A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What?
Abstract
:1. Introduction
I can’t answer why (I’m not a gangstar)But I can tell you how (I’m not a flam star)We were born upside-down (I’m a star’s star)Born the wrong way ’round (I’m not a white star)I’m a blackstar, I’m not a gangstarI’m a blackstar, I’m a blackstarI’m not a pornstar, I’m not a wandering starI’m a blackstar, I’m a blackstarBlackstar, ★ (2016), David Bowie
“The stars with mass less than this limit become completely degenerate stars or ‘black’ dwarfs as a consequence of gravitational contraction, and, therefore, they never go through the normal stellar evolution” [10].
“The stars less massive than 0.08 Msol are found to contract toward the configurations [sic] of high electron-degeneracy without hydrogen burning” [11].
2. Nomenclature
- Cluster planet
- Directly-imaged gas-giant planet
- Free-floating planet
- Free-floating planetary-mass brown dwarf
- Interstellar planet
- Isolated extrasolar giant planet
- Isolated planetary-mass object
- Nomad planet
- Orphan planet
- Plamo (contraction of “planetary-mass object”)
- Planemo (idem)
- Planetar (originally coined for designating brown dwarfs)
- Rogue planet
- Starless planet
- Sub-brown dwarf
- Sunless planet
- Superjupiter
- Wandering planet
- Objects with true masses below the limiting mass for thermonuclear fusion of deuterium (currently calculated to be 13 Jupiter masses [0.013 Msol] for objects of solar metallicity) that orbit stars or stellar remnants are “planets” (no matter how they formed). The minimum mass/size required for an extrasolar object to be considered a planet should be the same as that used in our Solar System.
- Substellar objects with true masses above the limiting mass for thermonuclear fusion of deuterium are “brown dwarfs”, no matter how they formed nor where they are located.
- Free-floating objects in young star clusters with masses below the limiting mass for thermonuclear fusion of deuterium are not “planets”, but are “sub-brown dwarfs” (or whatever name is most appropriate).
3. History of Discovery
4. iPMOs Here and There
4.1. iPMOs in Young Open Clusters
4.1.1. Taurus-Auriga
4.1.2. σ Orionis
4.1.3. Upper Scorpius
4.1.4. Pleiades
4.2. (i)PMOs Around Brown Dwarfs
- TWA 27B (widely known as 2M1207-39b or 2M1207b) [118,119,247,248,249,250,251,252]. It is the ~0.005 Msol-mass common proper motion companion to the young brown dwarf TWA 27A in the ~10 Ma-old TW Hydrae association. They are separated by about 40 au and, because of the low mass of the primary, the system mass ratio is as low as 0.1–0.2, with a moderately high uncertainty that comes from the determination of the actual masses of both TWA 27 A and B. Furthermore, for explaining an apparent underluminosity of the secondary, it may have a surrounding disk, as well as the system primary, which has an impact on the derived mass [253,254,255,256,257,258].
- S Ori 68 [259]. Previously classified as an ~0.005 Msol-mass iPMO in σ Orionis [98,179], it lies at a projected physical separation of ~1700 au to the X-ray-flaring brown dwarf SE 70 [260,261]. In spite of being much more separated than TWA 27AB, [259] showed that the probability of chance alignment between the two cluster bodies was extremely low. Because of the system faintness (JA = 15.27 mag, JB = 20.2 mag), it misses a common proper motion confirmation. The corresponding system mass ratio is 0.2.
- L Ori 167 B [262]. It is a slightly older S Ori 68+SE 70 analog in the Collinder 69 (λ Orionis) open cluster. Although L Ori 167 AB is poorly characterized, the two pairs share similar properties (location in Orion, projected physical separation of ~2000 au, secondary mass of ~0.008 Msol). In the case of L Ori 167, the system mass ratio could be as high as 0.5.
- UScoCTIO 108 B [263]. It is another wide (s ~ 670 au) companion to a young brown dwarf, in this case a high-mass one in Upper Scorpius. However, UScoCTIO 108 B could be as massive as 0.014 Msol, which would disqualify it as a planetary-mass object. The system mass ratio is about 0.2.
- 2MASS J0441489+2301513 B (also known as 2M0441+23Bb) [214,264,265]. With a mass of 0.010 Msol, it is the lowest-mass member of a young, hierarchical, quadruple system in Taurus containing a low-mass star, two brown dwarfs and the planetary-mass object. The primary 2M0441+23Ba at only 15 au is an M8.5V low-mass brown dwarf, and the pair is located at 1800 au to the more massive pair 2MASS J04414565+2301580 AB (2M0441+23AaAb). The Bb/Ba mass ratio is 0.5 [214].
4.3. iPMOs in Our Vicinity
4.4. iPMOs Everywhere
5. Formation
- Continuity in the mass function. Even if it is described by a power law [95] or a log-normal function [96], the mass function (or the mass spectrum) in the low-mass stellar domain extrapolates smoothly to the substellar domain down to about 0.004–0.006 Msol or less [35,139,149,186,189]. This limit of about 0.005 Msol is entirely based on the sensitivity limits of the surveys. Actually, there is no indication that the mass function ends at about 0.005 Msol (see Section 6).
- Continuity in the frequency of discs. Isolated PMOs have discs, from which they accrete [116,198]. In particular, [182] measured for the first time the frequency of inner discs of objects between 0.007 and 0.014 Msol. The observed rate in σ Orionis, greater or equal than 50%, was consistent with the rates measured for cluster brown dwarfs and low-mass stars, but suggested that “there is a trend for the inner rate to increase with decreasing mass, which may be due to a mass-dependent timescale for the dissipation of the interior discs” [182].
- Isolated PMOs, brown dwarfs and low-mass stars have the same spatial distribution (cf. [35,139,149,186,189]) (but high-mass stars tend to be more concentrated towards the center of radially-symmetric clusters [228,324]). The lack of iPMOs in the very center of the σ Orionis cluster, near the Trapezium-like system, could be real or just an observational bias [325,326].
6. Future
7. Postlude
- Soaking up the rays at Waikoloa,
- Two years before two thousand four,
- Pondering problems with nomenclature
- Of heavenly orbs of tiny stature.
- Brown Dwarfs... Magenta Midgets...
- After dinner I attended a session,
- hoping to learn a useful lesson.
- The big kahunas, and the Boss-man too
- delivered the opinion of the IAU.
- Gas Giants... Sub-brown dwarfs...
- Things that fuse in the night are stars,
- And orbiting them are planets like Mars.
- Can’t see those cause of their low mass,
- So we argue about great balls of gas.
- Free Floaters... Superplanets...
- Observations show they’re free in space,
- Theory says they must have come from some place.
- So what do you call that Jovian ball
- Floating in space and not in thrall?
- Substellar mass objects... Plamos...
- Nature or nurture was the question to some,
- Others just cared for the mass, by gum!
- Political correctness carried the day:
- Tally up the names in the papers, they say.
- Mass-challenged stars... russet runts...
- If you ask me it doesn’t make much sense
- To hotly debate our ignorance.
- Seems to me planets are really obscene...
- When you see it you’ll know it, if you get what I mean.
- Damn Degenerates...
Funding
Acknowledgments
Conflicts of Interest
Note to the Reader
References
- Van Biesbroeck, G. The star of the lowest known luminosity. Astron. J. 1944, 51, 61–62. [Google Scholar] [CrossRef]
- Herbig, G.H. Observations of the Spectrum of the Companion to BD + 4°4048. Publ. Astron. Soc. Pac. 1956, 68, 53. [Google Scholar] [CrossRef]
- Kirkpatrick, J.D.; Henry, T.J.; McCarthy, D.W., Jr. A standard stellar spectral sequence in the red/near-infrared—Classes K5 to M9. Astrophys. Supl. 1991, 77, 417–440. [Google Scholar] [CrossRef]
- Gaia Collaboration: Brown, A.G.A.; Vallenari, A.; Prusti, T.; de Bruijne, J.H.J.; Babusiaux, C.; Bailer-Jones, C.A.L. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 2018, 616, A1. [Google Scholar] [CrossRef]
- Alonso-Floriano, F.J.; Morales, J.C.; Caballero, J.A.; Montes, D.; Klutsch, A.; Mundt, R.; Cortés-Contreras, M.; Ribas, I.; Reiners, A.; Amado, P.J.; et al. CARMENES input catalogue of M dwarfs. I. Low-resolution spectroscopy with CAFOS. Astron. Astrophys. 2015, 577, A128. [Google Scholar] [CrossRef]
- Kaminski, A.; Trifonov, T.; Caballero, J.A.; Quirrenbach, A.; Ribas, I.; Reiners, A.; Amado, P.J.; Zechmeister, M.; Dreizler, S.; Perger, M.; et al. The CARMENES search for exoplanets around M dwarfs. A Neptune-mass planet traversing the habitable zone around HD 180617. Astron. Astrophys. 2018; arXiv:1808.01183. [Google Scholar]
- Schweitzer, A.; Passegger, V.M.; Béjar, V.J.S.; Cortés-Contreras, M.; Hatzes, A.P.; Kuerster, M.; Montes, D.; Pedraz, S.; Quirrenbach, A.; Ribas, I.; et al. The CARMENES search for exoplanets around M dwarfs. The different roads to radii and masses of the target stars. Astron. Astrophys. 2018, submitted. [Google Scholar]
- Probst, R.G.; Liebert, J. LHS 2924—A uniquely cool low-luminosity star with a peculiar energy distribution. Astrophys. J. 1983, 274, 245. [Google Scholar] [CrossRef]
- Kumar, S.S. The Bottom of the Main Sequence and Beyond: Speculations, Calculations, Observations, and Discoveries (1958–2002). In Brown Dwarfs, Proceedings of the IAU Symposium, Honolulu, HI, USA, 20–24 May 2002; Martín, E., Ed.; Cambridge University Press: Cambridge, UK, 2003; pp. 3–12. [Google Scholar]
- Kumar, S.S. The Structure of Stars of Very Low Mass. Astrophys. J. 1963, 137, 1121–1125. [Google Scholar] [CrossRef]
- Hayashi, C.; Nakano, T. Evolution of Stars of Small Masses in the Pre-Main-Sequence Stages. Prog. Theor. Phys. 1963, 30, 460–474. [Google Scholar] [CrossRef] [Green Version]
- Mestel, L.; Ruderman, M.A. The energy content of a white dwarf and its rate of cooling. Mon. Not. R. Astron. Soc. 1967, 136, 27–38. [Google Scholar] [CrossRef]
- Vila, S.C. Evolution of a 0.6 Msol White Dwarf. Astrophys. J. 1971, 170, 153. [Google Scholar] [CrossRef]
- Tarter, J. Brown Is Not a Color: Introduction of the Term ‘Brown Dwarf’. In 50 Years of Brown Dwarfs; Springer International Publishing: Basel, Switzerland, 2014; Volume 401, pp. 19–24. ISBN 978-3-319-01161-5. [Google Scholar]
- Irwin, M.; McMahon, R.G.; Reid, N. A star of exceedingly low luminosity. Mon. Not. R. Astron. Soc. 1991, 252, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Schneider, D.P.; Greenstein, J.L.; Schmidt, M.; Gunn, J.E. Spectroscopy of an unusual emission line M star. Astron. J. 1991, 102, 1180. [Google Scholar] [CrossRef]
- Becklin, E.E.; Zuckerman, B. A low-temperature companion to a white dwarf star. Nature 1988, 336, 656. [Google Scholar] [CrossRef]
- Kirkpatrick, J.D.; Allard, F.; Bida, T.; Zuckerman, B.; Becklin, E.E.; Chabrier, G.; Baraffe, I. An Improved Optical Spectrum and New Model FITS of the Likely Brown Dwarf GD 165B. Astrophys. J. 1999, 519, 834–843. [Google Scholar] [CrossRef]
- Latham, D.W.; Mazeh, T.; Stefanik, R.P.; Mayor, M.; Burki, G. The unseen companion of HD114762—A probable brown dwarf. Nature 1989, 339, 38–40. [Google Scholar] [CrossRef]
- McCarthy, D.W., Jr.; Probst, R.G. Detection of an Infrared Source near VB 8: The First Extra-solar Planet? Bull. Am. Astron. Soc. 1984, 96, 165. [Google Scholar]
- Zuckerman, B.; Becklin, E.E. Excess infrared radiation from a white dwarf—An orbiting brown dwarf? Nature 1987, 330, 138–140. [Google Scholar] [CrossRef]
- Luyten, W.J.; Kowal, C.T. Proper Motion Survey with the Forty-Eight Inch Schmidt Telescope. XLIII. One Hundred and Six Faint Stars with Large Proper Motions; Separate Print Univ. Minnesota: Minneapolis, MN, USA, 1975; p. 2. [Google Scholar]
- Tinney, C.G. The intermediate-age brown dwarf LP944-20. Mon. Not. R. Astron. Soc. 1989, 296, L42. [Google Scholar] [CrossRef]
- Rieke, G.H.; Rieke, M.J. Possible substellar objects in the Rho Ophiuchi cloud. Astrophys. J. 1990, 362, L21. [Google Scholar] [CrossRef]
- Comerón, F.; Rieke, G.H.; Claes, P.; Torra, J.; Laureijs, R.J. ISO observations of candidate young brown dwarfs. Astron. Astrophys. 1998, 335, 522. [Google Scholar]
- Basri, G. The Discovery of the First Lithium Brown Dwarf: PPl 15. In 50 Years of Brown Dwarfs; Springer International Publishing: Basel, Switzerland, 2014; Volume 401, pp. 51–79. ISBN 978-3-319-01161-5. [Google Scholar]
- Mayor, M.; Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 1995, 378, 355–359. [Google Scholar] [CrossRef]
- Rebolo, R.; Zapatero Osorio, M.R.; Martín, E.L. Discovery of a brown dwarf in the Pleiades star cluster. Nature 1995, 377, 129. [Google Scholar] [CrossRef]
- Rebolo, R.; Martín, E.L.; Basri, G.; Marcy, G.W.; Zapatero Osorio, M.R. Brown Dwarfs in the Pleiades Cluster Confirmed by the Lithium Test. Astrophys. J. 1996, 469, L53–L56. [Google Scholar] [CrossRef]
- Basri, G.; Marcy, G.W.; Graham, J.R. Lithium in Brown Dwarf Candidates: The Mass and Age of the Faintest Pleiades Stars. Astrophys. J. 1996, 458, 600. [Google Scholar] [CrossRef]
- Nakajima, T.; Oppenheimer, B.R.; Kulkarni, S.R.; Golimowski, D.A.; Matthews, K.; Durrance, S.T. Discovery of a cool brown dwarf. Nature 1995, 378, 463–465. [Google Scholar] [CrossRef]
