Landfill Impacts on the Environment—Review
Abstract
:1. Introduction
2. Waste Production in the European Union
3. Landfill as a Potential Source of Pollution
3.1. Landfill Gas
3.2. Landfill Leachates
3.2.1. Composition of Leachates
3.2.2. Toxicity of Landfill Leachates
3.2.3. Landfill Leachate Treatment Technologies
3.3. Landfill Fires—A Source of Pollution
4. The Future of Landfills
Advantages of Waste Landfilling
5. Landfill Mining
6. Conclusions
Funding
Conflicts of Interest
Abbreviations
(ASCE) | American Society of Civil Engineers |
(BOD) | Biochemical oxygen demand |
(CE) | Circular economy |
(COD) | Concentration of organic compounds |
(CR) | Czech Republic |
(EU) | European Union |
(GCL) | Geotextiles |
(GW) | Global warming |
(GHE) | Greenhouse gases |
(HM) | Heavy metals |
(LFG) | Landfill gas |
(LFM) | Landfill mining |
(MSW) | Municipal solid waste |
(NIMBY) | Not in my backyard |
(ASCE) | Society of Civil Engineers |
(SWANA) | Solid Waste Association of North America |
(TUH) | Technical University Hamburg |
(KSA) | The Kingdom of Saudi Arabia |
(TOC) | Total organic carbon |
(WM) | Waste management |
References
- Vaverková, M.D.; Adamcová, D. Long-Term Temperature Monitoring of a Municipal Solid Waste Landfill. Pol. J. Environ. Stud. 2015, 24, 1373–1378. [Google Scholar] [CrossRef]
- Adamović, V.M.; Antanasijević, D.Z.; Ćosović, A.R.; Ristić, M.Đ.; Pocajt, V.V. An artificial neural network approach for the estimation of the primary production of energy from municipal solid waste and its application to the Balkan countries. Waste Manag. 2018, 78, 955–968. [Google Scholar] [CrossRef]
- Alobaid, F.; Al-Maliki, W.A.K.; Lanz, T.; Haaf, M.; Brachthäuser, A.; Epple, B.; Zorbach, I. Dynamic simulation of a municipal solid waste incinerator. Energy 2018, 149, 230–249. [Google Scholar] [CrossRef]
- Chen, Y.C.H. Evaluating greenhouse gas emissions and energy recovery from municipal and industrial solid waste using waste-to-energy technology. J. Clean. Prod. 2018, 192, 262–269. [Google Scholar] [CrossRef]
- Eurostat. Waste Database Municipal Waste; Eurostat: Brussel, Belgium, 2016. [Google Scholar]
- Ercolano, S.; Gaeta, G.L.L.; Ghinoi, S.; Silvestri, F. Kuznets curve in municipal solid waste production: An empirical analysis based on municipal-level panel data from the Lombardy region (Italy). Ecol. Indic. 2018, 93, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.K.H. The ethics of working with wicked urban waste problems: The case of Singapore’s Semakau Landfill. Landsc. Urban Plan. 2016, 154, 123–131. [Google Scholar] [CrossRef]
- Sun, W.; Wang, X.; DeCarolis, J.F.; Barlaz, M.A. Evaluation of optimal model parameters for prediction of methane generation from selected U.S. landfills. Waste Manag. 2019, 91, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.M.; de Souza Marotta Alfaia, R.G.; Campos, J.C. Landfill leachate treatment in Brazil—An overview. J. Environ. Manag. 2019, 232, 110–116. [Google Scholar] [CrossRef]
- Ouda, O.K.M.; Raza, S.A.; Nizami, A.S.; Rehan, M.; Al-Waked, R.; Korres, N.E. Waste to energy potential: A case study of Saudi Arabia. Renew. Sustain. Energy Rev. 2016, 61, 328–340. [Google Scholar] [CrossRef]
- Tan, S.T.; Lee, C.T.; Hashim, H.; Ho, W.S.; Lim, J.S. Optimal process network for municipal solid waste management in Iskandar Malaysia. J. Clean. Prod. 2014, 71, 48–58. [Google Scholar] [CrossRef]
- Havukainen, J.; Zhan, M.; Dong, J.; Liikanen, M.; Deviatkin, I.; Li, X.; Horttanainen, M. Environmental impact assessment of municipal solid waste management incorporating mechanical treatment of waste and incineration in Hangzhou, China. J. Clean. Prod. 2017, 141, 453–461. [Google Scholar] [CrossRef]
