Geomorphological Mapping and Spatial Analyses of an Upper Weichselian Glacitectonic Complex Based on LiDAR Data, Jasmund Peninsula (NE Rügen), Germany
Abstract
:1. Introduction
2. Geological Setting of the Study Area
3. Methodology
3.1. Geomorphological Mapping and Morphometric Analysis
3.2. Ridge Stacking
3.3. Spectral Analysis
4. Geomorphological Map and Morphometry of the Surface Structures
4.1. Glacial Geomorphology of Jasmund
4.2. Morphometry of the Ridge Crests on Top of the Northern and Southern Sub-Complex
5. Spacing Character of the Morphological Ridges
6. Interpretation and Discussion
6.1. Terminology of the Surface Structures
6.2. The Chronology of Jasmund’s Glacitectonic Development
6.3. Importance of High Resolution Data and Spatial Analysis Tools
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Croot, D.G. Glacio-tectonic structures: A mesoscale model of thin-skinned thrust sheets? J. Struct. Geol. 1987, 9, 797–808. [Google Scholar] [CrossRef]
- Banham, P. Thin-skinned glaciotectonic structures. In Glaciotectonics: Forms and Processes; Croot, D.G., Ed.; Balkema: Rotterdam, The Netherlands, 1988; pp. 21–25. ISBN 9061918480. [Google Scholar]
- Pedersen, S.A.S. Structural Analysis of the Rubjerg Knude Glaciotectonic Complex, Vendsyssel, Northern Denmark; Geological Survey of Denmark and Greenland: Copenhagen, Denmark, 2005; Volume 8, pp. 1–192. [Google Scholar]
- Vaughan-Hirsch, D.P.; Phillips, E.R. Mid-Pleistocene thin-skinned glaciotectonic thrusting of the Aberdeen Ground Formation, Central Graben region, central North Sea. J. Quat. Sci. 2017, 32, 196–212. [Google Scholar] [CrossRef]
- Aber, J.S.; Croot, D.G.; Fenton, M.M. Glaciotectonic Landforms and Structures; Kluwer: Dordrecht, The Netherlands, 1989; ISBN 978-9401568432. [Google Scholar]
- Van der Wateren, F.M. Ice-margin terrestrial landsystems: Southern Scandinavian ice sheet margin. In Glacial Landsystems; Evans, D.J.A., Ed.; Arnold: London, UK, 2003; pp. 166–203. ISBN 9780340806661. [Google Scholar]
- Groth, K. Zur glazitektonischen Entwicklung der Stauchmoräne Jasmund/Rügen. Schriftenr. d. Landesamtes f. Umwelt Naturschutz und Geol. M. V. 2003, 3, 39–49. [Google Scholar]
- Müller, U.; Obst, K. Lithostratigraphie und Lagerungsverhältnisse der pleistozänen Schichten im Gebiet von Lohme (Jasmund/Rügen). Z. Geol. Wiss. 2006, 34, 39–54. [Google Scholar]
- Ludwig, A.O. Zwei markante Stauchmoränen: Peski/Belorussland und Jasmund, Ostseeinsel Rügen/Nordostdeutschland—Gemeinsame Merkmale und Unterschiede. E G Quat. Sci. J. 2011, 60, 464–487. [Google Scholar]
- Gehrmann, A.; Hüneke, H.; Meschede, M.; Phillips, E. 3D microstructural architecture of deformed glacigenic sediments associated with large-scale glacitectonism, Jasmund Peninsula (NE Rügen), Germany. J. Quat. Sci. 2017, 32, 213–230. [Google Scholar] [CrossRef]
- Credner, R. Rügen. Eine Inselstudie. Forsch. Dtsch. Landes-Volkskd. 1893, 7, 373–494. [Google Scholar]
- Gripp, K. Jasmund und Möen, eine glacialmorphologische Untersuchung. Z. Erdkd. 1947, 1, 175–182. [Google Scholar]
- Sharp, M.J. Annual moraine ridges at Skafallsjökull, southeast Iceland. J. Glaciol. 1984, 30, 82–93. [Google Scholar] [CrossRef]
- Krüger, J. Origin, chronology and climatological significance of annual moraine ridges at Mýrdalsjökull, Iceland. Holocene 1995, 5, 420–427. [Google Scholar] [CrossRef]