- Oppenheimer, B.R.; Kulkarni, S.R.; Matthews, K.; Nakajima, T.; Golimowski, D.A.; Durrance, S.T. Infrared Spectrum of the Cool Brown Dwarf Gl 229B. Science 1995, 270, 1478–1479. [Google Scholar] [CrossRef] [PubMed]
- Béjar, V.J.S.; Zapatero Osorio, M.R.; Rebolo, R. A Search for Very Low Mass Stars and Brown Dwarfs in the Young σ Orionis Cluster. Astrophys. J. 1999, 521, 671–681. [Google Scholar] [CrossRef] [Green Version]
- Zapatero Osorio, M.R.; Béjar, V.J.S.; Pavlenko, Y.; Rebolo, R.; Allende Prieto, C.; Martín, E.L.; García López, R.J. Lithium and Hα in stars and brown dwarfs of sigma Orionis. Astron. Astrophys. 2002, 384, 937–953. [Google Scholar] [CrossRef]
- Caballero, J.A.; Béjar, V.J.S.; Rebolo, R.; Eislöffel, J.; Zapatero Osorio, M.R.; Mundt, R.; Barrado y Navascués, D.; Bihain, G.; Bailer-Jones, C.A.L.; Forveille, T. The substellar mass function in σ Orionis. II. Optical, near-infrared and IRAC/Spitzer photometry of young cluster brown dwarfs and planetary-mass objects. Astron. Astrophys. 2007, 470, 903–918. [Google Scholar] [CrossRef]
- Luhman, K.L. Discovery of a Binary Brown Dwarf at 2 pc from the Sun. Astrophys. J. 2013, 767, L1. [Google Scholar] [CrossRef]
- Smart, R.L.; Marocco, F.; Caballero, J.A.; Jones, H.R.A.; Barrado, D.; Beamín, J.C.; Pinfield, D.J.; Sarro, L.M. The Gaia ultracool dwarf sample—I. Known L and T dwarfs and the first Gaia data release. Mon. Not. R. Astron. Soc. 2017, 469, 401–415. [Google Scholar] [CrossRef]
- Burrows, A.; Marley, M.; Hubbard, W.B.; Lunine, J.I.; Guillot, T.; Saumon, D.; Freedman, R.; Sudarsky, D.; Sharp, C. A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs. Astrophys. J. 1997, 491, 856–875. [Google Scholar] [CrossRef] [Green Version]
- Baraffe, I.; Chabrier, G.; Allard, F.; Hauschildt, P.H. Evolutionary models for solar metallicity low-mass stars: Mass-magnitude relationships and color-magnitude diagrams. Astron. Astrophys. 1998, 337, 403–442. [Google Scholar]
- Chabrier, G.; Baraffe, I.; Allard, F.; Hauschildt, P. Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres. Astrophys. J. 2000, 542, 464–472. [Google Scholar] [CrossRef]
- Allard, F.; Hauschildt, P.H.; Alexander, D.R.; Tamanai, A.; Schweitzer, A. The Limiting Effects of Dust in Brown Dwarf Model Atmospheres. Astrophys. J. 2001, 556, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Bate, M.R.; Bonnell, I.A.; Bromm, V. The formation of a star cluster: Predicting the properties of stars and brown dwarfs. Mon. Not. R. Astron. Soc. 2003, 339, 577. [Google Scholar] [CrossRef]
- Baraffe, I.; Homeier, D.; Allard, F.; Chabrier, G. New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. Astron. Astrophys. 2015, 577, A42. [Google Scholar] [CrossRef]
- Marley, M.S.; Robinson, T.D. On the Cool Side: Modeling the Atmospheres of Brown Dwarfs and Giant Planets. Arastron. Astrophys. 2015, 53, 279–323. [Google Scholar] [CrossRef]
- Delfosse, X.; Tinney, C.G.; Forveille, T.; Epchtein, N.; Borsenberger, J.; Fouqu, P.; Kimeswenger, S.; Tiphene, D. Searching for very low-mass stars and brown dwarfs with DENIS. Astron. Astrophys. 1999, 135, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Burgasser, A.J.; Kirkpatrick, J.D.; Cutri, R.M.; McCallon, H.; Kopan, G.; Gizis, J.E.; Liebert, J.; Reid, I.N.; Brown, M.E.; Monet, D.G.; et al. Discovery of a Brown Dwarf Companion to Gliese 570ABC: A 2MASS T Dwarf Significantly Cooler than Gliese 229B. Astrophys. J. 2000, 531, L57–L60. [Google Scholar] [CrossRef] [PubMed]
- Gizis, J.E.; Monet, D.G.; Reid, I.N.; Kirkpatrick, J.D.; Liebert, J.; Williams, R.J. New Neighbors from 2MASS: Activity and Kinematics at the Bottom of the Main Sequence. Astron. J. 2000, 120, 1085–1099. [Google Scholar] [CrossRef] [Green Version]
- Bailer-Jones, C.A.L.; Mundt, R. Variability in ultra cool dwarfs: Evidence for the evolution of surface features. Astron. Astrophys. 2001, 367, 218–235. [Google Scholar] [CrossRef] [Green Version]
- Bouy, H.; Brandner, W.; Martín, E.L.; Delfosse, X.; Allard, F.; Basri, G. Multiplicity of Nearby Free-Floating Ultracool Dwarfs: A Hubble Space Telescope WFPC2 Search for Companions. Arastron. J. 2003, 126, 1526–1554. [Google Scholar] [CrossRef]
- White, R.J.; Basri, G. Very Low Mass Stars and Brown Dwarfs in Taurus-Auriga. Astrophys. J. 2003, 582, 1109–1122. [Google Scholar] [CrossRef]
- Zapatero Osorio, M.R.; Caballero, J.A.; Béjar, V.J.S. Optical Linear Polarization of Late M and L Type Dwarfs. Astrophys. J. 2005, 621, 445. [Google Scholar] [CrossRef]
- Morin, J.; Donati, J.-F.; Petit, P.; Delfosse, X.; Forveille, T.; Albert, L.; Aurière, M.; Cabanac, R.; Dintrans, B.; Fares, R.; et al. Large-scale magnetic topologies of mid M dwarfs. Mon. Not. R. Astron. Soc. 2008, 390, 567–581. [Google Scholar] [CrossRef]
- Artigau, É.; Bouchard, S.; Doyon, R.; Lafrenière, D. Photometric Variability of the T2.5 Brown Dwarf SIMP J013656.5+093347: Evidence for Evolving Weather Patterns. Astrophys. J. 2009, 701, 1534–1539. [Google Scholar] [CrossRef]
- Radigan, J.; Jayawardhana, R.; Lafrenière, D.; Artigau, E.; Marley, M.; Saumon, D. Large-amplitude Variations of an L/T Transition Brown Dwarf: Multi-wavelength Observations of Patchy, High-contrast Cloud Features. Astrophys. J. 2012, 750, 105. [Google Scholar] [CrossRef]
- Duchêne, G.; Kraus, A. Stellar Multiplicity. Astron. Astrophys. 2013, 51, 269. [Google Scholar] [CrossRef]
- Kirkpatrick, J.D.; Reid, I.N.; Liebert, J.; Cutri, R.M.; Nelson, B.; Beichman, C.A.; Dahn, C.C.; Monet, D.G.; Gizis, J.E.; Skrutskie, M.F. Dwarfs cooler than “m”: The definition of spectral type “l” using discoveries from the 2 micron all-sky survey (2mass). Astrophys. J. 1999, 519, 802–833. [Google Scholar] [CrossRef]
- Burgasser, A.J.; Kirkpatrick, J.D.; Brown, M.E.; Reid, I.N.; Burrows, A.; Liebert, J.; Matthews, K.; Gizis, J.E.; Dahn, C.C.; Monet, D.G.; et al. The Spectra of T Dwarfs. I. Near-Infrared Data and Spectral Classification. Astrophys. J. 2002, 564, 421. [Google Scholar] [CrossRef]
- Geballe, T.R.; Knapp, G.R.; Leggett, S.K.; Fan, X.; Golimowski, D.A.; Anderson, S.; Brinkmann, J.; Csabai, I.; Gunn, J.E.; Hawley, S.L.; et al. Toward Spectral Classification of L and T Dwarfs: Infrared and Optical Spectroscopy and Analysis. Astrophys. J. 2002, 564, 466. [Google Scholar] [CrossRef]
- Kirkpatrick, J.D. New Spectral Types L and T. Arastron. Astrophys. 2005, 43, 195. [Google Scholar] [CrossRef]
- Davy Kirkpatrick, J.; Gelino, C.R.; Cushing, M.C.; Mace, G.N.; Griffith, R.L.; Skrutskie, M.F.; Marsh, K.A.; Wright, E.L.; Eisenhardt, P.R.; McLean, I.S.; et al. Further Defining Spectral Type “Y” and Exploring the Low-mass End of the Field Brown Dwarf Mass Function. Astrophys. J. 2012, 753, 156. [Google Scholar] [CrossRef]
- Luhman, K.L. Discovery of a ~250 K Brown Dwarf at 2 pc from the Sun. Astrophys. J. 2014, 786, L18. [Google Scholar] [CrossRef]
- Rebolo, R.; Martín, E.L.; Magazzù, A. Spectroscopy of a brown dwarf candidate in the Alpha Persei open cluster. Astrophys. J. 1992, 389, L83. [Google Scholar] [CrossRef]
- Magazzù, A.; Martín, E.L.; Rebolo, R. A spectroscopic test for substellar objects. Astrophys. J. 1993, 404, L17. [Google Scholar] [CrossRef]
- Saumon, D.; Hubbard, W.B.; Burrows, A. A Theory of Extrasolar Giant Planets. Astrophys. J. 1996, 460, 993. [Google Scholar] [CrossRef]
- Spiegel, D.S.; Burrows, A.; Milsom, J.A. The Deuterium-burning Mass Limit for Brown Dwarfs and Giant Planets. Astrophys. J. 2011, 727, 57. [Google Scholar] [CrossRef]
- Chabrier, G.; Baraffe, I. Theory of Low-Mass Stars and Substellar Objects. Arastron. Astrophys. 2000, 38, 337. [Google Scholar] [CrossRef]
- Charbonneau, D.; Brown, T.M.; Latham, D.W.; Mayor, M. Detection of Planetary Transits Across a Sun-like Star. Astrophys. J. 2000, 529, L45. [Google Scholar] [CrossRef] [PubMed]
- Charbonneau, D.; Brown, T.M.; Noyes, R.W.; Gilliland, R.L. Detection of an Extrasolar Planet Atmosphere. Astrophys. J. 2002, 568, 377. [Google Scholar] [CrossRef]
- Butler, R.P.; Vogt, S.S.; Marcy, G.W.; Fischer, D.A.; Wright, J.T.; Henry, G.W.; Laughlin, G.; Lissauer, J.J. A Neptune-Mass Planet Orbiting the Nearby M Dwarf GJ 436. Astrophys. J. 2004, 617, 580–588. [Google Scholar] [CrossRef]
- Beaulieu, J.-P.; Bennett, D.P.; Fouqué, P.; Williams, A.; Dominik, M.; Jørgensen, U.G.; Kubas, D.; Cassan, A.; Coutures, C.; Greenhill, J.; et al. Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 2006, 439, 437–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knutson, H.A.; Charbonneau, D.; Allen, L.E.; Fortney, J.J.; Agol, E.; Cowan, N.B.; Showman, A.P.; Cooper, C.S.; Megeath, S.T. A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 2007, 447, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Udry, S.; Bonfils, X.; Delfosse, X.; Forveille, T.; Mayor, M.; Perrier, C.; Bouchy, F.; Lovis, C.; Pepe, F.; Queloz, D.; et al. The HARPS search for southern extra-solar planets. XI. Super-Earths (5 and 8 MTerra) in a 3-planet system. Astron. Astrophys. 2007, 469, L43–L47. [Google Scholar] [CrossRef]
- Batalha, N.M.; Borucki, W.J.; Bryson, S.T.; Buchhave, L.A.; Caldwell, D.A.; Christensen-Dalsgaard, J.; Ciardi, D.; Dunham, E.W.; Fressin, F.; Gautier, T.N.; et al. Kepler’s First Rocky Planet: Kepler-10b. Astrophys. J. 2011, 729, 27. [Google Scholar] [CrossRef]
- Doyle, L.R.; Carter, J.A.; Fabrycky, D.C.; Slawson, R.W.; Howell, S.B.; Winn, J.N.; Orosz, J.A.; Prsa, A.; Welsh, W.F.; Quinn, S.N.; et al. Kepler-16: A Transiting Circumbinary Planet. Science 2011, 333, 1602–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quintana, E.V.; Barclay, T.; Raymond, S.N.; Rowe, J.F.; Bolmont, E.; Caldwell, D.A.; Howell, S.B.; Kane, S.R.; Huber, D.; Crepp, J.R.; et al. An Earth-Sized Planet in the Habitable Zone of a Cool Star. Science 2014, 344, 277–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macintosh, B.; Graham, J.R.; Barman, T.; De Rosa, R.J.; Konopacky, Q.; Marley, M.S.; Marois, C.; Nielsen, E.L.; Pueyo, L.; Rajan, A.; et al. Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager. Science 2015, 350, 64–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anglada-Escudé, G.; Amado, P.J.; Barnes, J.; Berdiñas, Z.M.; Butler, R.P.; Coleman, G.A.L.; de la Cueva, I.; Dreizler, S.; Endl, M.; Giesers, B.; et al. A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 2016, 536, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Gillon, M.; Triaud, A.H.M.J.; Demory, B.-O.; Jehin, E.; Agol, E.; Deck, K.M.; Lederer, S.M.; de Wit, J.; Burdanov, A.; Ingalls, J.G.; et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 2017, 542, 456–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcy, G.W.; Butler, R.P. A Planetary Companion to 70 Virginis. Astrophys. J. 1996, 464, L147. [Google Scholar] [CrossRef]
- Butler, R.P.; Marcy, G.W.; Williams, E.; Hauser, H.; Shirts, P. Three New “51 Pegasi-Type” Planets. Astrophys. J. 1997, 474, L115. [Google Scholar] [CrossRef]
- Marois, C.; Macintosh, B.; Barman, T.; Zuckerman, B.; Song, I.; Patience, J.; Lafreniere, D.; Doyon, R. Direct Imaging of Multiple Planets Orbiting the Star HR 8799. Science 2008, 322, 1348–1352. [Google Scholar] [CrossRef] [PubMed]
- Marois, C.; Zuckerman, B.; Konopacky, Q.M.; Macintosh, B.; Barman, T. Images of a fourth planet orbiting HR 8799. Nature 2010, 468, 1080–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsapras, Y. Preliminary topic: Microlensing searches for exoplanets. Geosciences 2018. in preparation. [Google Scholar]
- Boss, A.P.; Butler, R.P.; Hubbard, W.B. Working Group on Extrasolar Planets, IAU Transactions; Engvold, O., Ed.; Reports on Astronomy 2002–2005; Cambridge University Press: Cambridge, UK, 2007; Volume 26A, p. 183. [Google Scholar] [CrossRef]
- Burgasser, A.J.; Kirkpatrick, J.D.; Burrows, A.; Liebert, J.; Reid, I.N.; Gizis, J.E.; McGovern, M.R.; Prato, L.; McLean, I.S. The First Substellar Subdwarf? Discovery of a Metal-poor L Dwarf with Halo Kinematics. Astrophys. J. 2003, 592, 1186–1192. [Google Scholar] [CrossRef]
- Burgasser, A.J. Discovery of a Second L Subdwarf in the Two Micron All Sky Survey. Astrophys. J. 2004, 614, L73. [Google Scholar] [CrossRef]
- Scholz, R.-D.; Lodieu, N.; McCaughrean, M.J. SSSPM J1444-2019: An extremely high proper motion, ultracool subdwarf. Astron. Astrophys. 2004, 428, L25. [Google Scholar] [CrossRef]
- Lodieu, N.; Espinoza Contreras, M.; Zapatero Osorio, M.R.; Solano, E.; Aberasturi, M.; Martín, E.L. New ultracool subdwarfs identified in large-scale surveys using Virtual Observatory tools. Astron. Astrophys. 2017, 598, A92. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Pinfield, D.J.; Galvez-Ortiz, M.C.; Burningham, B.; Lodieu, N.; Marocco, F.; Burgasser, A.J.; Day-Jones, A.C.; Allard, F.; Jones, H.R.A.; et al. Primeval very low-mass stars and brown dwarfs—I. Six new L subdwarfs, classification and atmospheric properties. Mon. Not. R. Astron. Soc. 2017, 464, 3040. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Homeier, D.; Pinfield, D.J.; Lodieu, N.; Jones, H.R.A.; Allard, F.; Pavlenko, Y.V. Primeval very low-mass stars and brown dwarfs—II. The most metal-poor substellar object. Mon. Not. R. Astron. Soc. 2017, 468, 261. [Google Scholar] [CrossRef]
- The Extrasolar Planets Encyclopaedia. Available online: http://exoplanets.eu (accessed on 22 August 2018).
