Origin of High Density Seabed Pockmark Fields and Their Use in Inferring Bottom Currents
Abstract
:1. Introduction
- (1)
- Identify and map pockmarks on the shelf of the western Timor Sea, Australia using a new semi-automated method.
- (2)
- Document the geochemical and sedimentological properties of pockmark sediments, and of associated infaunal communities.
- (3)
- Present a conceptual model for pockmark formation that links pockmark form and density to local environmental conditions, including hydrodynamics and sedimentary processes.
1.1. Regional Setting
1.1.1. Geological and Physiographic Settings
1.1.2. Environmental and Oceanographic Settings
2. Materials and Methods
2.1. Survey Summary
2.2. Geomorphic Analysis and Automated Pockmarks Characterisation
2.3. Infaunal Data Analyses on Grab Samples
2.4. Hydrodynamic Model
3. Results
3.1. Geomorphic Analysis
3.1.1. Banks
3.1.2. Plains
3.1.3. Pockmarks: Density, Scour Direction Results
3.1.4. Comparison Analysis and Confidence Assessment
3.2. Seabed sediment sample analyses
3.2.1. Sediment Texture Analyses
3.2.2. Geochemistry Analyses
3.2.3. Polychaete Analysis
3.2.4. Hydrodynamic Model Analysis
4. Discussion
4.1. Confidence Assessment of the Semi-Automated Method
4.2. Pockmark Formation and Ecosystem Contribution
4.3. Pockmark Maintenance and Contribution to Hydrodynamic Knowledge
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- King, L.H.; MacLean, B. Pockmarks on the Scotian shelf. Geol. Soc. Am. Bull. 1970, 81, 3141–3148. [Google Scholar] [CrossRef]
- Judd, A.G.; Hovland, M. Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment; Cambridge University Press: Cambridge, UK, 2007; p. 475. [Google Scholar]
- Nicholas, W.A.; Carroll, A.; Picard, K.; Radke, C.L.; Chen, J.; Howard, F.; Siwabessy, J.P.; Dulfer, H.; Tran, M.; Consoli, C.; et al. Seabed Environments, Shallow Sub-Surface Geology and Connectivity, Petrel Sub-Basin, Bonaparte Basin, Timor Sea; Geoscience Australia: Canberra, Australia, 2014; p. 124.
- Hovland, M.; Gardner, J.V.; Judd, A.G. The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids 2002, 2, 127–136. [Google Scholar] [CrossRef]
- Tjelta, T.I.; Svanø, G.; Strout, J.M.; Forsberg, C.F.; Planke, S.; Johansen, H. Gas seepage and pressure build-up at a North Sea platform location: Gas origin, transportation, and potential hazards. In Proceedings of the Offshore Technology Conference (OTC), Houston, TX, USA, 30 April–4 May 2007; p. 11, OTC paper no. 18699. [Google Scholar]
- Harris, P.T.; Baker, E.K. Seafloor Geomorphology as Benthic Habitat, 1st ed.; Elsevier: London, UK, 2012; p. 900. [Google Scholar]
- Decker, C.; Olu, K. Does macrofaunal nutrition vary among habitats at the Håkon Mosby mud volcano? Cahiers Biol. Mar. 2010, 51, 361–367. [Google Scholar]
- Rise, L.; Bellec, V.K.; Chand, S.; Bøe, R. Pockmarks in the southwestern Barents Sea and Finnmark fjords. Nor. J. Geol. Norsk Geol. Foren. 2015, 94, 263–281. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, S.; Hovland, M.; Luo, P.; Lu, Y.; Qu, T. The morphologies and genesis of mega-pockmarks near the Xisha Uplift, South China Sea. Mar. Petroleum Geol. 2011, 28, 1146–1156. [Google Scholar] [CrossRef]
- Andrews, B.D.; Brothers, L.L.; Barnhardt, W.A. Automated feature extraction and spatial organization of seafloor pockmarks, Belfast Bay, Maine, USA. Geomorphology 2010, 124, 55–64. [Google Scholar] [CrossRef]
