Imaging and Characterization of Extrasolar Planets with the Next Generation of Space Telescopes
Abstract
:1. Introduction
2. Fresnel Interferometers
- Diffraction limited angular resolution (diffraction limited angular resolution, θ, is θ = 1.22λ/D, with λ the wavelength at which the telescope operates and D the diameter of the primary collecting surface) with very large collecting surfaces. For a 30-m size deployable foil the resolution is 0.8 mas at Lyman-α.
- The wavefront quality is controlled by the accuracy of the pattern. A 0.1 mm precision in the positioning of the subapertures in the foil provides the same image quality than a λ/100 mirror (2 nm precision at ultraviolet wavelengths). The positioning constraints in a FIA are not wavelength dependent.
- The diffraction pattern can be designed to generate high dynamical range areas in the image. For instance, if the pattern is carved following orthogonal directions, the light at focus is concentrated into two thin orthogonal spikes instead of being spread in Airy diffraction rings as produced by a circular aperture (see Figure 6). Dynamic ranges as high 108 can be obtained.
- Only 5% to 10% of the initial light is focused on the image plane. FI are radiometrically inefficient.
- The spectral bandpass (∆λ) is limited for a given flight configuration to ∆λ/λ =1.41D/LFIA, with D the diameter of the field optics in the second spacecraft and LFIA the side of the square FIA. For the standard configuration in [14]: ∆λ/λ = 0.2.
Current Status of the Technology
3. Starshades
- The angular size of the shade is the radius, R, divided by the distance to the spacecraft containing the space telescope, dS-T. Therefore, to resolve the Earth from 10 pc, a 25 m radius shade must be at dS-T ≥ 52,000 km.
- Dynamic ranges as high as 1010 can be theoretically achieved at the pupil of the telescope (see Figure 8). Further contrast is added by the telescope itself.
- The optimal attenuation profile depends on the wavelength of the radiation.
Current Status of the Technology
4. Coronagraphs
5. Discussion: High Resolution Imaging Versus Transmission Spectroscopy
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Fressin, F.; Torres, G.; Charbonneau, D.; Bryson, S.T.; Christiansen, J.; Dressing, C.D.; Jenkins, J.M.; Walkowicz, L.M.; Batalha, N.M. The False Positive Rate of Kepler and the Occurrence of Planets. Astrophys. J. 2013, 766, 81–101. [Google Scholar] [CrossRef]
- Luhman, K.L.; Morley, C.V.; Burgasser, A.J.; Esplin, T.L.; Bochanski, J.J. Near-infrared Detection of WD 0806-661 B with the Hubble Space Telescope. Astrophys. J. 2014, 794, 16. [Google Scholar] [CrossRef]
- Rugheimer, S.; Kaltenegger, L.; Zsom, A.; Segura, A.; Sasselov, D. Spectral Fingerprints of Earth-like Planets Around FGK Stars. Astrobiology 2013, 13, 251. [Google Scholar] [CrossRef] [PubMed]
- Beichman, C.A.; Krist, J.; Trauger, J.T.; Greene, T.; Oppenheimer, B.; Sivaramakrishnan, A.; Doyon, R.; Boccaletti, A.; Barman, T.S.; Rieke, M. Imaging Young Planets from Ground and Space. Publ. Astron. Soc. Pac. 2010, 122, 162. [Google Scholar] [CrossRef]
- Beichman, C.A.; Green, T.P. A White Paper Submitted to The National Academy of Science’s Committee on Exoplanet Science Strategy: Observing Exoplanets with the James Webb Space Telescope. arXiv, 2018; arXiv:1803.03730. [Google Scholar]
- Schwieterman, E.W.; Kiang, N.Y.; Parenteau, M.N.; Harman, C.E.; DasSarma, S.; Fisher, T.M.; Arney, G.N.; Hartnett, H.E.; Reinhard, C.T.; Olson, S.L.; et al. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. Astrobiology 2018, 18, 663. [Google Scholar] [CrossRef] [PubMed]
- Ricker, G.R.; Winn, J.N.; Vanderspek, R.; Latham, D.W.; Bakos, G.Á.; Bean, J.L.; Berta-Thompson, Z.K.; Brown, T.M.; Buchhave, L.; Butler, N.R.; et al. Transiting Exoplanet Survey Satellite (TESS). Proc. SPIE 2014, 9143, 914320. [Google Scholar] [Green Version]