- Hatzes, A.P.; Rauer, H. A Definition for Giant Planets Based on the Mass-Density Relationship. Astrophys. J. 2015, 810, L25. [Google Scholar] [CrossRef]
- Salpeter, E.E. The Luminosity Function and Stellar Evolution. Astrophys. J. 1955, 121, 161. [Google Scholar] [CrossRef]
- Scalo, J.M. The stellar initial mass function. Fundam. Cosmic Phys. 1986, 11, 1–278. [Google Scholar]
- Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 2001, 322, 231. [Google Scholar] [CrossRef]
- Chabrier, G. Galactic Stellar and Substellar Initial Mass Function. Publ. Astron. Soc. Pac. 2003, 115, 763–795. [Google Scholar] [CrossRef] [Green Version]
- Lucas, P.W.; Roche, P.F. A population of very young brown dwarfs and free-floating planets in Orion. Mon. Not. R. Astron. Soc. 2000, 314, 858–864. [Google Scholar] [CrossRef] [Green Version]
- Zapatero Osorio, M.R.; Béjar, V.J.S.; Rebolo, R.; Martín, E.L.; Mundt, R.; Bailer-Jones, C.A.L. Discovery of Young, Isolated Planetary Mass Objects in the σ Orionis Star Cluster. Science 2000, 290, 103. [Google Scholar] [CrossRef] [PubMed]
- Lucas, P.W.; Roche, P.F.; Allard, F.; Hauschildt, P.H. Infrared spectroscopy of substellar objects in Orion. Mon. Not. R. Astron. Soc. 2001, 326, 695. [Google Scholar] [CrossRef]
- Oasa, Y.; Tamura, M.; Sugitani, K. A Deep Near-Infrared Survey of the Chamaeleon I Dark Cloud Core. Astrophys. J. 1999, 526, 336. [Google Scholar] [CrossRef]
- Luhman, K.L.; Peterson, D.E.; Megeath, S.T. Spectroscopic Confirmation of the Least Massive Known Brown Dwarf in Chamaeleon. Astrophys. J. 2004, 617, 565–568. [Google Scholar] [CrossRef] [Green Version]
- Najita, J.R.; Tiede, G.P.; Carr, J.S. From Stars to Superplanets: The Low-Mass Initial Mass Function in the Young Cluster IC 348. Astrophys. J. 2000, 541, 977–1003. [Google Scholar] [CrossRef]
- Caballero, J.A. Dynamical parallax of σ Ori AB: Mass, distance and age. Mon. Not. R. Astron. Soc. 2008, 383, 750–754. [Google Scholar] [CrossRef]
- Reid, M.J.; Menten, K.M.; Brunthaler, A.; Zheng, X.W.; Dame, T.M.; Xu, Y.; Wu, Y.; Zhang, B.; Sanna, A.; Sato, M.; et al. Trigonometric Parallaxes of High Mass Star Forming Regions: The Structure and Kinematics of the Milky Way. Astrophys. J. 2014, 783, 130. [Google Scholar] [CrossRef]
- Schaefer, G.H.; Hummel, C.A.; Gies, D.R.; Zavala, R.T.; Monnier, J.D.; Walter, F.M.; Turner, N.H.; Baron, F.; ten Brummelaar, T.; Che, X.; et al. Orbits, Distance, and Stellar Masses of the Massive Triple Star σ Orionis. Astron. J. 2016, 152, 213. [Google Scholar] [CrossRef]
- Kounkel, M.; Hartmann, L.; Loinard, L.; Ortiz-León, G.N.; Mioduszewski, A.J.; Rodríguez, L.F.; Dzib, S.A.; Torres, R.M.; Pech, G.; Galli, P.A.B.; et al. The Gould’s Belt Distances Survey (GOBELINS) II. Distances and Structure toward the Orion Molecular Clouds. Astrophys. J. 2017, 834, 142. [Google Scholar] [CrossRef]
- Caballero, J.A. Parallactic Distances and Proper Motions of Virtually All Stars in the σ Orionis Cluster or: How I Learned to Get the Most Out of TOPCAT and Love Gaia DR2. Res. Not. Am. Astron. Soc. 2018, 2, 25. [Google Scholar] [CrossRef]
- Briceño, C.; Calvet, N.; Hernández, J.; Vivas, A.K.; Mateu, C.; Downes, J.J.; Loerincs, J.; Pérez-Blanco, A.; Berlind, P.; Espaillat, C.; et al. The CIDA Variability Survey of Orion OB1 II: Demographics of the young, low-mass stellar populations. Astron. J. 2018; arXiv:1805.01008. [Google Scholar]
- McWilliam, A. Abundance Ratios and Galactic Chemical Evolution. Arastron. Astrophys. 1997, 35, 503. [Google Scholar] [CrossRef]
- González Hernández, J.I.; Caballero, J.A.; Rebolo, R.; Béjar, V.J.S.; Barrado y Navascués, D.; Martín, E.L.; Zapatero Osorio, M.R. Chemical abundances of late-type pre-main sequence stars in the σ Orionis cluster. Astron. Astrophys. 2008, 490, 1135–1142. [Google Scholar] [CrossRef]
- Palla, F.; Randich, S.; Flaccomio, E.; Pallavicini, R. Age Spreads in Star-forming Regions: The Lithium Test in the Orion Nebula Cluster. Astrophys. J. 2005, 626, L49–L52. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, J.; Hartmann, L.; Megeath, T.; Gutermuth, R.; Muzerolle, J.; Calvet, N.; Vivas, A.K.; Briceno, C.; Allen, L.; Stauffer, J.; et al. A Spitzer Space Telescope Study of Disks in the Young σ Orionis Cluster. Astrophys. J. 2007, 662, 1067–1081. [Google Scholar] [CrossRef]
- Sherry, W.H.; Walter, F.M.; Wolk, S.J.; Adams, N.R. Main-Sequence Fitting Distance to the σ Ori Cluster. Astron. J. 2008, 135, 1616–1623. [Google Scholar] [CrossRef]
- Jeffries, R.D.; Littlefair, S.P.; Naylor, T.; Mayne, N.J. No wide spread of stellar ages in the Orion Nebula Cluster. Mon. Not. R. Astron. Soc. 2011, 418, 1948. [Google Scholar] [CrossRef]
- Caballero, J.A.; Burgasser, A.J.; Klement, R. Contamination by field late-M, L, and T dwarfs in deep surveys. Astron. Astrophys. 2008, 488, 181. [Google Scholar] [CrossRef]
- Zapatero Osorio, M.R.; Béjar, V.J.S.; Martín, E.L.; Barrado y Navascués, D.; Rebolo, R. Activity at the Deuterium-burning Mass Limit in Orion. Astrophys. J. 2002, 569, L99–L113. [Google Scholar] [CrossRef]
- Luhman, K.L.; Adame, L.; D’Alessio, P.; Calvet, N.; Hartmann, L.; Megeath, S.T.; Fazio, G.G. Discovery of a Planetary-Mass Brown Dwarf with a Circumstellar Disk. Astrophys. J. 2005, 635, L93–L96. [Google Scholar] [CrossRef]
- Chauvin, G.; Lagrange, A.-M.; Dumas, C.; Zuckerman, B.; Mouillet, D.; Song, I.; Beuzit, J.-L.; Lowrance, P. A giant planet candidate near a young brown dwarf. Direct VLT/NACO observations using IR wavefront sensing. Astron. Astrophys. 2004, 425, L29–L32. [Google Scholar] [CrossRef]
- Chauvin, G.; Lagrange, A.-M.; Dumas, C.; Zuckerman, B.; Mouillet, D.; Song, I.; Beuzit, J.-L.; Lowrance, P. Giant planet companion to 2MASSW J1207334-393254. Astron. Astrophys. 2005, 438, L25–L28. [Google Scholar] [CrossRef]
- Zapatero Osorio, M.R.; Béjar, V.J.S.; Martín, E.L.; Rebolo, R.; Navascues, D.B.y.; Mundt, R.; Eisloeffel, J.; Caballero, J.A. A Methane, Isolated, Planetary-Mass Object in Orion. Astrophys. J. 2002, 578, 536–542. [Google Scholar] [CrossRef]
- Martín, E.L.; Zapatero Osorio, M.R. Spectroscopic Estimate of Surface Gravity for a Planetary Member in the σ Orionis Cluster. Astrophys. J. 2003, 593, L113. [Google Scholar] [CrossRef]
- Caballero, J.A. Formación, Evolución y Multiplicidad de Enanas Marrones y Exoplanetas Gigantes. Ph.D. Thesis, Universidad de La Laguna, Tenerife, Spain, 2006. [Google Scholar]
- Caballero, J.A. Formation, Evolution and Multiplicity of Brown Dwarfs and Giant Exoplanets, Highlights of Spanish Astrophysics V. In Astrophysics and Space Science Proceedings; Springer: Berlin/Heidelberg, Germany, 2010; p. 79. ISBN 978-3-642-11249-2. [Google Scholar] [CrossRef]
- Trumpler, R.J. Preliminary results on the distances, dimensions and space distribution of open star clusters. In Lick Observatory Bulletins; University of California Press: Berkeley, CA, USA, 1930; Volume 14, p. 154. [Google Scholar] [CrossRef]
- Mermilliod, J.C. Comparative studies of young open clusters. III—Empirical isochronous curves and the zero age main sequence. Astron. Astrophys. 1981, 97, 235. [Google Scholar]
- van Leeuwen, F. Parallaxes and proper motions for 20 open clusters as based on the new Hipparcos catalogue. Astron. Astrophys. 2009, 497, 209–242. [Google Scholar] [CrossRef] [Green Version]
- Perryman, M.A.C.; Brown, A.G.A.; Lebreton, Y.; Gomez, A.; Turon, C.; Cayrel de Strobel, G.; Mermilliod, J.C.; Robichon, N.; Kovalevsky, J.; Crifo, F. The Hyades: Distance, structure, dynamics, and age. Astron. Astrophys. 1998, 331, 81–120. [Google Scholar]
- Reino, S.; de Bruijne, J.; Zari, E.; d’Antona, F.; Ventura, P. A Gaia study of the Hyades open cluster. Mon. Not. R. Astron. Soc. 2018, 477, 3197. [Google Scholar] [CrossRef]
- Hambly, N.C.; Hawkins, M.R.S.; Jameson, R.F. Very low mass proper motion members in the Pleiades. Astron. Astrophys. Suppl. Ser. 1993, 100, 607. [Google Scholar]
- Sarro, L.M.; Bouy, H.; Berihuete, A.; Bertin, E.; Moraux, E.; Bouvier, J.; Cuillandre, J.-C.; Barrado, D.; Solano, E. Cluster membership probabilities from proper motions and multi-wavelength photometric catalogues. I. Method and application to the Pleiades cluster. Astron. Astrophys. 2014, 563, A45. [Google Scholar] [CrossRef]
- Park, B.-G.; Sung, H.; Bessell, M.S.; Kang, Y.H. The Pre-Main-Sequence Stars and Initial Mass Function of NGC 2264. Astron. J. 2000, 120, 894. [Google Scholar] [CrossRef]
- Venuti, L.; Bouvier, J.; Flaccomio, E.; Alencar, S.H.P.; Irwin, J.; Stauffer, J.R.; Cody, A.M.; Teixeira, P.S.; Sousa, A.P.; Micela, G.; et al. Mapping accretion and its variability in the young open cluster NGC 2264: A study based on u-band photometry. Astron. Astrophys. 2014, 570, A82. [Google Scholar] [CrossRef]
- Barrado y Navascués, D.; Stauffer, J.R.; Patten, B.M. The Lithium-Depletion Boundary and the Age of the Young Open Cluster IC 2391. Astrophys. J. 1999, 522, L53–L56. [Google Scholar] [CrossRef]
- Soderblom, D.R.; Hillenbrand, L.A.; Jeffries, R.D.; Mamajek, E.E.; Naylor, T. Ages of Young Stars, Protostars and Planets VI; Beuther, H., Klessen, R.S., Dullemond, C.P., Henning, T., Eds.; University of Arizona Press: Tucson, AZ, USA, 2014; p. 219. [Google Scholar] [CrossRef]
- Baraffe, I.; Chabrier, G.; Allard, F.; Hauschildt, P.H. Evolutionary models for low-mass stars and brown dwarfs: Uncertainties and limits at very young ages. Astron. Astrophys. 2002, 382, 563. [Google Scholar] [CrossRef]
- Martín, E.L.; Lodieu, N.; Pavlenko, Y.; Béjar, V.J.S. The Lithium Depletion Boundary and the Age of the Hyades Cluster. Astrophys. J. 2018, 856, 40. [Google Scholar] [CrossRef]
- Professor Adam Burrows’ Home Page, Astrophysics, Supernovae, Planets, Exoplanets. Available online: https://www.astro.princeton.edu/~burrows/ (accessed on 22 August 2018).