- Brothers, L.L.; Kelley, J.T.; Belknap, D.F.; Barnhardt, W.A.; Koons, P.O. Pockmarks: Self-scouring seep features? In Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, UK, 17–21 July, 2011; p. 10, Paper no. 326. [Google Scholar]
- Brothers, L.L.; Kelley, J.T.; Belknap, D.F.; Barnhardt, W.A.; Andrews, B.A.; Landon Maynard, M. Over a century of bathymetric observations and shallow sediment characterization in Belfast Bay, Maine USA: Implications for pockmark field longevity. Geo-Mar. Lett. 2011, 31, 237–248. [Google Scholar] [CrossRef]
- Szpak, M.T.; Monteys, X.; O’Reilly, S.S.; Lilley, M.K.S.; Scott, G.A.; Hart, K.M.; McCarron, S.G.; Kelleher, B.P. Occurrence, characteristics and formation mechanisms of methane generated micro-pockmarks in Dunmanus Bay, Ireland. Cont. Shelf Res. 2015, 103, 45–59. [Google Scholar] [CrossRef]
- Webb, K.E.; Barnes, D.K.A.; Plankea, S. Pockmarks: Refuges for marine benthic biodiversity. Limnol. Oceanogr. 2009, 54, 1776–1788. [Google Scholar] [CrossRef]
- Webb, K.E.; Barnes, D.K.A.; Gray, J.S. Benthic ecology of pockmarks in the Inner Oslofjord, Norway. Mar. Ecol. Prog. Ser. 2009, 387, 15–25. [Google Scholar] [CrossRef]
- Wildish, D.J.; Akagi, H.M.; McKeown, D.L.; Pohle, G.W. Pockmarks influence benthic communities in Passamaquoddy Bay, Bay of Fundy, Canada. Mar. Ecol. Prog. Ser. 2008, 357, 51–66. [Google Scholar] [CrossRef]
- Przeslawksi, R.; Glasby, C.; Nichol, S. Polychaetes (Annelida) of the Oceanic Shoals region, northern Australia: Considering small macrofauna in marine management. Mar. Freshw. Res. 2018. submitted. [Google Scholar]
- Gafeira, J.; Long, D.; Diaz-Doce, D. Semi-automated characterisation of seabed pockmarks in the central North Sea. Near Surf. Geophys. 2012, 10, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Weiss, A.D. Topographic Position and Landforms Analysis. In Proceedings of the ESRI International User Conference, San Diego, CA, USA, 9–13 July 2001. [Google Scholar]
- Gafeira, J.; Dolan, M.F.J.; Monteys, X. Geomorphometric Characterization of Pockmarks by using a GIS-based Semi-automated Toolbox. Geosciences 2018, 8, 154. [Google Scholar] [CrossRef]
- Nichol, S.L.; Howard, F.J.F.; Kool, J.; Stowar, M.; Bouchet, P.; Radke, L.; Siwabessy, J.; Przeslawski, R.; Picard, K.; Alvarez de Glasby, B.; et al. Oceanic Shoals Commonwealth Marine Reserve (Timor Sea) Biodiversity Survey: GA0339/SOL5650 Post-Survey Report; Geoscience Australia: Canberra, Australia, 2013; p. 112.
- Van Andel, T.H.; Veevers, J.J. Morphology and sediments of the Timor Sea. Department of National Development, Bureau of Mineral Resources. Geol. Geophys. Bull. 1967, 83, 186. [Google Scholar]
- Heap, A.D.; Harris, P.T. Geomorphology of the Australian margin and adjacent seafloor. Aust. J. Earth Sci. 2008, 55, 555–585. [Google Scholar] [CrossRef]
- Przeslawski, R.; Daniell, J.; Anderson, T.; Barrie, V.; Heap, A.; Hughes, M.; Li, J.; Potter, A.; Radke, L.; Siwabessy, J.; et al. Seabed Habitats and Hazards of the 54 Oceanic Shoals Marine Biodiversity Survey: GA0339/SOL5650—Post Survey Report Joseph Bonaparte Gulf and Timor Sea, Northern Australia; Geoscience Australia Record: Canberra, Australia, 2011; p. 156.
- Heap, A.D.; Przeslawski, R.; Radke, L.; Trafford, J.; Battershill, C.; Shipboard Party. Seabed Environments of the Eastern Joseph Bonaparte Gulf, Northern Australia: SOL4934 Post Survey Report; Geoscience Australia Record: Canberra, Australia, 2010; p. 81.