- Broeg, C.; Fortier, A.; Ehrenreich, D.; Alibert, Y.; Baumjohann, W.; Benz, W.; Deleuil, M.; Gillon, M.; Ivanov, A.; Liseau, R.; et al. CHEOPS: A Transit Photometry Mission for ESA’s Small Mission Programme. Hot Planets and Cool Stars, Garching, Germany. EPJ Web Confer. 2013, 47, 03005. [Google Scholar] [CrossRef]
- Rauer, H.; Catala, C.; Aerts, C.; Appourchaux, T.; Benz, W.; Brandeker, A.; Christensen-Dalsgaard, J.; Deleuil, M.; Gizon, L.; Goupil, M.J.; et al. The PLATO 2.0 mission. Exp. Astron. 2014, 38, 249. [Google Scholar] [CrossRef] [Green Version]
- Pascale, E.; Bezawada, N.; Barstow, J.; Beaulieu, Je.; Bowles, N.; Foresto, V.C.d.; Coustenis, A.; Decin, L.; Drossart, P.; Eccleston, P.; et al. The ARIEL space mission. In Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Austin, TX, USA, 10–15 June 2018. [Google Scholar]
- Chesnokov, Y.M. A space-based very-high resolution telescope. Russ. Space Bull. 1993, 1, 18–21. [Google Scholar]
- Hyde, R.A. Eyeglass: Very large aperture diffractive telescopes. Appl. Opt. 1999, 38, 4198–4212. [Google Scholar] [CrossRef] [PubMed]
- Early, J.T. Solar sail—Fresnel zone plate lens for a large aperture based telescope. AIAA 2002, 1705, 3773–3778. [Google Scholar]
- Koechlin, L.; Serre, D.; Deba, P.; Pelló, R.; Peillon, C.; Duchon, P.; de Castro, A.I.; Karovska, M.; Désert, J.M.; Ehrenreich, D.; Hebrard, G. The Fresnel interferometer imager. Exp. Astron. 2009, 23, 379–402. [Google Scholar] [CrossRef] [Green Version]
- Koechlin, L.; Rivet, J.P.; Deba, P.; Serre, D.; Raksasataya, T.; Gili, R.; David, J. First high dynamic range and high resolution images of the sky obtained with a diffractive Fresnel array telescope. Exp. Astron. 2012, 33, 129–140. [Google Scholar] [CrossRef]
- Roux, W.; Koechlin, L. Improvements on Fresnel arrays for high contrast imaging. Exp. Astron. 2018, 45, 21–40. [Google Scholar] [Green Version]
- Copy, C.J.; Starkman, G.D. The Big Occulting Steerable Satellite (BOSS). Astrophys. J. 2000, 532, 581–592. [Google Scholar] [CrossRef]
- Cash, W. Detection of Earth-like planets around nearby stars using a petal-shaped occulter. Nature 2006, 442, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Vanderbei, R.J.; Cady, E.; Kasin, N.J. Optimal occulter design for finding extrasolar planets. Astrophys. J. 2007, 665, 794–798. [Google Scholar] [CrossRef]
- Vanderbei, R.J.; Spergel, D.N.; Kasdin, N.J. Circularly Symmetric Apodization via Star-shaped Masks. Astrophys. J. 2003, 599, 686–694. [Google Scholar] [CrossRef]
- Novicki, M.C.; Warwick, S.; Smith, D.K.; Richards, M.C.; Harness, A. Suppression of astronomical sources using the McMath-Pierce Solar Telescope and starshades with flight-like optics. In Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave; 2016; SPIE (Society of Photo-Optical Instrumentation Engineers): Bellingham, WA, USA; Volume 9904, p. 26. [Google Scholar]
- Harness, A.; Cash, W.; Warwick, S. High contrast observations of bright stars with a starshade. Exp. Astron. 2017, 44, 209–237. [Google Scholar] [CrossRef] [Green Version]
- Gaudi, B.S.; Seager, S.; Mennesson, B.; Kiessling, A.; Warfield, K.; Kuan, G.; Cahoy, K.; Clarke, J.T.; Domagal-Goldman, S.; Feinberg, L.; et al. The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Interim Report. arXiv, 2018; arXiv:1809.09674. [Google Scholar]
- Kuchner, M.J.; Traub, W.A. A Coronagraph with a Band-limited Mask for Finding Terrestrial Planets. Astrophys. J. 2002, 570, 900. [Google Scholar] [CrossRef]
- Oppenheimer, B.R.; Hinkley, S. High-Contrast Observations in Optical and Infrared Astronomy. Annu. Rev. Astron. Astrophys. 2009, 47, 253. [Google Scholar] [CrossRef]
- Ruane, G.; Jewell, J.; Mawet, D.; Pueyo, L.; Shaklan, S. Apodized vortex coronagraph designs for segmented aperture telescopes. Proc. SPIE 2016, 9912, 99122. [Google Scholar] [Green Version]