- Peña Ramírez, K.; Béjar, V.J.S.; Zapatero Osorio, M.R. A new free-floating planet in the Upper Scorpius association. Astron. Astrophys. 2016, 586, A157. [Google Scholar] [CrossRef]
- Lodieu, N.; Zapatero Osorio, M.R.; Béjar, V.J.S.; Peña Ramírez, K. The optical + infrared L dwarf spectral sequence of young planetary-mass objects in the Upper Scorpius association. Mon. Not. R. Astron. Soc. 2018, 473, 2020. [Google Scholar] [CrossRef]
- Bertout, C. T Tauri stars—Wild as dust. Arastron. Astrophys. 1989, 27, 351. [Google Scholar] [CrossRef]
- Caballero, J.A.; Martín, E.L.; Osorio, M.R.Z.; Béjar, V.J.S.; Rebolo, R.; Pavlenko, Y.; Wainscoat, R. S Ori J053825.4-024241: A classical T Tauri-like object at the substellar boundary. Astron. Astrophys. 2006, 445, 143. [Google Scholar] [CrossRef]
- Faherty, J.K.; Rice, E.L.; Cruz, K.L.; Mamajek, E.E.; Núñez, A. 2MASS J035523.37+113343.7: A Young, Dusty, Nearby, Isolated Brown Dwarf Resembling a Giant Exoplanet. Astron. J. 2013, 145, 2. [Google Scholar] [CrossRef]
- Filippazzo, J.C.; Rice, E.L.; Faherty, J.; Cruz, K.L.; van Gordon, M.M.; Looper, D.L. Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime. Astrophys. J. 2015, 810, 158. [Google Scholar] [CrossRef]
- Faherty, J.K.; Riedel, A.R.; Cruz, K.L.; Gagne, J.; Filippazzo, J.C.; Lambrides, E.; Fica, H.; Weinberger, A.; Thorstensen, J.R.; Tinney, C.G.; et al. Population Properties of Brown Dwarf Analogs to Exoplanets. Astrophys. J. Suppl. Ser. 2016, 225, 10. [Google Scholar] [CrossRef]
- Zapatero Osorio, M.R.; Béjar, V.J.S.; Peña Ramírez, K. Optical and Near-infrared Spectra of σ Orionis Isolated Planetary-mass Objects. Astrophys. J. 2017, 842, 65. [Google Scholar] [CrossRef]
- Bouvier, J.; Kendall, T.T.; Meeus, G.; Testi, L.; Moraux, E.; Stauffer, J.R.; James, D.; Cuillandre, J.-C.; Irwin, J.; McCaughrean, M.J.; et al. Brown dwarfs and very low mass stars in the Hyades cluster: A dynamically evolved mass function. Astron. Astrophys. 2008, 481, 661. [Google Scholar] [CrossRef] [Green Version]
- Luhman, K.L.; Muench, A.A. New Low-Mass Stars and Brown Dwarfs with Disks in the Chamaeleon I Star-Forming Region. Astrophys. J. 2008, 684, 654–662. [Google Scholar] [CrossRef]
- Luhman, K.L.; Allen, L.E.; Allen, P.R.; Gutermuth, R.A.; Hartmann, L.; Mamajek, E.E.; Megeath, S.T.; Myers, P.C.; Fazio, G.G. The Disk Population of the Chamaeleon I Star-forming Region. Astrophys. J. 2008, 675, 1375–1406. [Google Scholar] [CrossRef]
- Mužić, K.; Scholz, A.; Geers, V.C.; Jayawardhana, R. Substellar Objects in Nearby Young Clusters (SONYC) IX: The Planetary-Mass Domain of Chamaeleon-I and Updated Mass Function in Lupus-3. Astrophys. J. 2015, 810, 159. [Google Scholar] [CrossRef]
- Navascués, D.B.; Stauffer, J.R.; Morales-Calderón, M.; Bayo, A.; Fazzio, G.; Megeath, T.; Allen, L.; Hartmann, L.W.; Calvet, N. Spitzer: Accretion in Low-Mass Stars and Brown Dwarfs in the λ Orionis Cluster. Astrophys. J. 2007, 664, 481–500. [Google Scholar] [CrossRef]
- Bayo, A.; Barrado, D.; Stauffer, J.; Morales-Calderón, M.; Melo, C.; Huélamo, N.; Bouy, H.; Stelzer, B.; Tamura, M.; Jayawardhana, R. Spectroscopy of very low-mass stars and brown dwarfs in the Lambda Orionis star-forming region. II. Rotation, activity and other properties of spectroscopically confirmed members of Collinder 69. Astron. Astrophys. 2012, 547, A80. [Google Scholar] [CrossRef]
- Scholz, A.; Geers, V.; Jayawardhana, R.; Fissel, L.; Lee, E.; Lafreniere, D.; Tamura, M. Substellar Objects in Nearby Young Clusters (SONYC): The Bottom of the Initial Mass Function in NGC 1333. Astrophys. J. 2009, 702, 805–822. [Google Scholar] [CrossRef]
- Burgess, A.S.M.; Moraux, E.; Bouvier, J.; Marmo, C.; Albert, L.; Bouy, H. Young T-dwarf candidates in IC 348. Astron. Astrophys. 2009, 508, 823. [Google Scholar] [CrossRef]
- Scholz, A.; Muzic, K.; Geers, V.; Bonavita, M.; Jayawardhana, R.; Tamura, M. Substellar Objects in Nearby Young Clusters (SONYC). IV. A Census of Very Low Mass Objects in NGC 1333. Astrophys. J. 2012, 744, 6. [Google Scholar] [CrossRef]
- Alves de Oliveira, C.; Moraux, E.; Bouvier, J.; Duchêne, G.; Bouy, H.; Maschberger, T.; Hudelot, P. Spectroscopy of brown dwarf candidates in IC 348 and the determination of its substellar IMF down to planetary masses. Astron. Astrophys. 2013, 549, A123. [Google Scholar] [CrossRef]
- Luhman, K.L.; Esplin, T.L.; Loutrel, N.P. A Census of Young Stars and Brown Dwarfs in IC 348 and NGC 1333. Astrophys. J. 2016, 827, 52. [Google Scholar] [CrossRef]
- Esplin, T.L.; Luhman, K.L.; Faherty, J.K.; Mamajek, E.E.; Bochanski, J.J. A Survey for Planetary-mass Brown Dwarfs in the Chamaeleon I Star-forming Region. Astron. J. 2017, 154, 46. [Google Scholar] [CrossRef] [Green Version]
- Mužić, K.; Scholz, A.; Geers, V.C.; Jayawardhana, R.; López Martí, B. Substellar Objects in Nearby Young Clusters (SONYC). VIII. Substellar Population in Lupus 3. Astrophys. J. 2014, 785, 159. [Google Scholar] [CrossRef]
- Lucas, P.W.; Weights, D.J.; Roche, P.F.; Riddick, F.C. Spectroscopy of planetary mass brown dwarfs in Orion. Mon. Not. R. Astron. Soc. 2006, 373, L60–L70. [Google Scholar] [CrossRef] [Green Version]
- Weights, D.J.; Lucas, P.W.; Roche, P.F.; Pinfield, D.J.; Riddick, F. Infrared spectroscopy and analysis of brown dwarf and planetary mass objects in the Orion nebula cluster. Mon. Not. R. Astron. Soc. 2009, 392, 817–846. [Google Scholar] [CrossRef] [Green Version]
- Hillenbrand, L.A.; Hoffer, A.S.; Herczeg, G.J. An Enhanced Spectroscopic Census of the Orion Nebula Cluster. Astron. J. 2013, 146, 85. [Google Scholar] [CrossRef]
- Ingraham, P.; Albert, L.; Doyon, R.; Artigau, E. Near-infrared (JHK) Spectroscopy of Young Stellar and Substellar Objects in Orion. Astrophys. J. 2014, 782, 8. [Google Scholar] [CrossRef]
- Suenaga, T.; Tamura, M.; Kuzuhara, M.; Yanagisawa, K.; Ishii, M.; Lucas, P.W. Multi-object and long-slit spectroscopy of very low mass brown dwarfs in the Orion Nebular Cluster. Publ. Astron. Soc. Jpn. 2014, 66, 33. [Google Scholar] [CrossRef]
- Fang, M.; Kim, J.S.; Pascucci, I.; Apai, D.; Manara, C.F. A Candidate Planetary-mass Object with a Photoevaporating Disk in Orion. Astrophys. J. 2016, 833, L16. [Google Scholar] [CrossRef]
- Casewell, S.L.; Dobbie, P.D.; Hodgkin, S.T.; Moraux, E.; Jameson, R.F.; Hambly, N.C.; Irwin, J.; Lodieu, N. Proper motion L and T dwarf candidate members of the Pleiades. Mon. Not. R. Astron. Soc. 2007, 378, 1131–1140. [Google Scholar] [CrossRef] [Green Version]
- Bihain, G.; Rebolo, R.; Zapatero Osorio, M.R.; Béjar, V.J.S.; Caballero, J.A. Near-infrared low-resolution spectroscopy of Pleiades L-type brown dwarfs. Astron. Astrophys. 2010, 519, A93. [Google Scholar] [CrossRef]
- Casewell, S.L.; Dobbie, P.D.; Hodgkin, S.T.; Moraux, E.; Jameson, R.F.; Hambly, N.C.; Irwin, J.; Lodieu, N. Erratum: Proper motion L and T dwarf candidate members of the Pleiades. Mon. Not. R. Astron. Soc. 2010, 402, 1407–1408. [Google Scholar] [CrossRef] [Green Version]
- Osorio, M.R.Z.; Ortiz, M.C.G.; Bihain, G.; Bailer-Jones, C.A.L.; Rebolo, R.; Henning, T.; Boudreault, S.; Béjar, V.J.S.; Goldman, B.; Mundt, R.; et al. Search for free-floating planetary-mass objects in the Pleiades. Astron. Astrophys. 2014, 568, A77. [Google Scholar] [CrossRef] [Green Version]
- Zapatero Osorio, M.R.; Béjar, V.J.S.; Martín, E.L.; Gálvez Ortiz, M.C.; Rebolo, R.; Bihain, G.; Henning, T.; Boudreault, S.; Goldman, B. Spectroscopic follow-up of L- and T-type proper-motion member candidates in the Pleiades. Astron. Astrophys. 2014, 572, A67. [Google Scholar] [CrossRef] [Green Version]
- Zapatero Osorio, M.R.; Béjar, V.J.S.; Lodieu, N.; Manjavacas, E. Confirming the least massive members of the Pleiades star cluster. Mon. Not. R. Astron. Soc. 2018, 475, 139. [Google Scholar] [CrossRef]
- Haisch, K.E., Jr.; Barsony, M.; Tinney, C. A Methane Imaging Survey for T Dwarf Candidates in ρ Ophiuchi. Astrophys. J. 2010, 719, L90. [Google Scholar] [CrossRef]
- Marsh, K.A.; Kirkpatrick, J.D.; Plavchan, P. A Young Planetary-Mass Object in the ρ Oph Cloud Core. Astrophys. J. 2010, 709, L158. [Google Scholar] [CrossRef]
- Geers, V.; Scholz, A.; Jayawardhana, R.; Lee, E.; Lafrenière, D.; Tamura, M. Substellar Objects in Nearby Young Clusters (SONYC). II. The Brown Dwarf Population of ρ Ophiuchi. Astrophys. J. 2011, 726, 23. [Google Scholar] [CrossRef]
- Alves de Oliveira, C.; Moraux, E.; Bouvier, J.; Bouy, H. Spectroscopy of new brown dwarf members of ρ Ophiuchi and an updated initial mass function. Astron. Astrophys. 2012, 539, A151. [Google Scholar] [CrossRef]
- Mužić, K.; Scholz, A.; Geers, V.; Jayawardhana, R.; Tamura, M. Substellar Objects in Nearby Young Clusters (SONYC). V. New Brown Dwarfs in ρ Ophiuchi. Astrophys. J. 2012, 744, 134. [Google Scholar] [CrossRef]
- Alves de Oliveira, C.; Ábrahám, P.; Marton, G.; Pinte, C.; Kiss, C.; Kun, M.; Kóspál, Á.; André, P.; Könyves, V. Herschel survey of brown dwarf disks in ρ Ophiuchi. Astron. Astrophys. 2013, 559, A126. [Google Scholar] [CrossRef] [Green Version]
- Chiang, P.; Chen, W.P. Discovery of Young Methane Dwarfs in the Rho Ophiuchi L 1688 Dark Cloud. Astrophys. J. 2015, 811, L16. [Google Scholar] [CrossRef]
- Spezzi, L.; Alves de Oliveira, C.; Moraux, E.; Bouvier, J.; Winston, E.; Hudelot, P.; Bouy, H.; Cuillandre, J.-C. Searching for planetary-mass T-dwarfs in the core of Serpens. Astron. Astrophys. 2012, 545, A105. [Google Scholar] [CrossRef]
- Barrado y Navascués, D.; Zapatero Osorio, M.R.; Béjar, V.J.S.; Rebolo, R.; Martín, E.L.; Mundt, R.; Bailer-Jones, C.A.L. Optical spectroscopy of isolated planetary mass objects in the σ Orionis cluster. Astron. Astrophys. 2001, 377, L9–L13. [Google Scholar] [CrossRef]
- Martín, E.L.; Zapatero Osorio, M.R.; Barrado y Navascués, D.; Béjar, V.J.S.; Rebolo, R. Keck NIRC Observations of Planetary-Mass Candidate Members in the σ Orionis Open Cluster. Astrophys. J. 2011, 558, L117. [Google Scholar] [CrossRef]
- Caballero, J.A.; Béjar, V.J.S.; Rebolo, R.; Zapatero Osorio, M.R. Photometric variability of young brown dwarfs in the σ Orionis open cluster. Astron. Astrophys. 2004, 424, 857. [Google Scholar] [CrossRef]
- Zapatero Osorio, M.R.; Caballero, J.A.; Béjar, V.J.S.; Rebolo, R.; Navascués, D.B.y.; Bihain, G.; Eislöffel, J.; Martín, E.L.; Bailer-Jones, C.A.L.; Mundt, R.; et al. Discs of planetary-mass objects in σ Orionis. Astron. Astrophys. 2007, 472, L9–L12. [Google Scholar] [CrossRef]