- West, B.G.; Conolly, J.R.; Blevin, J.E.; Miyazaki, S.; Vuckovic, V. Petroleum Prospectivity of the East Malita Graben area, Bonaparte Basin; Bureau of Mineral Resources, Geology and Geophysics Record: Canberra, Australia, 1992. [Google Scholar]
- Yokoyama, Y.; De Deckker, P.; Lambeck, K.; Johnston, P.; Fifield, L.K. Sea-level at the Last Glacial Maximum: Evidence from northwestern Australia to constrain ice volumes for oxygen isotope stage 2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 165, 281–297. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Lambeck, K.; De Deckker, P.; Johnston, P.; Fifield, K. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 2000, 406, 713–716. [Google Scholar] [CrossRef] [PubMed]
- George, T.; Cauquil, E. A multi-disciplinary site investigation for the assessment of drilling geohazards and environmental impact within the northern Bonaparte Basin. Preview 2010, 148, 41–44. [Google Scholar]
- Lees, B.G. Recent terrigenous sedimentation in Joseph Bonaparte Gulf, Northwestern Australia. Mar. Geol. 1992, 103, 199–213. [Google Scholar] [CrossRef]
- Taupp, T.; Hellmann, C.; Gergs, R.; Winkelmann, C.; Wetzel, M.A. Life Under Exceptional Conditions—Isotopic Niches of Benthic Invertebrates in the Estuarine Maximum Turbidity Zone. Estuar. Coasts 2017, 40, 502. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Purcell, A.; Lambeck, K.; Johnston, P. Shore-line reconstruction around Australia during the Last Glacial Maximum and Late Glacial Stage. Quat. Int. 2001, 83–85, 9–18. [Google Scholar] [CrossRef]
- Nicholas, W.A.; Nichol, S.L.; Howard, F.J.F.; Picard, K.; Dulfer, H.; Radke, L.C.; Carroll, A.G.; Tran, M.; Siwabessy, P.J.W. Pockmark development in the Petrel Sub-basin, Timor Sea, Northern Australia: Seabed habitat mapping in support of CO2 storage assessments. Cont. Shelf Res. 2014, 83, 129–142. [Google Scholar] [CrossRef]
- Gunn, P.J. Bonaparte Basin: Evolution and structural framework. In Proceedings of the Petroleum Exploration Society of Australia, Symposium the North West Shelf, Perth, Australia, 10–12 August 1988. [Google Scholar]
- Bourget, J.; Nanson, R.; Ainsworth, R.B.; Courgeon, S.; Jorry, S.J.; Al-anzi, H. Seismic stratigraphy of a Plio-Quaternary intra-shelf basin (Bonaparte Shelf, NW Australia). In Proceedings of the Petroleum Exploration Society of Australia Symposium, the Sedimentary Basins of Western Australia IV, Perth, Australia, 18–21 August 2013. [Google Scholar]
- De Deckker, P.; Yokoyama, Y. Micropalaeontological evidence for Late Quaternary sea-level changes in Bonaparte Gulf, Australia. Glob. Planet. Chang. 2009, 66, 85–92. [Google Scholar] [CrossRef]
- Radke, L.C.; Li, J.; Douglas, G.; Przeslawski, R.; Nicholl, S.; Siwabessy, J.; Huang, Z.; Trafford, J.; Watson, T.; Whiteway, T. Characterising sediments for a tropical sediment-starved shelf using cluster analysis of physical and geochemical variables. Environ. Chem. 2015, 12, 204–226. [Google Scholar] [CrossRef]
- Gavrilov, A.N.; Siwabessy, P.J.W.; Parnum, I.M. Multibeam Echo Sounder Backscatter Analysis; Centre for Marine Science and Technology: Perth, Australia, 2005. [Google Scholar]
- Radke, L.; Nicholas, T.; Thompson, P.; Li, J.; Raes, E.; Carey, M.; Atkinson, I.; Huang, Z.; Trafford, J.; Nichol, S. Baseline biogeochemical data from Australia’s continental margin links seabed sediments to water column characteristics. Mar. Freshw. Res. 2017. [Google Scholar] [CrossRef]
- Evans, J.S.; Oakleaf, J.; Cushman, S.A.; Theobald, D. An ArcGIS Toolbox for Surface Gradient and Geomorphometric Modeling, version 2.0-0. 2014. Available online: http://evansmurphy.wix.com/evansspatial (accessed on 19 March 2018).
