Observing Geohazards from Space
Abstract
:1. An Overview of the Special Issue
1.1. Data, Methods and Geohazard Domains
1.2. Statistics, Bibliometrics and Impact
2. Further Reading
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Novellino, A.; Cigna, F.; Brahmi, M.; Sowter, A.; Bateson, L.; Marsh, S. Assessing the feasibility of a national InSAR ground deformation map of great britain with sentinel-1. Geosciences 2017, 7, 19. [Google Scholar] [CrossRef]
- Solari, L.; Ciampalini, A.; Raspini, F.; Bianchini, S.; Zinno, I.; Bonano, M.; Manunta, M.; Moretti, S.; Casagli, N. Combined Use of C- and X-Band SAR Data for Subsidence Monitoring in an Urban Area. Geosciences 2017, 7, 21. [Google Scholar] [CrossRef]
- Bonì, R.; Meisina, C.; Cigna, F.; Herrera, G.; Notti, D.; Bricker, S.; McCormack, H.; Tomás, R.; Béjar-Pizarro, M.; Mulas, J.; et al. Exploitation of satellite A-DInSAR time series for detection, characterization and modelling of land subsidence. Geosciences 2017, 7, 25. [Google Scholar] [CrossRef]
- Cencetti, C.; Di Matteo, L.; Romeo, S. Analysis of Costantino Landslide Dam Evolution (Southern Italy) by Means of Satellite Images, Aerial Photos, and Climate Data. Geosciences 2017, 7, 30. [Google Scholar] [CrossRef]
- Fernández, T.; Pérez, J.L.; Colomo, C.; Cardenal, J.; Delgado, J.; Palenzuela, J.A.; Irigaray, C.; Chacón, J. Assessment of the Evolution of a Landslide Using Digital Photogrammetry and LiDAR Techniques in the Alpujarras Region (Granada, Southeastern Spain). Geosciences 2017, 7, 32. [Google Scholar] [CrossRef]
- Moretto, S.; Bozzano, F.; Esposito, C.; Mazzanti, P.; Rocca, A. Assessment of Landslide Pre-Failure Monitoring and Forecasting Using Satellite SAR Interferometry. Geosciences 2017, 7, 36. [Google Scholar] [CrossRef]
- Hölbling, D.; Eisank, C.; Albrecht, F.; Vecchiotti, F.; Friedl, B.; Weinke, E.; Kociu, A. Comparing Manual and Semi-Automated Landslide Mapping Based on Optical Satellite Images from Different Sensors. Geosciences 2017, 7, 37. [Google Scholar] [CrossRef]
- Cigna, F.; Banks, V.J.; Donald, A.W.; Donohue, S.; Graham, C.; Hughes, D.; McKinley, J.M.; Parker, K. Mapping ground instability in areas of geotechnical infrastructure using satellite InSAR and small UAV surveying: A case study in Northern Ireland. Geosciences 2017, 7, 51. [Google Scholar] [CrossRef]
- Gee, D.; Bateson, L.; Sowter, A.; Grebby, S.; Novellino, A.; Cigna, F.; Marsh, S.; Banton, C.; Wyatt, L. Ground motion in areas of abandoned mining: Application of the intermittent SBAS (ISBAS) to the Northumberland and Durham Coalfield, UK. Geosciences 2017, 7, 85. [Google Scholar] [CrossRef]
- Czikhardt, R.; Papco, J.; Bakon, M.; Liscak, P.; Ondrejka, P.; Zlocha, M. Ground Stability Monitoring of Undermined and Landslide Prone Areas by Means of Sentinel-1 Multi-Temporal InSAR, Case Study from Slovakia. Geosciences 2017, 7, 87. [Google Scholar] [CrossRef]
- Declercq, P.-Y.; Walstra, J.; Gérard, P.; Pirard, E.; Perissin, D.; Meyvis, B.; Devleeschouwer, X. A Study of Ground Movements in Brussels (Belgium) Monitored by Persistent Scatterer Interferometry over a 25-Year Period. Geosciences 2017, 7, 115. [Google Scholar] [CrossRef]
- Matano, F.; Sacchi, M.; Vigliotti, M.; Ruberti, D. Subsidence Trends of Volturno River Coastal Plain (Northern Campania, Southern Italy) Inferred by SAR Interferometry Data. Geosciences 2018, 8, 8. [Google Scholar] [CrossRef]
- Cigna, F.; Bateson, L.B.; Jordan, C.J.; Dashwood, C. Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: Nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery. Remote Sens. Environ. 2014, 152, 441–466. [Google Scholar] [CrossRef]
- Geosciences Editorial Office. Acknowledgement to Reviewers of Geosciences in 2017. Geosciences 2018, 8, 33. [Google Scholar] [CrossRef]
- Pu, R. A Special Issue of Geosciences: Mapping and Assessing Natural Disasters Using Geospatial Technologies. Geosciences 2017, 7, 4. [Google Scholar] [CrossRef]
- Propastin, P.; Sheng, Y. Geosciences Special Issue “Advances in Remote Sensing and GIS for Geomorphological Mapping”. Available online: https://www.mdpi.com/journal/geosciences/special_issues/geomorphological-mapping (accessed on 11 January 2018).