- Bihain, G.; Rebolo, R.; Zapatero Osorio, M.R.; Béjar, V.J.S.; Villó-Pérez, I.; Díaz-Sánchez, A.; Pérez-Garrido, A.; Caballero, J.A.; Bailer-Jones, C.A.L.; Barrado y Navascués, D.; et al. Candidate free-floating super-Jupiters in the young σ Orionis open cluster. Astron. Astrophys. 2009, 506, 1169–1182. [Google Scholar] [CrossRef] [Green Version]
- Lodieu, N.; Zapatero Osorio, M.R.; Rebolo, R.; Martín, E.L.; Hambly, N.C. A census of very-low-mass stars and brown dwarfs in the σ Orionis cluster. Astron. Astrophys. 2009, 505, 1115–1127. [Google Scholar] [CrossRef] [Green Version]
- Béjar, V.J.S.; Zapatero Osorio, M.R.; Rebolo, R.; Caballero, J.A.; Barrado, D.; Martín, E.L.; Mundt, R.; Bailer-Jones, C.A.L. The Substellar Population of σ Orionis: A Deep Wide Survey. Astrophys. J. 2011, 743, 64. [Google Scholar] [CrossRef]
- Peña Ramírez, K.; Béjar, V.J.S.; Zapatero Osorio, M.R.; Petr-Gotzens, M.G.; Martín, E.L. New Isolated Planetary-mass Objects and the Stellar and Substellar Mass Function of the σ Orionis Cluster. Astrophys. J. 2012, 754, 30. [Google Scholar] [CrossRef]
- Peña Ramírez, K.; Zapatero Osorio, M.R.; Béjar, V.J.S. Characterization of the known T-type dwarfs towards the σ Orionis cluster. Astron. Astrophys. 2015, 574, A118. [Google Scholar] [CrossRef]
- Luhman, K.L.; Mamajek, E.E.; Allen, P.R.; Cruz, K.L. An Infrared/X-Ray Survey for New Members of the Taurus Star-Forming Region. Astrophys. J. 2009, 703, 399. [Google Scholar] [CrossRef]
- Esplin, T.L.; Luhman, K.L. A Survey for Planetary-mass Brown Dwarfs in the Taurus and Perseus Star-forming Regions. Astron. J. 2017, 154, 134. [Google Scholar] [CrossRef]
- Lodieu, N.; Hambly, N.C.; Jameson, R.F.; Hodgkin, S.T.; Carraro, G.; Kendall, T.R. New brown dwarfs in Upper Sco using UKIDSS Galactic Cluster Survey science verification data. Mon. Not. R. Astron. Soc. 2007, 374, 372–384. [Google Scholar] [CrossRef] [Green Version]
- Lodieu, N.; Hambly, N.C.; Jameson, R.F.; Hodgkin, S.T. Near-infrared cross-dispersed spectroscopy of brown dwarf candidates in the UpperSco association. Mon. Not. R. Astron. Soc. 2008, 383, 1385. [Google Scholar] [CrossRef]
- Lodieu, N.; Hambly, N.C.; Dobbie, P.D.; Cross, N.J.G.; Christensen, L.; Martin, E.L.; Valdivielso, L. Testing the fragmentation limit in the Upper Sco association. Mon. Not. R. Astron. Soc. 2011, 418, 2604. [Google Scholar] [CrossRef]
- Lodieu, N.; Dobbie, P.D.; Cross, N.J.G.; Hambly, N.C.; Read, M.A.; Blake, R.P.; Floyd, D.J.E. Probing the Upper Scorpius mass function in the planetary-mass regime. Mon. Not. R. Astron. Soc. 2013, 435, 2474. [Google Scholar] [CrossRef]
- Béjar, V.J.S.; Martín, E.L. Brown dwarfs and free-floating planets in young stellar clusters. In Handbook of Exoplanets; Deeg, H., Belmonte, J.A., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Burgasser, A.J.; Kirkpatrick, J.D.; McGovern, M.R.; McLean, I.S.; Prato, L.; Reid, I.N. S Orionis 70: Just a Foreground Field Brown Dwarf? Astrophys. J. 2004, 604, 827–831. [Google Scholar] [CrossRef] [Green Version]
- Luhman, K.L.; Hernández, J.; Downes, J.J.; Hartmann, L.; Briceño, C. Disks around Brown Dwarfs in the σ Orionis Cluster. Astrophys. J. 2008, 688, 362–376. [Google Scholar] [CrossRef] [Green Version]
- Scholz, A.; Jayawardhana, R. Dusty Disks at the Bottom of the Initial Mass Function. Astrophys. J. 2008, 672, L49. [Google Scholar] [CrossRef] [Green Version]
- Zapatero Osorio, M.R.; Béjar, V.J.S.; Bihain, G.; Martín, E.L.; Rebolo, R.; Villó-Pérez, I.; Díaz-Sánchez, A.; Pérez Garrido, A.; Caballero, J.A.; Henning, T.; et al. New constraints on the membership of the T dwarf S Ori 70 in the σ Orionis cluster. Astron. Astrophys. 2008, 477, 895–900. [Google Scholar] [CrossRef]
- Elias, J.H. A study of the Taurus dark cloud complex. Astrophys. J. 1978, 224, 857. [Google Scholar] [CrossRef]
- Kenyon, S.J.; Hartmann, L. Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud. Astrophys. J. Suppl. Ser. 1995, 101, 117. [Google Scholar] [CrossRef]
- Andrews, S.M.; Williams, J.P. Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective. Astrophys. J. 2005, 631, 1134–1160. [Google Scholar] [CrossRef] [Green Version]
- Walter, F.M.; Vrba, F.J.; Mathieu, R.D.; Brown, A.; Myers, P.C. X-ray sources in regions of star formation. 5: The low mass stars of the Upper Scorpius association. Astron. J. 1999, 107, 692. [Google Scholar] [CrossRef]
- Preibisch, T.; Brown, A.G.A.; Bridges, T.; Guenther, E.; Zinnecker, H. Exploring the Full Stellar Population of the Upper Scorpius OB Association. Astron. J. 2002, 124, 404–416. [Google Scholar] [CrossRef] [Green Version]
- Pecaut, M.J.; Mamajek, E.E.; Bubar, E.J. A Revised Age for Upper Scorpius and the Star Formation History among the F-type Members of the Scorpius-Centaurus OB Association. Astrophys. J. 2012, 746, 154. [Google Scholar] [CrossRef]
- Hertzsprung, E. Catalogue de 3259 étoiles dans les Pléiades. Ann. Sterrewacht Leiden 1947, 19, A1–A89. [Google Scholar]
- Soderblom, D.R.; Jones, B.F.; Balachandran, S.; Stauffer, J.R.; Duncan, D.K.; Fedele, S.B.; Hudon, J.D. The evolution of the lithium abundances of solar-type stars. III—The Pleiades. Astron. J. 1993, 106, 1059–1079. [Google Scholar] [CrossRef]
- Melis, C.; Reid, M.J.; Mioduszewski, A.J.; Stauffer, J.R.; Bower, G.C. A VLBI resolution of the Pleiades distance controversy. Science 2014, 345, 1029. [Google Scholar] [CrossRef] [PubMed]
- Sherry, W.H.; Walter, F.M.; Wolk, S.J. Photometric Identification of the Low-Mass Population of Orion OB1b. I. The σ Orionis Cluster. Astron. J. 2004, 128, 2316–2330. [Google Scholar] [CrossRef] [Green Version]
- Simón-Díaz, S.; Caballero, J.A.; Lorenzo, J.; Apellániz, J.M.; Schneider, F.R.N.; Negueruela, I.; Barbá, R.H.; Dorda, R.; Marco, A.; Montes, D.; et al. Orbital and Physical Properties of the σ Ori Aa, Ab, B Triple System. Astrophys. J. 2015, 799, 169. [Google Scholar] [CrossRef]
- Lee, T.A. Interstellar extinction in the Orion association. Astrophys. J. 1968, 152, 913. [Google Scholar] [CrossRef]
- Cowie, L.L.; Songaila, A.; York, D.G. Orion’s Cloak—A rapidly expanding shell of gas centered on the Orion OB1 association. Astrophys. J. 1979, 230, 469. [Google Scholar] [CrossRef]
- Dolan, C.J.; Mathieu, R.D. The Spatial Distribution of the λ Orionis Pre-Main-Sequence Population. Astron. J. 2001, 121, 2124. [Google Scholar] [CrossRef]
- Barrado y Navascués, D.; Stauffer, J.R.; Bouvier, J.; Jayawardhana, R.; Cuillandre, J.-C. The Substellar Population of the Young Cluster λ Orionis. Astrophys. J. 2004, 610, 1064–1078. [Google Scholar] [CrossRef] [Green Version]
- Bowler, B.P.; Hillenbrand, L.A. Near-infrared Spectroscopy of 2M0441+2301 AabBab: A Quadruple System Spanning the Stellar to Planetary Mass Regimes. Astrophys. J. 2015, 811, L30. [Google Scholar] [CrossRef]
- Cáceres, C.; Hardy, A.; Schreiber, M.R.; Cánovas, H.; Cieza, L.A.; Williams, J.P.; Hales, A.; Pinte, C.; Ménard, F.; Wahhaj, Z. On the Nature of the Tertiary Companion to FW Tau: ALMA CO Observations and SED Modeling. Astrophys. J. 2015, 806, L22. [Google Scholar] [CrossRef]
- Luhman, K.L.; Mamajek, E.E.; Allen, P.R.; Muench, A.A.; Finkbeiner, D.P. Discovery of a Wide Binary Brown Dwarf Born in Isolation. Astrophys. J. 2009, 691, 1265. [Google Scholar] [CrossRef]
- Best, W.M.J.; Liu, M.C.; Magnier, E.A.; Deacon, N.R.; Aller, K.M.; Redstone, J.; Burgett, W.S.; Chambers, K.C.; Draper, P.; Flewelling, H.; et al. A Search for L/T Transition Dwarfs with Pan-STARRS1 and WISE. III. Young L Dwarf Discoveries and Proper Motion Catalogs in Taurus and Scorpius-Centaurus. Astrophys. J. 2017, 837, 95. [Google Scholar] [CrossRef]
- Dobashi, K.; Uehara, H.; Kandori, R.; Sakurai, T.; Kaiden, M.; Umemoto, T.; Sato, F. Atlas and Catalog of Dark Clouds Based on Digitized Sky Survey I. Publ. Astron. Soc. Jpn. 2005, 57, S1–S386. [Google Scholar] [CrossRef]
- York, D.G.; Adelman, J.; Anderson, J.E., Jr.; Anderson, S.F.; Annis, J.; Bahcall, N.A.; Bakken, J.A.; Barkhouser, R.; Bastian, S.; Berman, E.; et al. The Sloan Digital Sky Survey: Technical Summary. Astron. J. 2000, 120, 1579–1587. [Google Scholar] [CrossRef] [Green Version]
- Fazio, G.G.; Hora, J.L.; Allen, L.E.; Ashby, M.L.N.; Barmby, P.; Deutsch, L.K.; Huang, J.-S.; Kleiner, S.; Marengo, M.; Megeath, S.T.; et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 2004, 154, 10. [Google Scholar] [CrossRef]
- Skrutskie, M.F.; Cutri, R.M.; Stiening, R.; Weinberg, M.D.; Schneider, S.; Carpenter, J.M.; Beichman, C.; Capps, R.; Chester, T.; Elias, J.; et al. The Two Micron All Sky Survey (2MASS). Astron. J. 2006, 131, 1163–1183. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, A.; Warren, S.J.; Almaini, O.; Edge, A.C.; Hambly, N.C.; Jameson, R.F.; Lucas, P.; Casali, M.; Adamson, A.; Dye, S.; et al. The UKIRT Infrared Deep Sky Survey (UKIDSS). Mon. Not. R. Astron. Soc. 2007, 379, 1599–1617. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, N.; Burgett, W.; Chambers, K.; Denneau, L.; Heasley, J.; Jedicke, R.; Magnier, E.; Morgan, J.; Onaka, P.; Tonry, J. The Pan-STARRS wide-field optical/NIR imaging survey. Proc. SPIE 2010, 7733, 773300E. [Google Scholar] [CrossRef]
- Wright, E.L.; Eisenhardt, P.R.M.; Mainzer, A.K.; Ressler, M.E.; Cutri, R.M.; Jarrett, T.; Kirkpatrick, J.D.; Padgett, D.; McMillan, R.S.; Skrutskie, M.; et al. The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance. Astron. J. 2010, 140, 1868–1881. [Google Scholar] [CrossRef]
- Collaboration, G.; Brown, A.G.A.; Vallenari, A.; Prusti, T.; Bruijne, J.D. Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties. Astron. Astrophys. 2016, 595, A2. [Google Scholar] [CrossRef]
- Luhman, K.L.; Mamajek, E.E.; Shukla, S.J.; Loutrel, N.P. A Survey for New Members of the Taurus Star-forming Region with the Sloan Digital Sky Survey. Astron. J. 2017, 153, 46. [Google Scholar] [CrossRef]
- Kraus, A.L.; Herczeg, G.J.; Rizzuto, A.C.; Mann, A.W.; Slesnick, C.L.; Carpenter, J.M.; Hillenbrand, L.A.; Mamajek, E.E. The Greater Taurus-Auriga Ecosystem. I. There is a Distributed Older Population. Astrophys. J. 2017, 838, 150. [Google Scholar] [CrossRef]
- Caballero, J.A. Spatial distribution of stars and brown dwarfs in σ Orionis. Mon. Not. R. Astron. Soc. 2008, 383, 375–382. [Google Scholar] [CrossRef]
- Jeffries, R.D.; Maxted, P.F.L.; Oliveira, J.M.; Naylor, T. Kinematic structure in the young σ Orionis association. Mon. Not. R. Astron. Soc. 2006, 371, L6. [Google Scholar] [CrossRef]
- Caballero, J.A. Stars and brown dwarfs in the σ Orionis cluster: The Mayrit catalogue. Astron. Astrophys. 2008, 478, 667. [Google Scholar] [CrossRef]