- Balda, M.C.; Furubayashi, T.; Nakata, T. Integration of WTE technologies into the electrical system for low-carbon growth in Venezuela. Renew. Energy 2016, 86, 1247–1255. [Google Scholar] [CrossRef]
- Güereca, L.P.; Torres, N.; Juárez-López, C.R. The co-processing of municipal waste in a cement kiln in Mexico. A life-cycle assessment approach. J. Clean. Prod. 2015, 107, 741–748. [Google Scholar] [CrossRef]
- Wichai-utcha, N.; Chavalparit, O. 3Rs Policy and plastic waste management in Thailand. J. Mater. Cycles Waste Manag. 2019, 21, 10–22. [Google Scholar] [CrossRef]
- Gonzalez-Valencia, R.; Magana-Rodriguez, F.; Cristóbal, J.; Thalasso, F. Hotspot detection and spatial distribution of methane emissions from landfills by a surface probe method. Waste Manag 2016, 55, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Jovanov, D.; Vujić, B.; Vujić, G. Optimization of the monitoring of landfill gas and leachate in closed methanogenic landfills. J. Environ. Manag. 2018, 216, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.J.; Chen, Z.W.; Chen, H.X.; Zheng, Q.T.; Liu, R. Slope stability of landfills considering leachate recirculation using vertical wells. Eng. Geol. 2018, 241, 76–85. [Google Scholar] [CrossRef]
- European Parliament. Decision No 1386/2013/EU of the European parliament and of the Council of 20 November 2013 on a general union environment action Programme to 2020 ‘living well, within the limits of our planet’. Off. J. Eur. Union 2013, 354, 171–200. [Google Scholar]
- Peri, G.; Ferrante, P.; La Gennusa, M.; Pianello, C.; Rizzo, G. Greening MSW management systems by saving footprint: The contribution of the waste transportation. J. Environ. Manag. 2019, 219, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Brennan, R.B.; Healy, M.G.; Morrison, L.; Hynes, S.; Norton, D.C.; Clifford, E. Management of landfill leachate: The legacy of European Union Directives. Waste Manag. 2016, 55, 355–363. [Google Scholar] [CrossRef]
- EPA. Biodegradable Waste Diversion from Landfill; EPA: Washington, DC, USA, 2015. [Google Scholar]
- Karak, T.; Bhagat, R.M.; Bhattacharyya, P. Municipal solid waste generation, composition, and management: The world scenario. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1509–1630. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Elbl, J.; Radziemska, M.; Kintl, A.; Baláková, L.; Adamcová, D.; Bartoň, S.; Hladký, J.; Kynický, J.; Brtnický, M. Environmental risk assessment and consequences of municipal waste disposal. Chemosphere 2018, 208, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Giménez, J.; Montañés, A.; Picazo-Tadeo, A.J. Performance and convergence in municipal waste treatment in the European Union. Waste Menag. 2019, 85, 222–231. [Google Scholar] [CrossRef] [PubMed]
- European Parliament. EU WM: Infographic with Facts and Figures; European Parliament: Strasbourg, France, 2018. [Google Scholar]
- Chakravarty, P.; Kumar, M. Floral Species in Pollution Remediation and Augmentation of Micrometeorological Conditions and Microclimate an Integrated Approach. In Phytomanagement Polluted Sites; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Białowiec, A. Some Aspects of Environmental Impact of Waste Dumps. In Contemporary Problems of Management and Environmental Protection; University of Warmia and Mazury in Olsztyn: Olsztyn, Poland, 2011. [Google Scholar]
- Koda, E.; Miszkowska, A.; Sieczka, A. Levels of organic pollution indicators in groundwater at the old landfill and WM site. Appl. Sci. 2017, 7, 638. [Google Scholar] [CrossRef]
