# Topographic Effects in Geoid Determinations

## Abstract

**:**

## 1. Introduction

## 2. The Traditional Solution to Stokes’ Formula

## 3. The RCR Technique with Surface Gravity

_{2}is the correct geoid height.

## 4. The KTH Approach

#### 4.1. More on the Topographic Bias

## 5. Geoid Heights by an EGM

## 6. RCR and KTH Methods Combined with an EGM

## 7. GNSS-Levelling

## 8. Concluding Remarks

## Acknowledgments

## Conflicts of Interest

## References

- Stokes, G.G. On the variation of gravity on the surface of the earth. Trans. Camb. Philos. Soc.
**1849**, 8, 672–695. [Google Scholar] - Heiskanen, A.W.; Moritz, H. Physical Geodesy; W. H. Freeman and Co.: San Francisco, CA, USA; London, UK, 1967. [Google Scholar]
- Forsberg, R. Developments of a Nordic cm-geoid with basics of geoid determination. In Lecture Notes for NKG Autumn School; Harsson, B.G., Ed.; Statens Kartverk: Hönefoss, Norway, 2001. [Google Scholar]
- Sideris, M. Regional geoid determination. In The Geoid and Its Geophysical Interpretation; Vanicek, P., Christou, N.T., Eds.; CRC Press: Boca Raton, FL, USA, 1994; pp. 77–945. [Google Scholar]
- Ellmann, A.; Vanicek, P. UNB application of Stokes-Helmert’s approach to geoid computation. J. Geodyn.
**2007**, 43, 200–213. [Google Scholar] [CrossRef] - Tziavos, I.N.; Sideris, M. Topographic reductions in gravity and geoid modeling. In Geoid Determination—Theory and Methods, Lecture Notes in Earth System Sciences; Sansó, F., Sideris, M., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2013; Chapter 8. [Google Scholar]
- Sansó, F.; Sideris, M. (Eds.) Geoid determination—Theory and Methods, Lecture Notes in Earth System Sciences; Springer-Verlag: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Molodensky, M.S.; Eremeev, V.F.; Yurkina, M.I. Methods for Study of the External Gravitational Field and Figure of the Earth; Tranlslations from Russian (1960); Israel Program for Scientific Translations: Jerusalem, Israel, 1962. [Google Scholar]
- Sjöberg, L.E. A computational scheme to model the geoid by the modified Stokes’s formula without gravity reductions. J. Geodesy
**2003**, 77, 423–432. [Google Scholar] [CrossRef] - Sjöberg, L.E. A general model of modifying Stokes’ formula and its least-squares solution. J. Geodesy
**2003**, 77, 459–464. [Google Scholar] [CrossRef] - Sjöberg, L.E. The IAG approach to the atmospheric geoid correction in Stokes formula and a new strategy. J. Geodesy
**1999**, 73, 362–366. [Google Scholar] [CrossRef] - Sjöberg, L.E. Ellipsoidal corrections to order e
^{2}of geopotential coefficients and Stokes’ formula. J. Geodesy**2003**, 77, 139–147. [Google Scholar] [CrossRef] - Sjöberg, L.E. On the topographic effects by Stokes’ formula. J. Geod. Sci.
**2014**, 4, 130–135. [Google Scholar] [CrossRef] - Sjöberg, L.E.; Bagherbandi, M. Quasigeoid-to-geoid determination by EGM08. Earth Sci. Inform.
**2012**, 5, 87–91. [Google Scholar] [CrossRef] - Sjöberg, L.E. A discussion on the approximations made in the practical implementation of the remove-compute-restore technique in regional geoid modelling. J. Geodesy
**2005**, 78, 645–653. [Google Scholar] [CrossRef] - Sjöberg, L.E.; Bagherbandi, M. Gravity Inversion and Integration; Springer International Publishing AG: Basel, Switzerland, 2017. [Google Scholar]
- Sjöberg, L.E. On the isostatic gravity anomaly and disturbance and their applications to Vening Meinesz-Moritz inverse problem of isostasy. Geophys. J. Int.
**2013**, 193, 1277–1282. [Google Scholar] [CrossRef] - Sjöberg, L.E.; Bagherbandi, M.; Tenzer, R. On gravity inversion by no-topography and new isostatic gravity anomalies. Pure Appl. Geophys.
**2015**, 172, 2669–2680. [Google Scholar] [CrossRef] - Vanicek, P.; Kingdon, R.; Kuhn, M.; Ellmann, A.; Featherstone, W.E.; Santos, M.C.; Martinec, Z.; Hirt, C.; Avalos-Naranjo, D. Testing Stokes-Helmert geoid model computation on a synthetic gravity field: Experiences and shortcomings. Stud. Geophys. Geod.
**2013**, 57, 369–400. [Google Scholar] [CrossRef] - Bjerhammar, A. Gravity Reduction to an Internal Surface; Royal Institute of Technology, Division of Geodesy: Stockholm, Sweden, 1962. [Google Scholar]
- Bjerhammar, A. A New Theory of Gravimetric Geodesy; Royal Institute of Technology, Division of Geodesy: Stockholm, Sweden, 1963. [Google Scholar]
- Sjöberg, L.E. The topographic bias by analytical continuation in physical geodesy. J. Geodesy
**2007**, 81, 345–350. [Google Scholar] [CrossRef] - Sjöberg, L.E. The terrain correction in gravimetric geoid determination—Is it needed? Geophys. J. Int.
**2009**, 176, 14–18. [Google Scholar] [CrossRef] - Sjöberg, L.E. On the topographic bias in geoid determination by the external gravity field. J. Geodesy
**2009**, 83, 967–972. [Google Scholar] [CrossRef] - Sjöberg, L.E. Solving the topographic bias as an initial value problem. Artif. Satell.
**2009**, 44, 77–84. [Google Scholar] [CrossRef] - Sjöberg, L.E. The effect on the geoid of lateral topographic density variations. J. Geodesy
**2004**, 78, 34–39. [Google Scholar] [CrossRef] - Sjöberg, L.E. A numerical test of the topographic bias. J. Geod. Sci.
**2018**, 8, 14–17. [Google Scholar] [CrossRef] - Sjöberg, L.E. The topographic bias in Stokes’ formula vs. the error of analytical continuation by an Earth Gravitational Model—Are they the same? J. Geod. Sci.
**2016**, 5, 171–179. [Google Scholar] [CrossRef] - Vanicek, P.; Sjöberg, L.E. Reformulation of Stokes’s theory for higher than second-degree reference field and modification of integration kernels. J. Geophys. Res.
**1991**, 96, 6529–6539. [Google Scholar] [CrossRef] - Sjöberg, L.E. On the topographic bias and density distribution in modelling the Geoid and orthometric heights. J. Geod. Sci.
**2018**, 8, 30–33. [Google Scholar] [CrossRef]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sjöberg, L.E. Topographic Effects in Geoid Determinations. *Geosciences* **2018**, *8*, 143.
https://doi.org/10.3390/geosciences8040143

**AMA Style**

Sjöberg LE. Topographic Effects in Geoid Determinations. *Geosciences*. 2018; 8(4):143.
https://doi.org/10.3390/geosciences8040143

**Chicago/Turabian Style**

Sjöberg, Lars E. 2018. "Topographic Effects in Geoid Determinations" *Geosciences* 8, no. 4: 143.
https://doi.org/10.3390/geosciences8040143