- Lafrenière, D.; Jayawardhana, R.; van Kerkwijk, M.H. Direct Imaging and Spectroscopy of a Planetary-Mass Candidate Companion to a Young Solar Analog. Astrophys. J. 2008, 689, L153–L156. [Google Scholar] [CrossRef]
- Lafrenière, D.; Jayawardhana, R.; van Kerkwijk, M.H. The Directly Imaged Planet Around the Young Solar Analog 1RXS J160929.1-210524: Confirmation of Common Proper Motion, Temperature, and Mass. Astrophys. J. 2010, 719, 497–504. [Google Scholar] [CrossRef]
- Ireland, M.J.; Kraus, A.; Martinache, F.; Law, N.; Hillenbrand, L.A. Two Wide Planetary-mass Companions to Solar-type Stars in Upper Scorpius. Astrophys. J. 2011, 726, 113. [Google Scholar] [CrossRef]
- Lachapelle, F.-R.; Lafrenière, D.; Gagné, J.; Jayawardhana, R.; Janson, M.; Helling, C.; Witte, S. Characterization of Low-mass, Wide-separation Substellar Companions to Stars in Upper Scorpius: Near-infrared Photometry and Spectroscopy. Astrophys. J. 2015, 802, 61. [Google Scholar] [CrossRef]
- Lafrenière, D.; Jayawardhana, R.; Janson, M.; Helling, C.; Witte, S.; Hauschildt, P. Discovery of an ~23 MJup Brown Dwarf Orbiting ~700 AU from the Massive Star HIP 78530 in Upper Scorpius. Astrophys. J. 2011, 730, 42. [Google Scholar] [CrossRef]
- Borucki, W.J.; Koch, D.; Basri, G.; Batalha, N.; Brown, T.; Caldwell, D.; Caldwell, J.; Christensen-Dalsgaard, J.; Cochran, W.D.; DeVore, E.; et al. Kepler Planet-Detection Mission: Introduction and First Results. Science 2010, 327, 977–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lissauer, J.J.; Marcy, G.W.; Bryson, S.T.; Rowe, J.F.; Jontof-Hutter, D.; Agol, E.; Borucki, W.J.; Carter, J.A.; Ford, E.B.; Gilliland, R.L.; et al. Validation of Kepler’s Multiple Planet Candidates. II. Refined Statistical Framework and Descriptions of Systems of Special Interest. Astrophys. J. 2014, 784, 44. [Google Scholar] [CrossRef]
- David, T.J.; Hillenbrand, L.A.; Petigura, E.A.; Carpenter, J.M.; Crossfield, I.J.; Hinkley, S.; Ciardi, D.R.; Howard, A.W.; Isaacson, H.T.; Cody, A.M.; et al. A Neptune-sized transiting planet closely orbiting a 5-10-million-year-old star. Nature 2016, 534, 658. [Google Scholar] [CrossRef] [PubMed]
- Mann, A.W.; Newton, E.R.; Rizzuto, A.C.; Irwin, J.; Feiden, G.A.; Gaidos, E.; Mace, G.N.; Kraus, A.L.; James, D.J.; Ansdell, M.; et al. Zodiacal Exoplanets in Time (ZEIT). III. A Short-period Planet Orbiting a Pre-main-sequence Star in the Upper Scorpius OB Association. Astron. J. 2016, 152, 61. [Google Scholar] [CrossRef]
- Vanderburg, A.; Latham, D.W.; Buchhave, L.A.; Bieryla, A.; Berlind, P.; Calkins, M.L.; Esquerdo, G.A.; Welsh, S.; Johnson, J.A. Planetary Candidates from the First Year of the K2 Mission. Astrophys. J. Suppl. Ser. 2016, 222, 14. [Google Scholar] [CrossRef]
- Martín, E.L.; Basri, G.; Zapatero Osorio, M.R.; Rebolo, R.; García López, R.J. The First L-Type Brown Dwarf in the Pleiades. Astrophys. J. 1998, 507, L41. [Google Scholar] [CrossRef]
- Bihain, G.; Rebolo, R.; Bejar, V.J.S.; Caballero, J.A.; Bailer-Jones, C.A.L.; Mundt, R.; Acosta-Pulido, J.A.; Torres, A.M. Pleiades low-mass brown dwarfs: The cluster L dwarf sequence. Astron. Astrophys. 2006, 458, 805–816. [Google Scholar] [CrossRef]
- Lodieu, N.; Deacon, N.R.; Hambly, N.C. Astrometric and photometric initial mass functions from the UKIDSS Galactic Clusters Survey—I. The Pleiades. Mon. Not. R. Astron. Soc. 2012, 422, 1495–1511. [Google Scholar] [CrossRef]
- Casewell, S.L.; Jameson, R.F.; Burleigh, M.R.; Dobbie, P.D.; Roy, M.; Hodgkin, S.T.; Moraux, E. Methane band and Spitzer mid-IR imaging of L and T dwarf candidates in the Pleiades. Mon. Not. R. Astron. Soc. 2011, 412, 2071–2078. [Google Scholar] [CrossRef] [Green Version]
- Jameson, R.F.; Dobbie, P.D.; Hodgkin, S.T.; Pinfield, D.J. Brown dwarfs in the Pleiades: Spatial distribution and mass function. Mon. Not. R. Astron. Soc. 2002, 335, 853. [Google Scholar] [CrossRef]
- Gauza, B.; Béjar, V.J.S.; Pérez-Garrido, A.; Osorio, M.R.Z.; Lodieu, N.; Rebolo, R.; Pallé, E.; Nowak, G. Discovery of a Young Planetary Mass Companion to the Nearby M Dwarf VHS J125601.92-125723.9. Astrophys. J. 2015, 804, 96. [Google Scholar] [CrossRef]
- Mamajek, E.E. A Moving Cluster Distance to the Exoplanet 2M1207b in the TW Hydrae Association. Astrophys. J. 2005, 634, 1385–1394. [Google Scholar] [CrossRef] [Green Version]
- Song, I.; Schneider, G.; Zuckerman, B.; Farihi, J.; Becklin, E.E.; Bessell, M.S.; Lowrance, P.; Macintosh, B.A. HST NICMOS Imaging of the Planetary-mass Companion to the Young Brown Dwarf 2MASSW J1207334-393254. Astrophys. J. 2006, 652, 724–729. [Google Scholar] [CrossRef]
- Ducourant, C.; Teixeira, R.; Chauvin, G.; Daigne, G.; le Campion, J.F.; Song, I.; Zuckerman, B. An accurate distance to 2M1207Ab. Astron. Astrophys. 2008, 477, L1. [Google Scholar] [CrossRef]
- Patience, J.; King, R.R.; de Rosa, R.J.; Marois, C. The highest resolution near infrared spectrum of the imaged planetary mass companion 2M1207 b. Astron. Astrophys. 2010, 517, A76. [Google Scholar] [CrossRef]
- Barman, T.S.; Macintosh, B.; Konopacky, Q.M.; Marois, C. The Young Planet-mass Object 2M1207b: A Cool, Cloudy, and Methane-poor Atmosphere. Astrophys. J. 2011, 735, L39. [Google Scholar] [CrossRef]
- Zhou, Y.; Apai, D.; Schneider, G.H.; Marley, M.S.; Showman, A.P. Discovery of Rotational Modulations in the Planetary-mass Companion 2M1207b: Intermediate Rotation Period and Heterogeneous Clouds in a Low Gravity Atmosphere. Astrophys. J. 2016, 818, 176. [Google Scholar] [CrossRef]
- Biller, B.A.; Close, L.M. A Direct Distance and Luminosity Determination for a Self-luminous Giant Exoplanet: The Trigonometric Parallax to 2MASSW J1207334-393254Ab. Astrophys. J. 2007, 669, L41–L44. [Google Scholar] [CrossRef]
- Mohanty, S.; Jayawardhana, R.; Huélamo, N.; Mamajek, E.E. The Planetary Mass Companion 2MASS 1207-3932B: Temperature, Mass, and Evidence for an Edge-on Disk. Astrophys. J. 2007, 657, 1064–1091. [Google Scholar] [CrossRef]
- Mamajek, E.E.; Meyer, M.R. An Improbable Solution to the Underluminosity of 2M1207B: A Hot Protoplanet Collision Afterglow. Astrophys. J. 2007, 668, L175–L178. [Google Scholar] [CrossRef]
- Skemer, A.J.; Close, L.M.; Szűcs, L.; Apai, D.; Pascucci, I.; Biller, B.A. Evidence Against an Edge-on Disk Around the Extrasolar Planet, 2MASS 1207 b and a New Thick-cloud Explanation for Its Underluminosity. Astrophys. J. 2011, 732, 107. [Google Scholar] [CrossRef]
- Riaz, B.; Lodato, G.; Stamatellos, D.; Gizis, J.E. Herschel SPIRE observations of the TWA brown dwarf disc 2MASSW J1207334-393254. Mon. Not. R. Astron. Soc. 2012, 422, L74–L76. [Google Scholar] [CrossRef]
- Ricci, L.; Cazzoletti, P.; Czekala, I.; SAndrews, M.; Wilner, D.; Szűcs, L.; Lodato, G.; Testi, L.; Pascucci, I.; Mohanty, S.; et al. ALMA Observations of the Young Substellar Binary System 2M1207. Astron. J. 2017, 154, 24. [Google Scholar] [CrossRef] [Green Version]
- Caballero, J.A.; Martín, E.L.; Dobbie, P.D.; Barrado y Navascués, D. Are isolated planetary-mass objects really isolated? A brown dwarf-exoplanet system candidate in the σ Orionis cluster. Astron. Astrophys. 2006, 460, 635. [Google Scholar] [CrossRef]
- Scholz, A.; Eislöffel, J. Rotation and accretion of very low mass objects in the σ Ori cluster. Astron. Astrophys. 2004, 419, 249–267. [Google Scholar] [CrossRef]
- Franciosini, E.; Pallavicini, R.; Sanz-Forcada, J. XMM-Newton observations of the σ Orionis cluster. II. Spatial and spectral analysis of the full EPIC field. Astron. Astrophys. 2006, 446, 501–513. [Google Scholar] [CrossRef]
- Barrado y Navascués, D.; Bayo, A.; Morales-Calderón, M.; Huélamo, N.; Stauffer, J.R.; Bouy, H. The young, wide and very low mass visual binary Lambda Orionis 167. Astron. Astrophys. 2007, 468, L5–L8. [Google Scholar] [CrossRef]
- Béjar, V.J.S.; Zapatero Osorio, M.R.; Pérez-Garrido, A.; Álvarez, C.; Martín, E.L.; Rebolo, R.; Villó-Pérez, I.; Díaz-Sánchez, A. Discovery of a Wide Companion near the Deuterium-burning Mass Limit in the Upper Scorpius Association. Astrophys. J. 2008, 673, L185–L189. [Google Scholar] [CrossRef]
- Todorov, K.O.; Luhman, K.L.; McLeod, K.K. Discovery of a Planetary-mass Companion to a Brown Dwarf in Taurus. Astrophys. J. 2010, 714, L84. [Google Scholar] [CrossRef]
- Todorov, K.O.; Luhman, K.L.; Konopacky, Q.M.; McLeod, K.K.; Apai, D.; Ghez, A.M.; Pascucci, I.; Robberto, M. A Search for Companions to Brown Dwarfs in the Taurus and Chamaeleon Star-Forming Regions. Astrophys. J. 2014, 788, 40. [Google Scholar] [CrossRef]
- Jayawardhana, R.; Ivanov, V.D. Discovery of a Young Planetary-Mass Binary. Science 2006, 313, 1279–1281. [Google Scholar] [CrossRef] [PubMed]
- Brandeker, A.; Jayawardhana, R.; Ivanov, V.D.; Kurtev, R. Infrared Spectroscopy of the Ultra-Low-Mass Binary Oph 162225-240515. Astrophys. J. 2006, 653, L61–L64. [Google Scholar] [CrossRef]
- Close, L.M.; Zuckerman, B.; Song, I.; Barman, T.; Marois, C.; Rice, E.L.; Siegler, N.; Macintosh, B.; Becklin, E.E.; Campbell, R.; et al. The Wide Brown Dwarf Binary Oph 1622-2405 and Discovery of a Wide, Low-Mass Binary in Ophiuchus (Oph 1623-2402): A New Class of Young Evaporating Wide Binaries? Astrophys. J. 2007, 660, 1492–1506. [Google Scholar] [CrossRef]
- Luhman, K.L.; Allers, K.N.; Jaffe, D.T.; Cushing, M.C.; Williams, K.A.; Slesnick, C.L.; Vacca, W.D. Ophiuchus 1622-2405: Not a Planetary-Mass Binary. Astrophys. J. 2007, 659, 1629–1636. [Google Scholar] [CrossRef]
- Caballero, J.A. Reaching the boundary between stellar kinematic groups and very wide binaries. The Washington double stars with the widest angular separations. Astron. Astrophys. 2009, 507, 251–259. [Google Scholar] [CrossRef]
- Lodato, G.; Delgado-Donate, E.; Clarke, C.J. Constraints on the formation mechanism of the planetary mass companion of 2MASS 1207334-393254. Mon. Not. R. Astron. Soc. 2005, 364, L91. [Google Scholar] [CrossRef]
- Desidera, S. Properties of Hypothetical Planetary Systems around the Brown Dwarf Gliese 229B. Publ. Astron. Soc. Pac. 1999, 111, 1529–1538. [Google Scholar] [CrossRef] [Green Version]
- Caballero, J.A.; Rebolo, R. Variability in brown dwarfs: Atmospheres and transits. In Proceedings of the First Eddington Workshop on Stellar Structure and Habitable Planet Finding, Córdoba, Spain, 11–15 June 2001; Battrick, B., Favata, F., Roxburgh, I.W., Galadi, D., Eds.; ESA SP-485; ESA Publications Division: The Netherlands, 2002; p. 261. ISBN 92-9092-781-X. [Google Scholar]