- Koda, E.; Pachuta, K.; Osinski, P. Potential of plant applications in the initial stage of the landfill reclamation process. Pol. J. Environ. Stud. 2013, 22, 1731–1739. [Google Scholar]
- Weng, Y.C.; Fujiwara, T.; Houng, H.J.; Sun, C.H.; Li, W.Y.; Kuo, Y.W. Management of landfill reclamation with regard to biodiversity preservation, global warming mitigation and landfill mining: Experiences from the Asia–Pacific region. J. Clean. Prod. 2015, 104, 364–373. [Google Scholar] [CrossRef]
- Vallero, D.A.; Blight, G. The Municipal Landfill. In Waste, 2nd ed.; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar] [CrossRef]
- Laner, D.; Crest, M.; Scharff, H.; Morris, J.W.F.; Barlaz, M.A. A review of approaches for the long-term management of municipal solid waste landfills. Waste Manag. 2012, 32, 498–512. [Google Scholar] [CrossRef]
- Ziyang, L.; Luochun, W.; Nanwen, Y.; Youcai, Z. Martial recycling from renewable landfill and associated risks: A review. Chemosphere 2015, 131, 91–103. [Google Scholar] [CrossRef]
- Shen, S.; Chen, Y.; Zhan, L.; Xie, H.; Bouazza, A.; He, F.; Zuo, X. Methane hotspot localization and visualization at a large-scale Xi’an landfill in China: Effective tool for landfill gas management. J. Environ. Manag. 2018, 225, 232–241. [Google Scholar] [CrossRef]
- Rada, E.C.; Ragazzi, M.; Stefani, P.; Schiavon, M.; Torretta, V. Modelling the Potential Biogas Productivity Range from a MSW Landfill for Its Sustainable Exploitation. Sustainability 2015, 7, 482–495. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Zhang, Y.; Xie, D. The Multi-energy High precision Data Processor Based on AD7606. IOP Conf. Ser. Earth Environ. Sci. 2017, 94, 012138. [Google Scholar] [CrossRef] [Green Version]
- Zappini, G.; Cocca, P.; Rossi, D. Performance analysis of energy recovery in an Italian municipal solid waste landfill. Energy 2010, 35, 5063–5069. [Google Scholar] [CrossRef]
- Lombardi, L.; Carnevale, E.; Corti, A. Greenhouse effect reduction and energy recovery from waste landfill. Energy 2006, 31, 3208–3219. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Kreith, F. Handbook of Solid WM; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Scheutz, C.; Kjeldsen, P. Guidelines for landfill gas emission monitoring using the tracer gas dispersion method. Waste Manag. 2019, 85, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Thomasen, T.B.; Scheutz, C.; Kjeldsen, P. Treatment of landfill gas with low methane content by biocover systems. Waste Manag. 2019, 84, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, F.M.; Daflon, S.D.A.; Bila, D.M.; da Fonseca, F.V.; Campos, J.C. Evaluation of the biodegradability and toxicity of landfill leachates after pretreatment using advanced oxidative processes. Waste Manag. 2018, 76, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Regadío, M.; Ruiz, A.I.; de Soto, I.S.; Rastrero, M.R.; Sánchez, N.; Gismera, M.J.; Sevilla, M.T.; da Silva, P.; Procopio, J.R.; Cuevas, J. Pollution profiles and physicochemical parameters in old uncontrolled landfills. Waste Manag. 2012, 32, 482–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Shea, F.T.; Cundy, A.B.; Spencer, K.L. The contaminant legacy from historic coastal landfills and their potential as sources of diffuse pollution. Mar. Pollut. Bull. 2018, 128, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Rezapour, S.; Samadi, A.; Kalavrouziotis, I.K.; Ghaemian, N. Impact of the uncontrolled leakage of leachate from a municipal solid waste landfill on soil in a cultivated-calcareous environment. Waste Manag. 2018, 82, 51–61. [Google Scholar] [CrossRef]