- Evans, D.J.A.; Twigg, D.R. The active temperate glacial landsystem: A model based on Breiðamerkurjökull and Fjallsjökull, Iceland. Quat. Sci. Rev. 2002, 21, 2143–2177. [Google Scholar] [CrossRef]
- Bradwell, T. Annual moraines and summer temperatures at Lambatungnajökull, Iceland. Arct. Antarct. Alp. Res. 2004, 36, 502–508. [Google Scholar] [CrossRef]
- Bradwell, T.; Siggurðsson, O.; Everest, J. Recent, very rapid retreat of a temperate glacier in SE Iceland. Boreas 2013, 42, 959–973. [Google Scholar] [CrossRef] [Green Version]
- Benn, D.I.; Evans, D.J.A. Glaciers and Glaciation, 2nd ed.; Hodder Education: London, UK, 2010; pp. 500–510. ISBN 978-0-340-90579-1. [Google Scholar]
- Pedersen, S.A.S.; Gravesen, P. Geological Map of Denmark, 1:50,000, Møn; Geological Survey of Denmark and Greenland: Copenhagen, Denmark, 2006. [Google Scholar]
- Pedersen, S.A.S.; Gravesen, P. Structural development of Maglevandsfald: A key to understanding the glaciotectonic architecture of Møns Klint, SE Denmark. Geol. Surv. Den. Greenl. Bull. 2009, 17, 29–32. [Google Scholar]
- Pedersen, S.A.S.; Boldreel, L.O. Thrust-fault architecture of glaciotectonic complexes in Denmark. Geol. Surv. Den. Greenl. Bull. 2015, 33, 17–20. [Google Scholar]
- Aber, J.S.; Ber, A. Chapter 5 Composite ridges. In Glaciotectonism, 1st ed.; van der Meer, J.J.M., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2007; Volume 6, pp. 59–82. ISBN 978-0444529435. [Google Scholar]
- Boulton, G.S.; van der Meer, J.J.M.; Beets, D.J.; Hart, J.K.; Ruegg, G.H.J. The sedimentary and structural evolution of a recent push moraine complex: Holmstrømbreen, Spitsbergen. Quat. Sci. Rev. 1999, 18, 339–371. [Google Scholar] [CrossRef]
- Rowland, S.M.; Duebendorfer, E.M.; Schiefelbein, I.M. Structural Analysis and Synthesis. A Laboratory Course in Structural Geology, 3rd ed.; Blackwell Publishing: Malden, MA, USA, 2007; pp. 133–136. ISBN 978-1-4051-1652-7. [Google Scholar]
- Siegal, B.S.; Gillespie, A.R. Remote Sensing in Geology, 1st ed.; John Wiley and Sons: New York, NY, USA, 1980; ISBN 978-0471790525. [Google Scholar]
- Drury, S.A. Image Interpretation in Geology, 1st ed.; Allen and Unwin: London, UK, 1987; ISBN 978-0045500376. [Google Scholar]
- Prost, G.L. Remote Sensing for Geologists. A Guide to Image Interpretation, 1st ed.; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1994; ISBN 978-2884491013. [Google Scholar]
- Jordan, G. Morphometric analysis and tectonic interpretation of digital terrain data: A case study. Earth Surf. Process. Landf. 2003, 28, 807–822. [Google Scholar] [CrossRef]
- Benediktsson, Í.Ö.; Möller, P.; Ingólfsson, Ó.; van der Meer, J.J.M.; Kjær, K.H.; Krüger, J. Instantaneous end moraine and sediment wedge formation during the 1890 glacier surge of Brúarjökull, Iceland. Quat. Sci. Rev. 2008, 27, 209–234. [Google Scholar] [CrossRef]
- Benediktsson, Í.Ö.; Schomacker, A.; Lokrantz, H.; Ingólfsson, Ó. The 1890 surge end moraine at Eyjabakkajökull, Iceland: A re-assessment of a classic glaciotectonic locality. Quat. Sci. Rev. 2010, 29, 484–506. [Google Scholar] [CrossRef]
- Evans, D.J.A. Glacial landsystems of Satujökull, Iceland: A modern analogue for glacial landsystem overprinting by mountain icecaps. Geomorphology 2011, 129, 225–237. [Google Scholar] [CrossRef]
