Indonesia’s Progress in Reducing Deforestation; World Resources Institute: Washington, DC, USA, 2019; pp. 1–8. [Google Scholar]
- Kebakaran hutan dan lahan kian meluas dan kabut asap semakin parah, BNPB kewalahan padamkan api. BBC, 16 September 2019. Available online: https://www.bbc.com/indonesia/indonesia-49708970 (accessed on 16 November 2019).
No | Item | Specifications |
---|---|---|
1 | Type of Sensor | ALOS-2 PALSAR 2 |
2 | Data Format | SLC |
3 | Frequency | L-Band |
4 | Wavelength | 0.24 meter |
5 | Polarization | Dual Polarimetry HH and VV |
6 | Acquisition Date | 25 February 2016 and 2 February 2018 |
7 | Acquisition Mode | Ascending |
8 | Acquisition Heading | −126.2211 |
9 | Incident Angle | 36.295 degree |
No | Location | Latitude | Longitude |
---|---|---|---|
1 | Pilang 1, Jabiren Raya | −2.379 | 114.059 |
2 | Pilang 2, Jabiren Raya | −2.486 | 114.195 |
3 | Jabiren 1, Jabiren Raya | −2,508 | 114.169 |
4 | Jabiren 2, Jabiren Raya | −2.544 | 114.169 |
5 | Saka Kajang, Jabiren Raya | −2.552 | 114.181 |
6 | Henda 1, Jabiren Raya | −2.612 | 114.244 |
7 | Henda 2, Jabiren Raya | −2.599 | 114.192 |
8 | Garung, Jabiren Raya | −2.65 | 114.22 |
9 | Kalawa, Kahayan Hilir | −2.707 | 114.22 |
10 | Buntoi, Kahayan Hilir | −2.831 | 114.175 |
11 | Anjir Kalampan, Kapuas Barat | −2.812 | 114.313 |
12 | Sebangau Jaya, Sebangau Kuala | −2.879 | 113.838 |
13 | Medura Sebangau, Sebangau Kuala | −2.895 | 113.764 |
No | Forest Fire Area | Degraded Peatland Area | |
---|---|---|---|
Based on SAR Interferometry | Based on WT Depth Monitoring System | ||
1 | F-1 | ✓ | N/A |
2 | F-2 | ✓ | N/A |
3 | F-3 | ✓ | N/A |
4 | F-4 | ✓ | N/A |
5 | F-5 | ✓ | N/A |
6 | F-6 | ✓ | ✓ |
7 | F-7 | ✓ | N/A |
8 | F-8 | ✓ | N/A |
9 | F-9 | ✓ | N/A |
10 | F-10 | ✓ | N/A |
11 | F-11 | ✓ | N/A |
12 | F-12 | ✓ | N/A |
13 | F-13 | ✓ | N/A |
14 | F-14 | ✓ | N/A |
15 | F-15 | N/A | N/A |
16 | F-16 | N/A | N/A |
17 | F-17 | ✓ | N/A |
18 | F-18 | ✓ | N/A |
Precisian Level: | 88% | 5% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widodo, J.; Sulaiman, A.; Awaluddin, A.; Riyadi, A.; Nasucha, M.; Perissin, D.; Sri Sumantyo, J.T. Application of SAR Interferometry Using ALOS-2 PALSAR-2 Data as Precise Method to Identify Degraded Peatland Areas Related to Forest Fire. Geosciences 2019, 9, 484. https://doi.org/10.3390/geosciences9110484
Widodo J, Sulaiman A, Awaluddin A, Riyadi A, Nasucha M, Perissin D, Sri Sumantyo JT. Application of SAR Interferometry Using ALOS-2 PALSAR-2 Data as Precise Method to Identify Degraded Peatland Areas Related to Forest Fire. Geosciences. 2019; 9(11):484. https://doi.org/10.3390/geosciences9110484
Chicago/Turabian StyleWidodo, Joko, Albertus Sulaiman, Awaluddin Awaluddin, Agung Riyadi, Mohammad Nasucha, Daniele Perissin, and Josaphat Tetuko Sri Sumantyo. 2019. "Application of SAR Interferometry Using ALOS-2 PALSAR-2 Data as Precise Method to Identify Degraded Peatland Areas Related to Forest Fire" Geosciences 9, no. 11: 484. https://doi.org/10.3390/geosciences9110484
APA StyleWidodo, J., Sulaiman, A., Awaluddin, A., Riyadi, A., Nasucha, M., Perissin, D., & Sri Sumantyo, J. T. (2019). Application of SAR Interferometry Using ALOS-2 PALSAR-2 Data as Precise Method to Identify Degraded Peatland Areas Related to Forest Fire. Geosciences, 9(11), 484. https://doi.org/10.3390/geosciences9110484