- Delorme, P.; Delfosse, X.; Albert, L.; Artigau, E.; Forveille, T.; Reylé, C.; Allard, F.; Homeier, D.; Robin, A.C.; Willott, C.J.; et al. CFBDS J005910.90-011401.3: Reaching the T-Y brown dwarf transition? Astron. Astrophys. 2008, 482, 961–971. [Google Scholar] [CrossRef]
- Cushing, M.C.; Kirkpatrick, J.D.; Gelino, C.R.; Griffith, R.L.; Skrutskie, M.F.; Mainzer, A.; Marsh, K.A.; Beichman, C.A.; Burgasser, A.J.; Prato, L.A.; et al. The Discovery of Y Dwarfs using Data from the Wide-field Infrared Survey Explorer (WISE). Astrophys. J. 2011, 743, 50. [Google Scholar] [CrossRef]
- Davy Kirkpatrick, J.; Cushing, M.C.; Gelino, C.R.; Griffith, R.L.; Skrutskie, M.F.; Marsh, K.A.; Wright, E.L.; Mainzer, A.; Eisenhardt, P.R.; McLean, I.S.; et al. The First Hundred Brown Dwarfs Discovered by the Wide-field Infrared Survey Explorer (WISE). Astrophys. J. Suppl. Ser. 2011, 197, 19. [Google Scholar] [CrossRef]
- Liu, M.C.; Dupuy, T.J.; Bowler, B.P.; Leggett, S.K.; Best, W.M.J. Two Extraordinary Substellar Binaries at the T/Y Transition and the Y-band Fluxes of the Coolest Brown Dwarfs. Astrophys. J. 2012, 758, 57. [Google Scholar] [CrossRef]
- Tinney, C.G.; Faherty, J.K.; Kirkpatrick, J.D.; Wright, E.L.; Gelino, C.R.; Cushing, M.C.; Griffith, R.L.; Salter, G. WISE J163940.83-684738.6: A Y Dwarf Identified by Methane Imaging. Astrophys. J. 2012, 759, 60. [Google Scholar] [CrossRef]
- Beichman, C.; Gelino, C.R.; Kirkpatrick, J.D.; Barman, T.S.; Marsh, K.A.; Cushing, M.C.; Wright, E.L. The Coldest Brown Dwarf (or Free-floating Planet)?: The Y Dwarf WISE 1828+2650. Astrophys. J. 2013, 764, 101. [Google Scholar] [CrossRef]
- Kirkpatrick, J.D.; Cushing, M.C.; Gelino, C.R.; Beichman, C.A.; Tinney, C.G.; Faherty, J.K.; Schneider, A.; Mace, G.N. Discovery of the Y1 Dwarf WISE J064723.23-623235.5. Astrophys. J. 2013, 776, 128. [Google Scholar] [CrossRef]
- Dupuy, T.J.; Kraus, A.L. Distances, Luminosities, and Temperatures of the Coldest Known Substellar Objects. Science 2013, 341, 1492–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cushing, M.C.; Kirkpatrick, J.D.; Gelino, C.R. Three New Cool Brown Dwarfs Discovered with the Wide-field Infrared Survey Explorer (WISE) and an Improved Spectrum of the Y0 Dwarf WISE J041022.71+150248.4. Astron. J. 2014, 147, 113. [Google Scholar] [CrossRef]
- Pinfield, D.J.; Gromadzki, M.; Leggett, S.K.; Gomes, J.; Lodieu, N.; Kurtev, R.; Day-Jones, A.C.; Ruiz, M.T.; Cook, N.J.; Morley, C.V.; et al. Discovery of a new Y dwarf: WISE J030449.03-270508.3. Mon. Not. R. Astron. Soc. 2014, 444, 1931–1939. [Google Scholar] [CrossRef]
- Liu, M.C.; Magnier, E.A.; Deacon, N.R.; Allers, K.N.; Dupuy, T.J.; Kotson, M.C.; Aller, K.M.; Burgett, W.S.; Chambers, K.C.; Draper, P.W.; et al. The Extremely Red, Young L Dwarf PSO J318.5338-22.8603: A Free-floating Planetary-mass Analog to Directly Imaged Young Gas-giant Planet. Astrophys. J. 2013, 777, L20. [Google Scholar] [CrossRef]
- Mace, G.N.; Kirkpatrick, J.D.; Cushing, M.C.; Gelino, C.R.; Griffith, R.L.; Skrutskie, M.F.; Marsh, K.A.; Wright, E.L.; Eisenhardt, P.R.; McLean, I.S.; et al. A Study of the Diverse T Dwarf Population Revealed by WISE. Astrophys. J. Suppl. Ser. 2013, 205, 6. [Google Scholar] [CrossRef]
- Gagné, J.; Lafrenière, D.; Doyon, R.; Malo, L.; Artigau, É. BANYAN. II. Very Low Mass and Substellar Candidate Members to Nearby, Young Kinematic Groups with Previously Known Signs of Youth. Astrophys. J. 2014, 783, 121. [Google Scholar] [CrossRef]
- Gagné, J.; Faherty, J.K.; Cruz, K.; Lafrenière, D.; Doyon, R.; Malo, L.; Artigau, É. The Coolest Isolated Brown Dwarf Candidate Member of TWA. Astrophys. J. 2014, 785, L14. [Google Scholar] [CrossRef]
- Gagné, J.; Burgasser, A.J.; Faherty, J.K.; Lafreniére, D.; Doyon, R.; Filippazzo, J.C.; Bowsher, E.; Nicholls, C.P. SDSS J111010.01+011613.1: A New Planetary-mass T Dwarf Member of the AB Doradus Moving Group. Astrophys. J. 2015, 808, L20. [Google Scholar] [CrossRef]
- Gagné, J.; Faherty, J.K.; Cruz, K.L.; Lafrenière, D.; Doyon, R.; Malo, L.; Burgasser, A.J.; Naud, M.; Artigau, É.; Bouchard, S.; et al. BANYAN. VII. A New Population of Young Substellar Candidate Members of Nearby Moving Groups from the BASS Survey. Astrophys. J. Suppl. Ser. 2015, 219, 33. [Google Scholar] [CrossRef]
- Kellogg, K.; Metchev, S.; Geißler, K.; Hicks, S.; Kirkpatrick, J.D.; Kurtev, R. A Targeted Search for Peculiarly Red L and T Dwarfs in SDSS, 2MASS, and WISE: Discovery of a Possible L7 Member of the TW Hydrae Association. Astron. J. 2015, 150, 182. [Google Scholar] [CrossRef]
- Schneider, A.C.; Windsor, J.; Cushing, M.C.; Kirkpatrick, J.D.; Wright, E.L. WISEA J114724.10-204021.3: A Free-floating Planetary Mass Member of the TW Hya Association. Astrophys. J. 2016, 822, L1. [Google Scholar] [CrossRef]
- Best, W.M.J.; Liu, M.C.; Dupuy, T.J.; Magnier, E.A. The Young L Dwarf 2MASS J11193254-1137466 Is a Planetary-mass Binary. Astrophys. J. 2017, 843, L4. [Google Scholar] [CrossRef]
- Gagné, J.; Faherty, J.K.; Mamajek, E.E.; Malo, L.; Doyon, R.; Filippazzo, J.C.; Weinberger, A.J.; Donaldson, J.K.; Lépine, S.; Lafrenière, D.; et al. BANYAN. IX. The Initial Mass Function and Planetary-mass Object Space Density of the TW HYA Association. Astrophys. J. Suppl. Ser. 2017, 228, 18. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.C.; Hardegree-Ullman, K.K.; Cushing, M.C.; Kirkpatrick, J.D.; Shkolnik, E.L. Spitzer Light Curves of the Young, Planetary-mass TW Hya Members 2MASS J11193254–1137466AB and WISEA J114724.10–204021.3. Astron. J. 2018, 155, 238. [Google Scholar] [CrossRef] [Green Version]
- Gagné, J.; Faherty, J.K.; Burgasser, A.J.; Artigau, É.; Bouchard, S.; Albert, L.; Lafrenière, D.; Doyon, R.; Gagliuffi, D.C.B. SIMP J013656.5+093347 Is Likely a Planetary-mass Object in the Carina-Near Moving Group. Astrophys. J. 2017, 841, L1. [Google Scholar] [CrossRef] [Green Version]
- Gagné, J.; Allers, K.N.; Theissen, C.A.; Faherty, J.K.; Gagliuffi, D.C.B.; Artigau, É. 2MASS J13243553+6358281 Is an Early T-type Planetary-mass Object in the AB Doradus Moving Group. Astrophys. J. 2018, 854, L27. [Google Scholar] [CrossRef] [Green Version]
- Delorme, P.; Gagné, J.; Malo, L.; Reylé, C.; Artigau, E.; Albert, L.; Forveille, T.; Delfosse, X.; Allard, F.; Homeier, D. CFBDSIR2149-0403: A 4-7 Jupiter-mass free-floating planet in the young moving group AB Doradus? Astron. Astrophys. 2012, 548, A26. [Google Scholar] [CrossRef]
- Delorme, P.; Dupuy, T.; Gagné, J.; Forveille, T.; Liu, M.C.; Artigau, E.; Albert, L.; Delfosse, X.; Allard, F.; Homeier, D.; et al. CFBDSIR 2149-0403: Young isolated planetary-mass object or high-metallicity low-mass brown dwarf? Astron. Astrophys. 2017, 602, A82. [Google Scholar] [CrossRef]
- Skemer, A.; Morley, C.; Allers, K.; Geballe, T.; Marley, M.; Fortney, J.; Faherty, J.; Bjoraker, G.; Lupu, R. The First Spectrum of the Coldest Brown Dwarf. Astrophys. J. 2016, 826, L17. [Google Scholar] [CrossRef]
- Zapatero Osorio, M.R.; Lodieu, N.; Béjar, V.J.S.; Martín, E.L.; Ivanov, V.D.; Bayo, A.; Boffin, H.M.J.; Mužić, K.; Minniti, D.; Beamín, J. C Near-infrared photometry of WISE J085510.74-071442.5. Astron. Astrophys. 2016, 592, A80. [Google Scholar] [CrossRef]
- Luhman, K.L.; Burgasser, A.J.; Bochanski, J.J. Discovery of a Candidate for the Coolest Known Brown Dwarf. Astrophys. J. 2011, 730, L9. [Google Scholar] [CrossRef]
- Rodríguez, D.R.; Zuckerman, B.; Melis, C.; Song, I. The Ultra Cool Brown Dwarf Companion of WD 0806-661B: Age, Mass, and Formation Mechanism. Astrophys. J. 2011, 732, L29. [Google Scholar] [CrossRef]
- Luhman, K.L.; Burgasser, A.J.; Labbe, I.; Saumon, D.; Marley, M.S.; Bochanski, J.J.; Monson, A.J.; Persson, S.E. Confirmation of One of the Coldest Known Brown Dwarfs. Astrophys. J. 2012, 744, 135. [Google Scholar] [CrossRef]
- Luhman, K.L.; Morley, C.V.; Burgasser, A.J.; Esplin, T.L.; Bochanski, J.J. Near-infrared Detection of WD 0806-661 B with the Hubble Space Telescope. Astrophys. J. 2014, 794, 16. [Google Scholar] [CrossRef]
- Kopytova, T.G.; Crossfield, I.J.M.; Deacon, N.R.; Brandner, W.; Buenzli, E.; Bayo, A.; Schlieder, J.E.; Manjavacas, E.; Biller, B.A.; Kopon, D. Deep z-band Observations of the Coolest Y Dwarf. Astrophys. J. 2014, 797, 3. [Google Scholar] [CrossRef]
- Luhman, K.L.; Esplin, T.L. A New Parallax Measurement for the Coldest Known Brown Dwarf. Astrophys. J. 2014, 796, 6. [Google Scholar] [CrossRef]
- Tinney, C.G.; Faherty, J.K.; Kirkpatrick, J.D.; Cushing, M.; Morley, C.V.; Wright, E.L. The Luminosities of the Coldest Brown Dwarfs. Astrophys. J. 2014, 796, 39. [Google Scholar] [CrossRef]
- Wright, E.L.; Mainzer, A.; Davy Kirkpatrick, J.; Masci, F.; Cushing, M.C.; Bauer, J.; Fajardo-Acosta, S.; Gelino, C.R.; Beichman, C.A.; Skrutskie, M.F.; et al. NEOWISE-R Observation of the Coolest Known Brown Dwarf. Astron. J. 2014, 148, 82. [Google Scholar] [CrossRef]
- Yates, J.S.; Palmer, P.I.; Biller, B.; Cockell, C.S. Atmospheric Habitable Zones in Y Dwarf Atmospheres. Astrophys. J. 2017, 836, 184. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.S. On the nature of red stars of low luminosity. Observatory 1964, 84, 18. [Google Scholar]
- Kumar, S.S. On planets and black dwarfs. Icarus 1967, 6, 136–137. [Google Scholar] [CrossRef]
- Low, C.; Lynden-Bell, D. The minimum Jeans mass or when fragmentation must stop. Mon. Not. R. Astron. Soc. 1976, 176, 367–390. [Google Scholar] [CrossRef]
- Rees, M.J. Opacity-limited hierarchical fragmentation and the masses of protostars. Mon. Not. R. Astron. Soc. 1976, 176, 483. [Google Scholar] [CrossRef]
- Silk, J. On the fragmentation of cosmic gas clouds. II—Opacity-limited star formation. Astrophys. J. 1977, 214, 152. [Google Scholar] [CrossRef]
- Tohline, J.E. The gravitational fragmentation of primordial gas clouds. Astrophys. J. 1980, 239, 417. [Google Scholar] [CrossRef]
- Boss, A.P. Low-mass star and planet formation. Publ. Astron. Soc. Pac. 1989, 101, 767. [Google Scholar] [CrossRef] [Green Version]
- Boss, A.P. Formation of Planetary-Mass Objects by Protostellar Collapse and Fragmentation. Astrophys. J. 2001, 551, L167. [Google Scholar] [CrossRef]
- Whitworth, A.; Bate, M.R.; Nordlund, Å.; Reipurth, B.; Zinnecker, H. The Formation of Brown Dwarfs: Theory. In Protostars and Planets V; Reipurth, B., Jewitt, D., Keil, K., Eds.; University of Arizona Press: Tucson, AZ, USA, 2007; p. 459. [Google Scholar]
- Luhman, K.L.; Joergens, V.; Lada, C.; Muzerolle, J.; Pascucci, I.; White, R. The Formation of Brown Dwarfs: Observations. In Protostars and Planets V; Reipurth, B., Jewitt, D., Keil, K., Eds.; University of Arizona Press: Tucson, AZ, USA, 2007; p. 443. [Google Scholar]