- Ottesen, D.; Dowdeswell, J.A.; Benn, D.I.; Kristensen, L.; Christiansen, H.H.; Christensen, O.; Hansen, L.; Lebesbye, E.; Forwick, M.; Vorren, T.O. Submarine landforms characteristic of glacier surges in two Spitsbergen fjords. Quat. Sci. Rev. 2008, 27, 1583–1599. [Google Scholar] [CrossRef]
- Winkelmann, D.; Jokat, W.; Jensen, L.; Schenke, H.-W. Submarine end moraines on the continental shelf off NE Greenland—Implications for Lateglacial dynamics. Quat. Sci. Rev. 2010, 29, 1069–1077. [Google Scholar] [CrossRef]
- Streuff, K.; Forwick, M.; Szczuciński, W.; Andreassen, K.; Cofaigh, C.Ó. Submarine landform assemblages and sedimentary processes related to glacier surging in Kongsfjorden, Svalbard. Arktos 2015, 1, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Krentz, O. Nutzung des digitalen Höhenmodells für die geologische Landesaufnahme in Sachsen. Publ. Dtsch. Ges. Photogramm. Fernerkund. Geoinf. 1995, 3, 179–185. [Google Scholar]
- Kupetz, M. Die Geomorphologie des Muskauer Faltenbogens im hochauflösenden digitalen Geländemodell (Airborne Laserscanning). Brandenbg. Geowiss. Beitr. 2003, 10, 19–28. [Google Scholar]
- Lang, J.; Lauer, T.; Winsemann, J. New age constraints for the Saalian glaciation in northern central Europe: Implications for the extent of ice sheets and related proglacial lake systems. Quat. Sci. Rev. 2018, 180, 240–259. [Google Scholar] [CrossRef]
- Hardt, J.; Hebenstreit, R.; Lüthgens, C.; Böse, M. High-resolution mapping of ice-marginal landforms in the Barnim region, northeast Germany. Geomorphology 2015, 250, 41–52. [Google Scholar] [CrossRef]
- Hardt, J.; Lüthgens, C.; Hebenstreit, R.; Böse, M. Geochronological (OSL) and geomorphological investigations at the presumed Frankfurt ice marginal position in northeast Germany. Quat. Sci. Rev. 2016, 154, 85–99. [Google Scholar] [CrossRef]
- Perron, J.T.; Kirchner, J.W.; Dietrich, W.E. Spectral signatures of characteristic spatial scales and nonfractal structure in landscapes. J. Geophys. Res. 2008, 113, F04003. [Google Scholar] [CrossRef]
- Spagnolo, M.; Bartholomaus, T.C.; Clark, C.D.; Stokes, C.R.; Atkinson, N.; Dowdeswell, J.A.; Ely, J.C.; Graham, A.G.C.; Hogan, K.A.; King, E.C.; et al. The periodic topography of ice stream beds: Insights from the Fourier spectra of mega-scale glacial lineations. J. Geophys. Res. Earth Surf. 2017, 122, 1355–1373. [Google Scholar] [CrossRef] [Green Version]
- Cline, M.; Iverson, N.; Harding, C. Origin of washboard moraines of the Des Moines Lobe: Spatial analyses with LiDAR data. Geomorphology 2015, 246, 570–578. [Google Scholar] [CrossRef]
- Von Bülow, K. Stapelmoränen und Untergrund im norddeutschen Jungdiluvium. Geologie 1955, 4, 3–14. [Google Scholar]
- Steinich, G. Endogene Tektonik in Den Unter-Maastricht-Vorkommen auf Jamsund (Rügen); Akademie-Verlag: Berlin, Germany, 1972; pp. 1–207. [Google Scholar]
- Ludwig, A.-O. Zur Interpretation des Kliffanschnitts östlich von Glowe/Insel Rügen (Ostsee). Z. Geol. Wiss. 2005, 33, 263–272. [Google Scholar]
- Jaekel, O. Vier nordische Eiszeiten. Jahresber. Geogr. Ges. Greifswald 1917, 16, 1–41. [Google Scholar]