- The LUVOIR Team. The LUVOIR Mission Concept Study Interim Report. arXiv, 2018; arXiv:1809.09668. [Google Scholar]
- Pueyo, L.; Zimmerman, N.; Bolcar, M.; Groff, T.; Stark, C.; Ruane, G.; Jewell, J.; Soummer, R.; Laurent, K.S.; Wang, J.; et al. The LUVOIR architecture “A” coronagraph instrument. Proc. SPIE 2017, 10398, 20. [Google Scholar]
- Spergel, D.; Gehrels, N.; Baltay, C.; Bennett, D.; Breckinridge, J.; Donahue, M.; Dressler, A.; Gaudi, B.S.; Greene, T.; Guyon, O.; et al. Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report. arXiv, 2015; arXiv:1503.03757. [Google Scholar]
- Gómez de Castro, A.I.; Lecavelier, A.; D’Avillez, M.; Linsky, J.L.; Cernicharo, J. UV Capabilities to Probe the Formation of Planetary Systems: From the ISM to Planets. In Fundamental Questions in Astrophysics: Guidelines for Future UV Observatories; Springer: Dordrecht, The Netherlands, 2006; pp. 33–52. [Google Scholar]
- Vidal-Madjar, A.; Des Etangs, A.L.; Désert, J.M.; Ballester, G.E.; Ferlet, R.; Hébrard, G.; Mayor, M. An extended upper atmosphere around the extrasolar planet HD209458b. Nature 2002, 422, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Fuselier, S.A.; Burch, J.L.; Lewis, W.S.; Reiff, P.H. Overview of the image science objectives and mission phases. Space Sci. Rev. 2000, 91, 51–66. [Google Scholar] [CrossRef]
- McComas, D.J.; Allegrini, F.; Baldonado, J.; Blake, B.; Brandt, P.C.; Burch, J.; Clemmons, J.; Crain, W.; Delapp, D.; DeMajistre, R.; et al. The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) NASA Mission-of-Opportunity. Space Sci. Rev. 2009, 142, 157–231. [Google Scholar] [CrossRef] [Green Version]
- Gómez de Castro, A.I.; Beitia-Antero, L.; Ustamujic, S. On the feasibility of studying the exospheres of Earth-like exoplanets by Lyman-α monitoring. Detectability constraints for nearby M stars. Exp. Astron. 2018, 45, 147–163. [Google Scholar] [CrossRef]
- Gómez de Castro, A.I.; Appourchaux, T.; Barstow, M.A.; Barthelemy, M.; Baudin, F.; Benetti, S.; Blay, P.; Brosch, N.; Bunce, E.; de Martino, D.; et al. Building galaxies, stars, planets and the ingredients for life between the stars. The science behind the European Ultraviolet-Visible Observatory. Astrophys. Space Sci. 2014, 354, 229–246. [Google Scholar] [CrossRef] [Green Version]
Technology | Angular Resolution@ Lyα | Dynamic Range | Development State | Challenges |
---|---|---|---|---|
Fresnel Imager (10 m) | 2.5 mas | 108 anisotropic (Figure 5) | Tested on astronomical sources at ground-based facilities (optical range) | Low radiometric efficiency. Dedicated mission. |
Starshade (10 m) | 2.5 mas requires dST = 8200 km | 107 experiment@ optical range | Tested on astronomical sources at ground-based facilities (optical range) | Low radiometric efficiency. |
LUVOIR A/ECLIPS Coronagraph | 1.7 mas | 1010 (target) | To be tested for large space telescopes | Concept to be tested |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez de Castro, A.I. Imaging and Characterization of Extrasolar Planets with the Next Generation of Space Telescopes. Geosciences 2018, 8, 442. https://doi.org/10.3390/geosciences8120442
Gómez de Castro AI. Imaging and Characterization of Extrasolar Planets with the Next Generation of Space Telescopes. Geosciences. 2018; 8(12):442. https://doi.org/10.3390/geosciences8120442
Chicago/Turabian StyleGómez de Castro, Ana I. 2018. "Imaging and Characterization of Extrasolar Planets with the Next Generation of Space Telescopes" Geosciences 8, no. 12: 442. https://doi.org/10.3390/geosciences8120442
APA StyleGómez de Castro, A. I. (2018). Imaging and Characterization of Extrasolar Planets with the Next Generation of Space Telescopes. Geosciences, 8(12), 442. https://doi.org/10.3390/geosciences8120442