- Tapete, D. Remote Sensing and Geosciences for Archaeology. Geosciences 2018, 8, 41. [Google Scholar] [CrossRef]
- McCaffrey, K. Geosciences Special Issue “Geological Mapping and Modeling of Earth Architectures”. Available online: https://www.mdpi.com/journal/geosciences/special_issues/geological-mapping (accessed on 11 January 2018).
Paper Reference & DOI with Access Link | EO and Remote Sensing Data | Processing and Analysis Methods | Geohazard Types |
---|---|---|---|
Novellino et al. [1] 10.3390/geosciences7020019 | Sentinel-1 satellite SAR | Intermittent SBAS InSAR | mining-related subsidence and uplift |
Solari et al. [2] * 10.3390/geosciences7020021 | COSMO-SkyMed and RADARSAT-2 satellite SAR | SBAS InSAR | urbanization-related subsidence |
Bonì et al. [3] 10.3390/geosciences7020025 | ERS-1/2, RADARSAT-1, ENVISAT, ALOS and COSMO-SkyMed satellite SAR | StaMPS, SPN, SqueeSARTM and IPTA InSAR | groundwater management-related subsidence and uplift |
Cencetti et al. [4] 10.3390/geosciences7020030 | Google and Bing satellite optical data, aerial and ortho-photographs | multi-temporal photo-interpretation, feature extraction | landslide dams, river erosion and debris transport |
Fernández et al. [5] 10.3390/geosciences7020032 | aerial panchromatic and RGB-NIR photographs, LiDAR, GNSS | photogrammetry, DEM generation | landslides |
Moretto et al. [6] 10.3390/geosciences7020036 | satellite SAR data (simulated) | InSAR (simulated) post-processing | landslides |
Hölbling et al. [7] * 10.3390/geosciences7020037 | Landsat 7, WorldView-2/3, SPOT-5 and Sentinel-2 satellite optical data | object-based image analysis OBIA, photo-interpretation | landslides |
Cigna et al. [8] 10.3390/geosciences7030051 | ERS-1/2 satellite SAR, small UAV aerial RGB-NIR photographs, GNSS | SBAS InSAR, SfM, photo-interpretation, DEM generation | mine collapse, landslides, natural compaction |
Gee et al. [9] * 10.3390/geosciences7030085 | ERS-1/2, ENVISAT and Sentinel-1 satellite SAR | Intermittent SBAS InSAR | mining-related subsidence and uplift |
Czikhardt et al. [10] 10.3390/geosciences7030087 | Sentinel-1 satellite SAR, LiDAR, UAV aerial photographs | StaMPS InSAR, SfM, DEM generation | landslides, mining-related subsidence |
Declercq et al. [11] 10.3390/geosciences7040115 | ERS-1/2, ENVISAT, TerraSAR-X and Sentinel-1 satellite SAR | StaMPS InSAR, SARProZ PS | groundwater management-related uplift, natural compaction |
Matano et al. [12] 10.3390/geosciences8010008 | ERS-1/2, RADARSAT-1 and ENVISAT satellite SAR | PS-InSARTM, PSP-DIFSAR | natural compaction and human-induced subsidence, tectonic uplift |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cigna, F. Observing Geohazards from Space. Geosciences 2018, 8, 59. https://doi.org/10.3390/geosciences8020059
Cigna F. Observing Geohazards from Space. Geosciences. 2018; 8(2):59. https://doi.org/10.3390/geosciences8020059
Chicago/Turabian StyleCigna, Francesca. 2018. "Observing Geohazards from Space" Geosciences 8, no. 2: 59. https://doi.org/10.3390/geosciences8020059
APA StyleCigna, F. (2018). Observing Geohazards from Space. Geosciences, 8(2), 59. https://doi.org/10.3390/geosciences8020059