- Panzig, W.A. Zum Pleistozän Nordost-Rügens. In Geologie des Südlichen Ostseeraumes—Umwelt und Untergrund, 147; Hauptversammlung der Deutschen Geologischen Gesellschaft—Exkursionsführer, Greifswald, Germany, October 1995; Katzung, G., Hüneke, H., Obst, K., Eds.; Terra Nostra—Schriften der Alfred-Wegener-Stiftung: Bonn, Germany, 1995; pp. 177–200. [Google Scholar]
- Kenzler, M.; Tsukamoto, S.; Meng, S.; Thiel, C.; Frechen, M.; Hüneke, H. Luminescence dating of Weichselian interstadial sediments from the German Baltic Sea coast. Quat. Geochronol. 2015, 30, 251–256. [Google Scholar] [CrossRef]
- Katzung, G.; Müller, U. Quartär. In Geologie von Mecklenburg-Vorpommern; Katzung, G., Ed.; E. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 2004; pp. 221–225. ISBN 978-3510652105. [Google Scholar]
- Müller, U. Jung-Pleistozän—Eem-Warmzeit bis Weichsel-Hochglazial. In Geologie von Mecklenburg-Vorpommern; Katzung, G., Ed.; E. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 2004; pp. 234–242. ISBN 978-3510652105. [Google Scholar]
- Litt, T.; Behre, K.-E.; Meyer, K.-D.; Stephan, H.-J.; Wansa, S. Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes. Eiszeitalt. Ggw. 2007, 56, 7–65. [Google Scholar]
- Janke, W.; Niedermeyer, R.-O. Geologische Entwicklung im Pleistozän. In Die deutsche Ostseeküste; Niedermeyer, R.-O., Lampe, R., Janke, W., Schwarzer, K., Duphorn, K., Kliewe, H., Werner, F., Eds.; Gebr. Borntraeger Verlagsbuchhandlung: Stuttgart, Germany, 2011; pp. 32–51. ISBN 978-3443150914. [Google Scholar]
- Rinterknecht, V.; Börner, A.; Bourlès, D.; Braucher, R. Cosmogenic 10Be dating of ice sheet marginal belts in Mecklenburg-Vorpommern, Western Pomerania (northeast Germany). Quat. Geochronol. 2014, 19, 42–51. [Google Scholar] [CrossRef]
- Groth, K. Der glazitektonische Aufbau der Halbinsel Jamsund/Rügen unter Besonderer Berücksichtigung der Glazidynamischen Entwicklung der Stauchmoräne. Ph.D. Thesis, Mathematisch-Naturwissenschaftliche Fakultät, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany, 1969. [Google Scholar]
- Pike, R.J.; Rozema, W.J. Spectral Analysis of Landforms. Ann. Assoc. Am. Geogr. 1975, 65, 499–516. [Google Scholar] [CrossRef]
- Davis, J.D.; Chojnacki, J.D. Two-dimensional discrete Fourier transform analysis of karst and coral reef morphologies. Trans. GIS 2017, 21, 521–545. [Google Scholar] [CrossRef]
- Rayner, J.N. The application of harmonic and spectral analysis to the study of terrain. In Spatial Analysis in Geomorphology, 1st ed.; Chorley, R.J., Ed.; Methuen: London, UK, 1972; pp. 283–302. ISBN 978-0416660708. [Google Scholar]
- Ricard, Y.; Froidevaux, C.; Simpson, R. Spectral analysis of topography and gravity in the Basin and Range Province. Tectonophysics 1987, 133, 175–187. [Google Scholar] [CrossRef]
- Gallant, J.C. Scale and Structure in Landscapes. Ph.D. Thesis, Australian National University, Canberra, Australia, 1997. [Google Scholar]
- Steyn, D.G.; Ayotte, K.W. Application of two-dimensional terrain height spectra to mesoscale modeling. J. Atmos. Sci. 1985, 42, 2884–2887. [Google Scholar] [CrossRef]
- Hough, S.E. On the use of spectral methods for the determination of fractal dimension. Geophys. Res. Lett. 1989, 16, 673–676. [Google Scholar] [CrossRef]