- Melnyk, A.; Kuklinska, K.; Wolska, L. Chemical pollution and toxicity of water samples from stream receiving leachate from controlled municipal solid waste (MSW) landfill. Environ. Res. 2014, 135, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Budi, S.; Suliasih, B.A.; Othman, M.S.; Heng, L.Z.; Surif, S. Toxicity identification evaluation of landfill leachate using fish, prawn and seed plant. Waste Manag. 2016, 55, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Moody, C.M.; Townsend, T.G. A comparison of landfill leachates based on waste composition. Waste Manag. 2017, 63, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Arunbabu, V.; Indu, K.S.; Ramasamy, E.V. Leachate pollution index as an effective tool in determining the phytotoxicity of municipal solid waste leachate. Waste Manag. 2017, 68, 329–336. [Google Scholar] [CrossRef]
- Paskuliakova, A.; McGowan, T.; Tonry, S.; Touzet, N. Microalgal bioremediation of nitrogenous compounds in landfill leachate—The importance of micronutrient balance in the treatment of leachates of variable composition. Algal Res. 2018, 32, 162–171. [Google Scholar] [CrossRef]
- Singh, S.K.; Tang, W.Z. Statistical analysis of optimum Fenton oxidation conditions for landfill leachate treatment. Waste Manag. 2013, 33, 81–88. [Google Scholar] [CrossRef]
- Xiong, J.; Zheng, Y.; Yang, X.; Dai, X.; Zhou, T.; He, J.; Luo, X. Recovery of NH3-N from mature leachate via negative pressure steam-stripping pretreatment and its benefits on MBR systems: A pilot scale study. J. Clean. Prod. 2018, 203, 918–925. [Google Scholar] [CrossRef]
- Koda, E.; Zakowicz, S. Physical and hydraulic properties of the MSW for water balance of the landfill. In Proceedings of the 3rd International Congress on Environmental Geotechnics, Lisbon, Portugal, 7–11 September 1998; pp. 217–222. [Google Scholar]
- Yao, P. Perspectives on technology for landfill leachate treatment. Arab. J. Chem. 2017, 10, S2567–S2574. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Shen, Y. Performance of an anaerobic baffled reactor (ABR) as a hydrolysis-acidogenesis unit in treating landfill leachate mixed with municipal sewage. Water Sci. Technol. 2000, 42, 115–121. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Zloch, J.; Adamcová, D.; Radziemska, M.; Vyhnánek, T.; Trojan, V.; Winkler, J.; Đorđević, B.; Elbl, J.; Brtnický, M. Landfill Leachate Effects on Germination and Seedling Growth of Hemp Cultivars (Cannabis sativa L.). Waste Biomass Valorization 2019. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Adamcová, D. Can vegetation indicate municipal solid waste landfill impact on the environment? Pol. J. Environ. Stud. 2014, 23, 501–509. [Google Scholar]
- Cameron, R.D.; Koch, F.A. Toxicity of landfill leachates. Water Pollut. Control 1980, 52, 760–769. [Google Scholar]
- US EPA. Ambient Water Quality Criteria for Ammonia (Saltwater) 440/5-88-004; US Environmental Protection Agency, Criteria and Standards Division: Washington, DC, USA, 1989. [Google Scholar]
- US EPA. Ambient Water Quality Criteria for Ammonia 440/5-85-001; US Environmental Protection Agency, Criteria and Standards Division: Washington, DC, USA, 1984. [Google Scholar]
- Helma, A.; Mersch-Sundermann, V.; Houk, V.S.; Glasbrenner, U.; Klein, C.; Wenquing, L.; Kassie, F.; Schulte-Hermann, R.; Knasmuller, S. Comparative evaluation of four acterial assays for the detection of genotoxic effects in the dissolved water phases of aqueous matrices. Environ. Sci. Technol. 1996, 30, 897–907. [Google Scholar] [CrossRef]
- Duggan, J. The potential for landfill leachate treatment using willows in the UK—A critical review. Resour. Conserv. Recycl. 2005, 45, 97–113. [Google Scholar] [CrossRef]
- Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 2008, 150, 468–493. [Google Scholar] [CrossRef]