- Fisher, P.; Wood, J.; Cheng, T. Where is Helvellyn? Fuzziness of multi-scale landscape morphometry. Trans. Inst. Br. Geogr. 2004, 29, 106–128. [Google Scholar] [CrossRef]
- Yokoyama, R.; Shirasawa, M.; Pike, R.J. Visualizing topography by openness: A new application of image processing to digital elevation models. Photogramm. Eng. Remote Sens. 2002, 68, 257–265. [Google Scholar]
- Clarke, K.R.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed.; PRIMER-E: Plymouth, Australia, 2001; p. 172. [Google Scholar]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVAþ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E: Plymouth, UK, 2008. [Google Scholar]
- Geoscience Australia. The Australian Bathymetry and Topography 2009 250 m. 2009. Available online: http://www.ga.gov.au/metadata-gateway/metadata/record/89581/ (accessed on 19 March 2018).
- Radke, L.C.; Webber, E. Seafloor Environments of the eastern Timor Sea, Northern Australia: Mineralogy of Seabed Sediments; Geoscience Australia: Canberra, Australia, 2014.
- Shepard, F.P. Nomenclature based on sand-silt-clay ratios. J. Sediment. Petrol. 1954, 24, 151–158. [Google Scholar]
- Keil, R.G.; Mayer, L.M.; Quay, P.D.; Richey, J.E.; Hedges, J.I. Loss of organic matter from riverine particles in deltas. Geochim. Cosmochim. Acta 1997, 61, 1507–1511. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. 1993. Available online: www.aquapublications.nl (accessed on 19 March 2018).
- Van Nugteran, P.; Moodley, L.; Brummer, G.-J.; Heip, C.H.R.; Herman, P.M.; Middleburg, J.J. Seafloor ecosystem functioning: The importance of organic matter priming. Mar. Biol. 2009, 156, 2277–2287. [Google Scholar] [CrossRef] [PubMed]
- Snelgrove, P.V.R.; Butman, C.A. Animal-sediment relationships revised: Cause versus effect. Oceanogr. Mar. Biol. Annu. Rev. 1994, 32, 111–177. [Google Scholar]
- McArthur, M.; Brooke, B.; Przeslawski, R.; Ryan, D.A.; Lucieer, V.; Nichol, S.; McCallum, A.W.; Mellin, C.; Cresswell, I.D.; Radke, L.C. On the use of abiotic surrogates to describe marine benthic biodiversity. Estuar. Coast. Shelf Sci. 2010, 88, 21–32. [Google Scholar] [CrossRef]
- Przeslawski, R.; McArthur, M.A.; Anderson, T.J. Infaunal biodiversity patterns from Carnarvon Shelf (Ningaloo Reef), Western Australia. Mar. Freshw. Res. 2013, 64, 573–583. [Google Scholar] [CrossRef]
- Connell, J.H. Diversity in tropical rain forests and coral reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Brothers, L.L.; Kelley, J.T.; Belknap, D.F.; Barnhardt, W.A.; Andrews, B.D.; Legere, C.; Hughes Clarke, J.E. Shallow stratigraphic control on pockmark distribution in north temperate estuaries. Mar. Geol. 2012, 329–331, 34–45. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picard, K.; Radke, L.C.; Williams, D.K.; Nicholas, W.A.; Siwabessy, P.J.; Howard, F.J.F.; Gafeira, J.; Przeslawski, R.; Huang, Z.; Nichol, S. Origin of High Density Seabed Pockmark Fields and Their Use in Inferring Bottom Currents. Geosciences 2018, 8, 195. https://doi.org/10.3390/geosciences8060195
Picard K, Radke LC, Williams DK, Nicholas WA, Siwabessy PJ, Howard FJF, Gafeira J, Przeslawski R, Huang Z, Nichol S. Origin of High Density Seabed Pockmark Fields and Their Use in Inferring Bottom Currents. Geosciences. 2018; 8(6):195. https://doi.org/10.3390/geosciences8060195
Chicago/Turabian StylePicard, Kim, Lynda C. Radke, David K. Williams, William A. Nicholas, P. Justy Siwabessy, Floyd J. F. Howard, Joana Gafeira, Rachel Przeslawski, Zhi Huang, and Scott Nichol. 2018. "Origin of High Density Seabed Pockmark Fields and Their Use in Inferring Bottom Currents" Geosciences 8, no. 6: 195. https://doi.org/10.3390/geosciences8060195
APA StylePicard, K., Radke, L. C., Williams, D. K., Nicholas, W. A., Siwabessy, P. J., Howard, F. J. F., Gafeira, J., Przeslawski, R., Huang, Z., & Nichol, S. (2018). Origin of High Density Seabed Pockmark Fields and Their Use in Inferring Bottom Currents. Geosciences, 8(6), 195. https://doi.org/10.3390/geosciences8060195