- Goff, J.A.; Tucholke, B.E. Multiscale spectral analysis of bathymetry on the flank of the Mid-Atlantic Ridge: Modification of the seafloor by mass wasting and sedimentation. J. Geophys. Res. 1997, 102, 15447–15462. [Google Scholar] [CrossRef] [Green Version]
- Hovius, N. Regular spacing of drainage outlets from linear mountain belts. Basin Res. 1996, 8, 29–44. [Google Scholar] [CrossRef]
- Schorghofer, N.; Jensen, B.; Kudrolli, A.; Rothmann, D.H. Spontaneous channelization in permeable ground: Theory, experiment, and observation. J. Fluid Mech. 2004, 503, 357–374. [Google Scholar] [CrossRef]
- Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Gomez, C. Understanding volcanic geomorphology from derivates and wavelet analysis: A case study at Miyakejima Volcano, Izu Islands, Japan. J. Volcanol. Geotherm. Res. 2018, 354, 57–66. [Google Scholar] [CrossRef]
- Paulson, C. Die Karstmoore in der Kreidelandschaft des Nationalparks Jasmund auf Rügen. Greifswald. Geogr. Arb. 2001, 21, 59–271. [Google Scholar]
- Niedermeyer, R.-O.; Kanter, L.; Kenzler, M.; Panzig, W.-A.; Krienke, K.; Ludwig, A.O.; Schnick, H.H.; Schütze, K. Die Insel Rügen (I)—Fazies, Stratigraphie, Lagerungsverhältnisse und geologisches Gefahrenpotenzial pleistozäner Sedimente der Steilküste Jasmund. In Eiszeitlandschaften in Mecklenburg-Vorpommern. Exkursionsführer zur 35. Hauptversammlung der Deutschen Quartärvereinigung DEUQUA e.V. und der 12. Jahrestagung der INQUA PeriBaltic Working Group in Greifswald/Mecklenburg-Vorpommern; Lampe, R., Lorenz, S., Eds.; Geozon: Greifswald, Germany, 2010; p. 51. [Google Scholar]
- Grubbs, F.E. Procedures for Detecting Outlying Observations in Samples. Technometrics 1969, 11, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Bennett, M.R. The morphology, structural evolution and significance of push moraines. Earth-Sci. Rev. 2001, 53, 197–236. [Google Scholar] [CrossRef]
- Ottesen, D.; Dowdeswell, J.A.; Rise, L. Submarine landforms and the reconstruction of fast-flowing ice streams within a large Quaternary ice sheet: The 2500-km-long Norwegian-Svalbard margin (57°–80° N). Geol. Soc. Am. Bull. 2005, 117, 1033–1050. [Google Scholar] [CrossRef]
- Dixon, J.M.; Liu, S. Centrifuge modelling of the propagation of thrust faults. In Thrust Tectonics, 1st ed.; McClay, K.R., Ed.; Chapman & Hall: London, UK, 1992; pp. 53–70. ISBN 978-94-011-3066-0. [Google Scholar]
- Noble, T.E.; Dixon, J.M. Structural evolution of fold-thrust structures in analog models deformed in a large geotechnical centrifuge. J. Struct. Geol. 2011, 33, 62–77. [Google Scholar] [CrossRef]
- Pedersen, S.A.S. Superimposed deformation in glaciotectonics. Bull. Geol. Soc. Den. 2000, 46, 125–144. [Google Scholar]
- Seidel, E.; Meschede, M.; Obst, K. The Wiek Fault System east of Rügen Island: Origin, tectonic phases and its relationship to the Trans-European Suture Zone. Geol. Soc. Lond. Spec. Publ. 2018, 469. [Google Scholar] [CrossRef]
Profile | Height (m) | Width (m) | Spacing (m) | Width/Spacing | Slope Angle (°, Distal) | Slope Angle (°, Proximal) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | ||
North-group | N01 | 13.25 | 2.86 | 26.82 | 341.67 | 259.84 | 479.71 | 277.10 | 129.92 | 659.60 | 1.23 | 2.00 | 0.73 | 4.13 | 0.35 | 9.59 | 4.07 | 1.82 | 6.08 |
N02 | 6.22 | 2.06 | 13.02 | 223.56 | 159.77 | 324.53 | 248.58 | 149.78 | 434.85 | 0.90 | 1.07 | 0.75 | 1.92 | 1.16 | 3.73 | 2.23 | 0.98 | 3.88 | |