- Raghab, S.M.; El Meguid, A.M.A.; Hegazi, H.A. Treatment of leachate from municipal solid waste landfill. HBCR J. 2013, 9, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Kamaruddin, M.A.; Yusoff, M.S.; Rui, L.M.; Isa, A.M.; Zawawi, M.H.; Alrozi, R. An overview of municipal solid WM and landfill leachate treatment: Malaysia and Asian perspectives. Environ. Sci. Pollut. Res. 2017, 24, 26988. [Google Scholar] [CrossRef]
- Powell, J.T.; Pons, J.C.; Chertow, M. Waste informatics: Establishing characteristics of contemporary U.S. landfill quantities and practices. Environ. Sci. Technol. 2016, 50, 10877–10884. [Google Scholar] [CrossRef]
- Chavan, D.; Lakshmikanthan, P.; Mondal, P.; Kumar, S.; Kumar, R. Determination of ignition temperature of municipal solid waste for understanding surface and sub-surface landfill fire. Waste Manage. 2019, 97, 123–130. [Google Scholar] [CrossRef]
- Raúl, G.E.; Morales, S.; Toro, R.; Luis, A.; Morales, M.A.; Leiva, G. Landfill fire and airborne aerosols in a large city: Lessons learned and future needs Air Qual. Atmos. Health 2018, 11, 111–121. [Google Scholar]
- Øygard, J.K.; Måge, A.; Gjengedal, E.; Svane, T. Effect of an uncontrolled fire and the subsequent fire fight on the chemical composition of landfill leachate. Waste Manag. 2005, 25, 712–718. [Google Scholar] [CrossRef]
- Vassiliadou, I.; Papadopoulos, A.; Costopoulou, D.; Vasiliadou, S.; Christoforou, S.; Leondiadis, L. Dioxin contamination after an accidental fire in the municipal landfill of Tagarades, Thessaloniki, Greece. Chemosphere 2009, 74, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Chrysikou, L.; Gemenetzis, P.; Kouras, A.; Manoli, E.; Terzi, E.; Samara, C. Distribution of persistent organic pollutants, polycyclic aromatic hydrocarbons and trace elements in soil and vegetation following a large scale landfill fire in northern Greece. Environ. Int. 2008, 34, 210–225. [Google Scholar] [CrossRef] [PubMed]
- Downard, J.; Singh, A.; Bullard, R.; Jayarathne, T.; Rathnayake, C.M.; Simmons, D.L.; Wels, B.R.; Spak, S.N.; Peters, T.; Beardsley, D.; et al. Uncontrolled combustion of shredded tires in a landfill—Part 1: Characterization of gaseous and particulate emissions. Atmos. Environ. 2015, 104, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Spak, S.N.; Stone, E.A.; Downard, J.; Bullard, R.L.; Pooley, M.; Kostle, P.A.; Mainprize, M.W.; Wichman, M.D.; Peters, T.M.; et al. Uncontrolled combustion of shredded tires in a landfill—Part 2: Population exposure, public health response, and an air quality index for urban fires. Atmos. Environ. 2015, 104, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Rim-Rukeh, A. An Assessment of the Contribution of Municipal Solid Waste Dump Sites Fire to Atmospheric Pollution. Open J. Air Pollut. 2014, 3, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Weichenthal, S.; Van Rijswijk, D.; Kulka, R.; You, H.; Van Ryswyk, K.; Willey, J.; Dugandzic, R.; Sutcliffe, R.; Moulton, J.; Baike, M.; et al. The impact of a landfill fire on ambient air quality in the north: A case study in Iqaluit, Canada. Environ. Res. 2015, 142, 46–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristale, J.; Belé, T.G.A.; Lacorte, S.; Rodrigues de Marchi, M.R.R. Occurrence of flame retardants in landfills: A case study in Brazil. Environ. Res. 2019, 168, 420–427. [Google Scholar] [CrossRef]
- Nadal, M.; Rovira, J.; Díaz-Ferrero, J.; Schuhmacher, M.; Domingo, J.L. Human exposure to environmental pollutants after a tire landfill fire in Spain: Health risks. Environ. Int. 2016, 97, 37–44. [Google Scholar] [CrossRef]