- Boss, A.P. Possible Rapid Gas Giant Planet Formation in the Solar Nebula and Other Protoplanetary Disks. Astrophys. J. 2000, 536, L101–L104. [Google Scholar] [CrossRef] [PubMed]
- Reipurth, B.; Clarke, C. The Formation of Brown Dwarfs as Ejected Stellar Embryos. Astron. J. 2001, 122, 432. [Google Scholar] [CrossRef]
- Bate, M.R.; Bonnell, I.A.; Bromm, V. The formation of close binary systems by dynamical interactions and orbital decay. Mon. Not. R. Astron. Soc. 2002, 336, 705. [Google Scholar] [CrossRef]
- Marcy, G.W.; Butler, R.P. Detection of Extrasolar Giant Planets. Arastron. Astrophys. 1998, 36, 57. [Google Scholar] [CrossRef]
- Parker, R.J.; Wright, N.J.; Goodwin, S.P.; Meyer, M.R. Dynamical evolution of star-forming regions. Mon. Not. R. Astron. Soc. 2014, 438, 620. [Google Scholar] [CrossRef]
- Caballero, J.A. A near-infrared/optical/X-ray survey in the centre of σ Orionis. Astron. Nachr. 2007, 328, 917. [Google Scholar] [CrossRef]
- Bouy, H.; Huélamo, N.; Martín, E.L.; Marchis, F.; Navascués, D.B.; Kolb, J.; Marchetti, E.; Petr-Gotzens, M.G.; Sterzik, M.; Ivanov, V.D.; et al. A deep look into the cores of young clusters. I. σ Orionis. Astron. Astrophys. 2009, 493, 931–946. [Google Scholar] [CrossRef]
- Palau, A.; de Gregorio-Monsalvo, I.; Morata, Ò.; Stamatellos, D.; Huélamo, N.; Eiroa, C.; Bayo, A.; Morales-Calderón, M.; Bouy, H.; Ribas, Á.; et al. A search for pre-substellar cores and proto-brown dwarf candidates in Taurus: Multiwavelength analysis in the B213-L1495 clouds. Mon. Not. R. Astron. Soc. 2012, 424, 2778–2791. [Google Scholar] [CrossRef]
- Gahm, G.F.; Persson, C.M.; Mäkelä, M.M.; Haikala, L.K. Mass and motion of globulettes in the Rosette Nebula. Astron. Astrophys. 2013, 555, A57. [Google Scholar] [CrossRef]
- Palau, A.; Zapata, L.A.; Rodriguez, L.F.; Bouy, H.; Barrado, D.; Morales-Calderon, M.; Myers, P.C.; Chapman, N.; Juarez, C.; Li, D. IC 348-SMM2E: A Class 0 proto-brown dwarf candidate forming as a scaled-down version of low-mass stars. Mon. Not. R. Astron. Soc. 2014, 444, 833–845. [Google Scholar] [CrossRef]
- Haworth, T.J.; Facchini, S.; Clarke, C.J. The theory of globulettes: Candidate precursors of brown dwarfs and free-floating planets in H II regions. Mon. Not. R. Astron. Soc. 2015, 446, 1098–1106. [Google Scholar] [CrossRef]
- Morata, Ó.; Palau, A.; González, R.F.; de Gregorio-Monsalvo, I.; Ribas, Á.; Perger, M.; Bouy, H.; Barrado, D.; Eiroa, C.; Bayo, A.; et al. First Detection of Thermal Radiojets in a Sample of Proto-brown Dwarf Candidates. Astrophys. J. 2015, 807, 55. [Google Scholar] [CrossRef]
- De Gregorio-Monsalvo, I.; Barrado, D.; Bouy, H.; Bayo, A.; Palau, A.; Morales-Calderón, M.; Huélamo, N.; Morata, O.; Merín, B.; Eiroa, C. A submillimetre search for pre- and proto-brown dwarfs in Chamaeleon II. Astron. Astrophys. 2016, 590, A79. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, Q.; Kim, K.-T.; Wu, Y.; Lee, C.W.; Lee, J.-E.; Tatematsu, K.; Choi, M.; Juvela, M.; Thompson, M.; et al. Planck Cold Clumps in the λ Orionis Complex. I. Discovery of an Extremely Young Class 0 Protostellar Object and a Proto-brown Dwarf Candidate in the Bright-rimmed Clump PGCC G192.32-11.88. Astrophys. J. Suppl. Ser. 2016, 222, 7. [Google Scholar] [CrossRef]
- Bayo, A.; Joergens, V.; Liu, Y.; Brauer, R.; Olofsson, J.; Arancibia, J.; Pinilla, P.; Wolf, S.; Ruge, J.; Henning, T.; et al. First Millimeter Detection of the Disk around a Young, Isolated, Planetary-mass Object. Astrophys. J. 2017, 841, L11. [Google Scholar] [CrossRef] [Green Version]
- Riaz, B.; Briceño, C.; Whelan, E.T.; Heathcote, S. First Large-scale Herbig-Haro Jet Driven by a Proto-brown Dwarf. Astrophys. J. 2017, 844, 47. [Google Scholar] [CrossRef]
- Abell, P.A.; Allison, J.; Anderson, S.F.; Andrew, J.R.; Angel, J.R.P.; Armus, L.; Arnett, D.; Asztalos, S.J.; Axelrod, T.S.; Bailey, S.; et al. LSST Science Book, version 2.0; LSST Corporation: Tucson, AZ, USA, 2009. [Google Scholar]
- Laureijs, R.; Amiaux, J.; Arduini, S.; Auguères, J.-L.; Brinchmann, J.; Cole, R.; Cropper, M.; Dabin, C.; Duvet, L.; Ealet, A.; et al. Euclid Definition Study Report. arXiv, 2011; arXiv:1110.3193. [Google Scholar]
- Spergel, D.; Gehrels, N.; Breckinridge, J.; Donahue, M.; Dressler, A.; Gaudi, B.S.; Greene, T.; Guyon, O.; Hirata, C.; Kalirai, J.; et al. Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report. arXiv, 2015; arXiv:1503.03757. [Google Scholar]
- Deacon, N.R. Detecting free-floating planets using water-depend colour terms in the next generation of infrared space-based surveys. Mon. Not. R. Astron. Soc. 2018, 481, 447. [Google Scholar] [CrossRef]
- Burrows, A.; Sudarsky, D.; Lunine, J.I. Beyond the T Dwarfs: Theoretical Spectra, Colors, and Detectability of the Coolest Brown Dwarfs. Astrophys. J. 2003, 596, 587–596. [Google Scholar] [CrossRef] [Green Version]
- Tremblin, P.; Chabrier, G.; Baraffe, I.; Liu, M.C.; Magnier, E.A.; Lagage, P.-O.; de Oliveira, C.A.; Burgasser, A.J.; Amundsen, D.S.; Drummond, B. Cloudless Atmospheres for Young Low-gravity Substellar Objects. Astrophys. J. 2017, 850, 46. [Google Scholar] [CrossRef] [Green Version]
- Kalirai, J. Scientific discovery with the James Webb Space Telescope. Contemp. Phys. 2018, 59, 251–290. [Google Scholar] [CrossRef]
- Morley, C.V.; Skemer, A.J.; Allers, K.N.; Marley, M.S.; Faherty, J.K.; Visscher, C.; Beiler, S.A.; Miles, B.E.; Lupu, R.E.; Freedman, R.S.; et al. An L Band Spectrum of the Coldest Brown Dwarf. Astrophys. J. 2018, 858, 97. [Google Scholar] [CrossRef] [Green Version]
- Gilmozzi, R.; Spyromilio, J. The European Extremely Large Telescope (E-ELT). Messenger 2007, 127, 11. [Google Scholar]
- Hippke, M. Spaceflight from Super-Earths is difficult. Int. J. Astrobiol. 2018; arXiv:1804.04727. [Google Scholar]
- Howe, A.R. A Tether-Assisted Space Launch System for Super-Earths. arXiv, 2018; arXiv:1805.06438. [Google Scholar]
- Fraknoi, A. The Music of the Spheres in Education: Using Astronomically Inspired Music. Astron. Educ. Rev. 2006, 5, 139. [Google Scholar] [CrossRef]
- Ulaş, B. Musical scale estimation for some multiperiodic pulsating stars. Commun. Asteroseismol. 2009, 159, 131. [Google Scholar] [CrossRef]
- Caballero, J.A.; González Sánchez, S.; Caballero, I. Music and Astronomy. Astrophys. Space Sci. Proc. 2010, 548. [Google Scholar] [CrossRef]
- Lubowich, D. Music and Astronomy under the Stars 2009. Astron. Soc. Pac. Conf. Ser. 2010, 431, 47. [Google Scholar]
- Fraknoi, A. Music Inspired by Astronomy: A Resource Guide Organized by Topic. Astron. Educ. Rev. 2012, 11, 010303. [Google Scholar] [CrossRef]
- Bate, M.R. Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation. Mon. Not. R. Astron. Soc. 2012, 419, 3115–3146. [Google Scholar] [CrossRef]
- Videoclip Musical de “El Ordenador Simula el Nacimiento De Las Estrellas”. Available online: https://www.youtube.com/watch?v=J9lCSCV3Mkk (accessed on 22 August 2018).
- Caballero, J.A.; Arias, A.; Machuca, J.J.; Morente, S. Music and astronomy. II. Unitedsoundofcosmos. Highlights on Spanish Astrophysics IX. In Proceedings of the XII Scientific Meeting of the Spanish Astronomical Society, Bilbao, Spain, 18–22 July 2016. [Google Scholar]
- Martín, E.L. Brown Dwarfs. In Proceedings of the IAU Symposium #211, Honolulu, HI, USA, 20–24 May 2002; Martín, E., Ed.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2003. [Google Scholar]
- Boss, A.P.; Basri, G.; Kumar, S.S.; Liebert, J.; Martín, E.L.; Reipurth, B. Nomenclature: Brown Dwarfs, Gas Giant Planets, and Brown Dwarfs. In Proceedings of the IAU Symposium #211, Honolulu, HI, USA, 20–24 May 2002; Martín, E., Ed.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2003; p. 529. [Google Scholar]
- A Dictionary of Color Terms in Botanical Latin. Available online: http://www.applet-magic.com/botlatin.htm (accessed on 17 September 2018).
Name | M [MJup] | References |
---|---|---|
S Ori 53 | 14+6−7 | [35,98] |
S Ori 55 | 12+4−4 | [98,116] |
61-401 | 12 | [99] |
S Ori 56 | 10: | [98] |
S Ori 58 | 10: | [98] |
S Ori 60 | 8+7−3 | [35,98] |
Cha 110913-773444 | (8) | [117] |
23-115 | 8 | [99] |
S Ori 62 | 7+7−3 | [35,98] |
S Ori 65 | 6 | [98] |
S Ori 67 | 6 | [98] |
S Ori 68 | 5 | [98] |
S Ori 69 | (5) | [98] |
2M1207-29b | 5+2−2 | [118,119] |
S Ori 70 | (3+5−1) | [120,121] |
Region | t [Ma] | # iPMOs | References | Remark |
---|---|---|---|---|
Taurus-Auriga σ Orionis Upper Scorpius Pleiades Other very young open clusters Around brown dwarfs 2 Vicinity (young) Vicinity (old) | ~1 ~3 ~10 ~120 ~1 ~1–10 ~5–20 ~1000 | ~10 ~30 ~20 2 ~30 5 ~20 2 | [188,189] [98,145] [139,193] [166,170] [98,100,149,151,160,174] [118,259,262,263,264] [284,286,295] [301,304] | High extinction Well investigated Future: Y-band imaging Very small surveyed area High extinction, heterogeneity Probably “brown dwarf binaries” In young moving groups Very cool and nearby |
Botanical Latin | Meaning |
---|---|
badius | chestnut brown |
boeticus | Spanish brown |
brunneus | pure dull brown |
cacainus | chocolate brown |
chocolatinus | chocolate brown |
cinnamomeus | cinnamon |
coffeatus | coffee-bean brown |
cupreus | brownish red |
ferrugineus | rusty brown |
fuligineus | sooty brown |
fuliginosus | sooty brown |
fuscus | greyish brown |
glandaceous | yellowish red brown |
haematiticus | brown red |
hepaticus | liver brown |
ligneus | wood brown |
luridus | cloudy brown |
nicotanus | tobacco leaf brown |
phaeo- | greyish brown |
porphyreus | reddish brown |
rubiginosus | brown red |
rufescens | red brown |
rufus | red brown |
sanguineus | dull red, brownish black |
spadiceus | bright brown |
theobromius | chocolate brown |
umbrinus | umber brown |
ustalus | charred wood brown |
vaccinus | cow brown |
xerampelinus | dull red with brown |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballero, J.A. A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? Geosciences 2018, 8, 362. https://doi.org/10.3390/geosciences8100362
Caballero JA. A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? Geosciences. 2018; 8(10):362. https://doi.org/10.3390/geosciences8100362
Chicago/Turabian StyleCaballero, José A. 2018. "A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What?" Geosciences 8, no. 10: 362. https://doi.org/10.3390/geosciences8100362
APA StyleCaballero, J. A. (2018). A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? Geosciences, 8(10), 362. https://doi.org/10.3390/geosciences8100362