N03 | 10.97 | 3.74 | 17.39 | 171.94 | 69.77 | 244.20 | 165.88 | 124.59 | 264.13 | 1.04 | 0.56 | 0.92 | 1.68 | 0.19 | 4.61 | 4.83 | 3.49 | 6.42 | |
N04 | 9.67 | 1.34 | 16.65 | 191.13 | 64.91 | 289.59 | 194.99 | 58.92 | 341.52 | 0.98 | 1.10 | 0.85 | 3.05 | 1.12 | 6.29 | 4.02 | 0.84 | 7.39 | |
N05 | 9.18 | 1.45 | 19.69 | 151.00 | 54.00 | 243.99 | 153.30 | 105.00 | 239.99 | 0.98 | 0.51 | 1.02 | 4.51 | 0.18 | 10.79 | 5.27 | 0.76 | 13.33 | |
mean | 9.86 | 215.86 | 207.97 | 1.04 | 3.06 | 4.09 | |||||||||||||
South-group | S01 | 5.52 | 1.52 | 9.34 | 228.48 | 149.73 | 359.36 | 185.22 | 99.82 | 314.44 | 1.23 | 1.50 | 1.14 | 2.68 | 1.21 | 6.00 | 2.11 | 0.96 | 3.00 |
S07 | 5.21 | 1.26 | 13.08 | 145.58 | 79.86 | 219.61 | 141.09 | 79.86 | 259.54 | 1.03 | 1.00 | 0.85 | 2.59 | 0.62 | 5.56 | 1.84 | 0.58 | 5.35 | |
S08 | 6.41 | 2.82 | 11.80 | 179.10 | 84.89 | 264.65 | 187.42 | 109.86 | 354.53 | 0.96 | 0.77 | 0.75 | 2.63 | 1.16 | 5.02 | 2.39 | 0.17 | 5.31 | |
S09 | 6.52 | 0.80 | 11.98 | 209.15 | 94.86 | 309.56 | 167.68 | 64.91 | 279.60 | 1.25 | 1.46 | 1.11 | 2.90 | 0.74 | 5.27 | 2.07 | 0.91 | 3.26 | |
mean | 5.92 | 190.58 | 170.35 | 1.12 | 2.70 | 2.10 | |||||||||||||
Center-group | S02 | 6.08 | 1.59 | 13.96 | 156.84 | 85.00 | 259.99 | 159.41 | 75.00 | 249.99 | 0.98 | 1.13 | 1.04 | 2.97 | 0.33 | 7.24 | 3.57 | 0.73 | 7.43 |
S03 | 7.24 | 1.45 | 21.04 | 174.91 | 69.96 | 289.85 | 162.69 | 59.97 | 334.83 | 1.08 | 1.17 | 0.87 | 3.28 | 0.69 | 5.57 | 3.86 | 0.62 | 8.22 | |
S04 | 7.31 | 3.75 | 12.65 | 213.54 | 109.89 | 294.70 | 192.58 | 119.88 | 289.71 | 1.11 | 0.92 | 1.02 | 3.33 | 1.35 | 5.85 | 3.34 | 1.02 | 6.83 | |
S05 | 13.64 | 5.75 | 30.00 | 175.39 | 79.89 | 324.56 | 133.99 | 79.89 | 184.75 | 1.31 | 1.00 | 1.76 | 6.29 | 2.74 | 11.11 | 7.44 | 5.05 | 9.18 | |
S06 | 11.94 | 5.71 | 21.44 | 171.86 | 134.89 | 204.83 | 162.37 | 114.91 | 219.82 | 1.06 | 1.17 | 0.93 | 4.91 | 1.59 | 11.50 | 6.64 | 3.73 | 11.04 | |
mean | 9.24 | 178.51 | 162.21 | 1.10 | 4.16 | 4.97 | |||||||||||||
mean (S + C) | 7.76 | 183.87 | 165.83 | 1.11 | 3.51 | 3.69 | |||||||||||||
mean (all) | 8.51 | 195.29 | 180.88 | 1.08 | 3.35 | 3.83 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gehrmann, A.; Harding, C. Geomorphological Mapping and Spatial Analyses of an Upper Weichselian Glacitectonic Complex Based on LiDAR Data, Jasmund Peninsula (NE Rügen), Germany. Geosciences 2018, 8, 208. https://doi.org/10.3390/geosciences8060208
Gehrmann A, Harding C. Geomorphological Mapping and Spatial Analyses of an Upper Weichselian Glacitectonic Complex Based on LiDAR Data, Jasmund Peninsula (NE Rügen), Germany. Geosciences. 2018; 8(6):208. https://doi.org/10.3390/geosciences8060208
Chicago/Turabian StyleGehrmann, Anna, and Chris Harding. 2018. "Geomorphological Mapping and Spatial Analyses of an Upper Weichselian Glacitectonic Complex Based on LiDAR Data, Jasmund Peninsula (NE Rügen), Germany" Geosciences 8, no. 6: 208. https://doi.org/10.3390/geosciences8060208
APA StyleGehrmann, A., & Harding, C. (2018). Geomorphological Mapping and Spatial Analyses of an Upper Weichselian Glacitectonic Complex Based on LiDAR Data, Jasmund Peninsula (NE Rügen), Germany. Geosciences, 8(6), 208. https://doi.org/10.3390/geosciences8060208