- Escobar-Arnanz, J.; Mekni, S.; Blanco, G.; Eljarrat, E.; Barceló, D.; Ramos, L. Characterization of organic aromatic compounds in soils affected by an uncontrolled tire landfill fire through the use of comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. J. Chromatogr. A 2018, 1536, 163–175. [Google Scholar] [CrossRef]
- Purser, D.A.; Maynard, R.L.; Wakefield, J.C. Toxicology, Survival and Health Hazards of Combustion Products; The Royal Society of Chemistry: London, UK, 2015. [Google Scholar] [CrossRef]
- Rovira, J.; Dominguez-Morueco, N.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Temporal trend in the levels of polycyclic aromatic hydrocarbons emitted in a big tire landfill fire in Spain: Risk assessment for human health. J. Environ. Sci. Heal. A. 2018, 53, 222–229. [Google Scholar] [CrossRef]
- Kumar, S.; Aggarwal, S.G.; Gupta, P.K.; Kawamura, K. Investigation of the tracers for plastic-enriched waste burning aerosols. Atmos. Environ. 2015, 108, 49–58. [Google Scholar] [CrossRef]
- Sahariah, B.; Goswami, L.; Farooqui, I.U.; Raul, P.; Bhattacharyya, P.; Bhattacharya, S.S. Solubility, hydrogeochemical impact, and health assessment of toxic metals in municipal wastes of two differently populated cities. J. Geochem. Explor. 2015, 157, 100–109. [Google Scholar] [CrossRef]
- Rao, M.N.; Sultana, R.; Kota, S.H. Municipal solid waste. In Solid and Hazardous WM; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–120. [Google Scholar]
- Krzyzanowski, M.; Cohen, A. Update of WHO air quality guidelines. Air Qual. Atmos. Health 2008, 1, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Giusti, L. A review of WM practices and their impact on human health. Waste Manag. 2009, 29, 2227–2239. [Google Scholar] [CrossRef] [PubMed]
- Dhabbah, A.M. Ways of analysis of fire effluents and assessment of toxic hazards. J. Anal. Sci. Methods Instrum. 2015, 5, 1–12. [Google Scholar] [CrossRef]
- Stoeva, K.; Alriksson, S. Influence of recycling programmes on waste separation behavior. Waste Manag. 2017, 68, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Hipel, J.; Ma, K.W.; Hanson, M.L.; Cai, X.; Liu, Y. An analysis of influencing factors on municipal solid waste source-separated collection behavior in Guilin, China by using the theory of planned behavior. Sustain. Cities Soc. 2018, 37, 36–343. [Google Scholar] [CrossRef]
- Pandey, R.U.; Surjan, A.; Kapshe, M. Exploring linkages between sustainable consumption and prevailing green practices in reuse and recycling of household waste: Case of Bhopal city in India. J. Clean. Prod. 2018, 173, 49–59. [Google Scholar] [CrossRef]
- Matsuda, T.; Hirai, Y.; Asari, M.; Yano, J.; Miura, T.; Ii, R.; Sakai, S. Monitoring environmental burden reduction from household waste prevention. Waste Manag. 2018, 71, 2–9. [Google Scholar] [CrossRef]
- Pietzsch, N.; Ribeiro, J.D.L.; Medeiros, J.F. Benefits, challenges and critical factors of success for zero waste: A systematic literature review. Waste Manag. 2017, 67, 324–353. [Google Scholar] [CrossRef]
- Samadder, S.R.; Prabhakar, R.; Khan, D.; Kishan, D.; Chauhan, M.S. Analysis of the contaminants released from municipal solid waste landfill site: A case study. Sci. Total Environ. 2017, 580, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Zaman, A.U. A comprehensive study of the environmental and economic benefits of resource recovery from global WM systems. J. Clean. Prod. 2016, 124, 41–50. [Google Scholar] [CrossRef]
- Westlake, K. Sustainable Landfill—Possibility or Pipe-Dream? Waste Manag. Res. 1997, 15, 453–461. [Google Scholar] [CrossRef]
- Townsend, T.G.; Powell, J.; Jain, P.; Xu, Q.; Tolaymat, T.; Reinhart, D. Planning for Sustainable Landfilling Practices. Sustainable Practices for Landfill Design and Operation. In Sustainable Practices for Landfill Design and Operation; Springer: New York, NY, USA, 2015; pp. 35–51. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Soliman, A.; Hettiaratchi, P.A.; Agbakpe, M. Resource Mining for a Bioreactor Landfill. Curr. Environ. Eng. 2019, 6, 17–34. [Google Scholar] [CrossRef]
- Scharff, H.; Kok, B.; Krom, A.H. The role of sustainable landfill in future WM systems. In Proceedings of the Eleventh International WM and Landfill Symposium, Cagliari, Italy, 1–5 October 2007. [Google Scholar]
- Huber-Humer, M.; Lechner, P. Sustainable landfilling or sustainable society without landfilling? Waste Manag. 2011, 31, 1427–1428. [Google Scholar] [CrossRef] [PubMed]
- Song, O.; Li, J.; Zeng, X. Minimizing the increasing solid waste through zero waste strategy. J. Clean. Prod. 2015, 104, 199–210. [Google Scholar] [CrossRef]
- Taha, M.P.M.; Drew, G.H.; Longhurst, P.J.; Smith, R.; Pollard, S.J.T. Bioaerosol releases from compost facilities: Evaluating passive and active source terms at a green waste facility for improved risk assessments. Atmos. Environ. 2006, 40, 159–1169. [Google Scholar] [CrossRef]
- Pearson, C.; Littlewood, E.; Douglas, P.; Robertson, S.; Gant, T.W.; Hansell, A.L. Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: A systematic review of occupational and community studies. J. Toxicol. Environ. Health Part B 2015, 18, 43–69. [Google Scholar] [CrossRef]
- Robertson, S.; Douglas, P.; Jarvis, D.; Marczylo, E. Bioaerosol exposure from composting facilities and health outcomes in workers and in the community: A systematic review update. Int. J. Hyg. Environ. Health 2019, 222, 364–386. [Google Scholar] [CrossRef]
- Ounoughene, G.; Chivas-Joly, C.; Longuet, C.; Le Bihan, O.; Lopez-Cuesta, J.M.; Coq, L.L. Evaluation of nanosilica emission in polydimethylsiloxane composite during incineration. J. Hazard. Mater. 2019, 371, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Jiang, X.; Chen, D. The emission of fluorine gas during incineration of fluoroborate residue. J. Hazard. Mater. 2016, 308, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Harrison, R.M. Emission of ultrafine particles from the incineration of municipal solid waste: A review. Atmos. Environ. 2016, 140, 519–528. [Google Scholar] [CrossRef]
- Hsu, W.T.; Liu, M.C.; Hung, P.C.; Chang, S.H.; Chang, M.B. PAH emissions from coal combustion and waste incineration. J. Hazard. Mater. 2016, 3018, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Burlakovs, J.; Kriipsalu, M.; Klavins, M.; Bhatnagar, A.; Vincevica-Gaile, Y.; Stenis, J.; Jani, Z.; Mykhaylenko, V.; Denafas, G.; Turkadze, T.; et al. Paradigms on landfill mining: From dump site scavenging to ecosystem services revitalization. Resour. Conserv. Recycl. 2017, 123, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Laner, D.; Cencic, O.; Svensson, N.; Krook, J. Quantitative Analysis of Critical Factors for the Climate Impact of Landfill Mining. Environ. Sci. Technol. 2016, 50, 6882–6891. [Google Scholar] [CrossRef] [PubMed]
- Mönkäre, T.; Palmroth, M.R.T.; Sormunen, K.; Rintala, J. Scaling up the treatment of the fine fraction from landfill mining: Mass balance and cost structure. Waste Manag. 2019, 15, 464–471. [Google Scholar] [CrossRef]
- Hölzle, I. Contaminant patterns in soils from landfill mining. Waste Manag. 2019, 83, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Danthurebandara, M.; Van Passel, S.; Van Acker, K. Environmental and economic assessment of ‘open waste dump’ mining in Sri Lanka. Resour. Conserv. Recycl. 2015, 102, 67–79. [Google Scholar] [CrossRef]
- Danthurebandara, M.; Van Passel, S.; Vanderreydt, I.; Van Acker, K. Assessment of environmental and economic feasibility of Enhanced Landfill Mining. Waste Manag. 2015, 45, 434–447. [Google Scholar] [CrossRef]
- Frändegård, P.; Krook, J.; Svensson, N.E.; Eklund, M. Resource and Climate Implications of Landfill Mining. J. Ind. Ecol. 2013, 17, 742–755. [Google Scholar] [CrossRef] [Green Version]
- Winterstetter, A.; Laner, D.; Rechberger, H.; Fellner, J. Framework for the evaluation of anthropogenic resources: A landfill mining case study—Resource or reserve? Resour. Conserv. Recycl. 2015, 96, 19–30. [Google Scholar] [CrossRef]
- Laner, D.; Esguerra, J.L.; Krook, J.; Horttanainen, M.; Kriipsalu, M.; Rosendal, R.M.; Stanisavljević, N. Systematic assessment of critical factors for the economic performance of landfill mining in Europe: What drives the economy of landfill mining? Waste Manag. 2019, 15, 674–686. [Google Scholar] [CrossRef] [PubMed]
Country | 1995 | 2016 | 2017 | Waste Treatment—Landfill, 2016 (Share of Landfill Disposal) |
---|---|---|---|---|
Austria | 480 | 552 | 570 | 3% |
Belgium | 446 | 414 | 409 | 1% |
Bulgaria | 531 | 404 | 416 | 64% |
Cyprus | 595 | 592 | 637 | 81% |
Czech Republic | 312 | 339 | 344 | 50% |
Denmark | 521 | 777 | 781 | 1% |
Estonia | 370 | 327 | 390 | 12% |
Finland | 437 | 504 | 510 | 3% |
France | 476 | 510 | 513 | 22% |
Germany | 623 | 625 | 633 | 1% |
Greece | 331 | 498 | - | 82% |
Hungary | 377 | 380 | 385 | 51% |
Ireland * | 430 | 615 | - | 22% |
Italy | 468 | 436 | 489 | 28% |
Latvia | 184 | 367 | 438 | 72% |
Lithuania | 542 | 422 | 455 | 31% |
Luxemburg | 587 | 614 | 607 | 17% |
Malta | 387 | 584 | 604 | 92% |
Netherlands | 509 | 518 | 513 | 1% |
Poland | 284 | 307 | 315 | 37% |
Portugal * | 351 | 483 | 487 | 49% |
Romania | 254 | 228 | 272 | 80% |
Slovakia | 294 | 344 | 378 | 66% |
Slovenia ** | 469 | 434 | 471 | 24% |
Spain | 365 | 443 | 462 | 57% |
Sweden | 386 | 442 | 452 | 1% |
United Kingdom * | 501 | 476 | - | 28% |
Parameter | Low-Age Landfill | Mid-Age Landfill | Old Landfill |
---|---|---|---|
Landfill age (years) | <1 | 1–5 | >5 |
pH | <6.5 | 6.5–7.5 | >7.5 |
COD (g O2.dm−3) | >15 | 3.0–15 | <3.0 |
BOD5/COD | 0.5–1 | 0.1–0.5 | <0.1 |
TOC/COD | <0.3 | 0.3–0.5 | >0.5 |
NH3-N (mg.dm−3) | <400 | 400 | >400 |
Heavy metals (mg.dm−3) | >2.0 | <2.0 | <2.0 |
Type of Landfill | Landfill Location | Year | Environment | References |
---|---|---|---|---|
MSW, industrial and construction waste | Western Norway | 2003 | Landfill leachates | [70] |
MSW | Tagarades, Greece | 2006 | Landfill surrounding area/soil and vegetation samples | [71,72] |
Landfill’s shredded tire drainage layer | Iowa City, United States | 2012 | Air | [73,74] |
MSW | Niger Delta, Southern Nigeria | 2013 | Air | [75] |
MSW | Iqaluit, Northern Canada | 2014 | Air | [76] |
MSW, electronic waste and bulky waste | Araraquara city, Brazil | 2015 | Soil, dust, leachate and well water | [77] |
Tire landfill | Seseña, Toledo, Spain | 2016 | Air/soil | [78,79] |
MSW | Talagante, Chile | 2016 | Air | [69] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaverková, M.D. Landfill Impacts on the Environment—Review. Geosciences 2019, 9, 431. https://doi.org/10.3390/geosciences9100431
Vaverková MD. Landfill Impacts on the Environment—Review. Geosciences. 2019; 9(10):431. https://doi.org/10.3390/geosciences9100431
Chicago/Turabian StyleVaverková, Magdalena Daria. 2019. "Landfill Impacts on the Environment—Review" Geosciences 9, no. 10: 431. https://doi.org/10.3390/geosciences9100431
APA StyleVaverková, M. D. (2019). Landfill Impacts on the Environment—Review. Geosciences, 9(10), 431. https://doi.org/10.3390/geosciences9100431