# Quantitative Examination of Piezoelectric/Seismoelectric Anomalies from Near-Surface Targets

## Abstract

**:**

## 1. Introduction

## 2. A Brief Background

^{−14}C/N (Coulomb/Newton).

## 3. Can Piezoelectric and Seismoelectric Effects Be Related to Potential Fields?

_{1}and ρ

_{2}are the instantaneous pressure values in the section under consideration; k is the coefficient calculating the dynamics of the elastic wave distribution, ε is the dielectric constant, ζ is the potential of the double electric layer, η is the solution viscosity, and σ is the conductivity.

_{0}is the coefficient of compressibility of the solid phase, $\alpha =\frac{{K}_{1}}{f}$ is the coefficient of permeability, r is the pore radius, f is the porosity, K

_{1}is the coefficient of permeability of the soil, ρ

_{2}is the true specific gravity of the pore moisture, K

_{2}is the coefficient of compressibility of the liquid phase, ω

_{0}is the propagation velocity of the longitudinal elastic wave, and u is the displacement.

## 4. Short Description of the Interpretation Methodology Developed in Magnetic Prospecting

- (1)
- Thin bed:$${A}_{e}=0.5{A}_{T}\cdot h,$$
_{e}is the piezoelectric moment, A_{T}is the total intensity of the piezoelectric (seismoelectric) anomaly, and h is the depth of the upper edge of a thin bed. - (2)
- HCC:$${A}_{e}={A}_{T}{h}_{c}^{2}/{k}_{m},\text{}\mathrm{where}\text{}{k}_{m}=\left(3\sqrt{3}/2\right)\mathrm{cos}\left({30}^{0}-\theta /3\right).$$
- (3)
- Thick bed:$${A}_{e}=\frac{{A}_{T}}{2{{k}^{\prime}}_{m}},$$
_{m}is determined from special relationships [48].

_{0}is the location of the source’s projection to plan relative to the extremum having the greatest magnitude, and ω

_{0}is the angle of the terrain relief inclination (ω

_{0}> 0 when the inclination is toward the positive direction of the x-axis).

## 5. Application of the Proposed Methodology: Field Cases

#### 5.1. Employment of the Interpretation Methodology in Ore Geophysics

#### 5.1.1. Gold-Bearing Quartz Deposit Ustnerinskoe (Eastern Yakutia, Russia)

_{m}was obtained from [43]) consists of ≈300 μV.

#### 5.1.2. Gold Quartz Deposit (Central Yakutia, Russia)

- d
_{1}= distance between the maximum and minimum of the anomaly; - d
_{2}= distance between the left and right branches at the level of semiamplitude; - d
_{3}= difference in abscissae of the points of intersection of an inclined tangent with horizontal tangents on one branch; - d
_{4}= the same on the other branch (d_{3}is selected from the plot branch with conjugated extremums, d_{3}≤ d_{4}), and the x-axis is oriented in this direction); - d
_{5}= distance between the middle point of the left and right tangents; - d
_{6}= distance between d_{3}and d_{4}; - d
_{7}= d_{3}+ d_{4}+ d_{6};

- d
_{8}= distance between the ending of parameter d_{4}and beginning of parameter d_{5}.

#### 5.1.3. Crystal-Quartz Deposit Pilengichey (Subpolar Ural, Russia)

^{2}, and for anomaly B—720 μV⋅m.

#### 5.2. Case Study at the Archaeological Site Tel Kara Hadid (Southern Israel)

## 6. Discussion and Conclusions

## Acknowledgments

## Conflicts of Interest

## References

- Volarovich, M.P.; Parkhomenko, E.I. Piezoelectric effect of rocks. Acad. Sci. USSR Geophys.
**1955**, 215–222. [Google Scholar] - Neishdadt, N.M.; Osipov, L.N. On using of seismoelectric effects of the second type observed by pegmatites searching. Trans. VITR (All-Union Inst. Tech. Prospect. Methods)
**1958**, 11, 63–71. (In Russian) [Google Scholar] - Neishdadt, N.M.; Osipov, L.N. Piezoelectric method. In Borehole and Mine Geophysics; Nedra Publisher: Moscow, Russia, 1959; pp. 153–168, 251–256, and 371–372. (In Russian) [Google Scholar]
- Neishtadt, N.M. Searching pegmatites using seismo-electric effect of the second kind. Sov. Geol.
**1961**, 1, 121–127. (In Russian) [Google Scholar] - Parkhomenko, E.I. Electrification Phenomena in Rocks; Plenum Press: New York, NY, USA, 1971. [Google Scholar]
- Parkhomenko, E.I. Main peculiarities of seismoelectric effect of sedimentary rocks and ways of its using in geophysics. In Physical Properties of Rocks and Minerals under High Pressure and Temperature; Nauka Publisher: Moscow, Russia, 1977; pp. 201–208. (In Russian) [Google Scholar]
- Kondrashev, S.N. The Piezoelectric Method of Exploration; Nedra, Moscow, Engl. Transl.; University of British Columbia: Vancouver, BC, Canada, 1980. [Google Scholar]
- Sobolev, G.A.; Demin, V.M.; Narod, B.B.; White, P. Tests of piezoelectric and pulsed-radio methods for quartz vein and base-metal sulfides prospecting at Giant Yellowknife Mine, N.W.T., and Sullivan Mine, Kimberley, Canada. Geophysics
**1984**, 49, 2178–2185. [Google Scholar] [CrossRef] - Neishdadt, N.M.; Mazanova, Z.V.; Suvorov, N.D. The application of piezoelectric method for searching ore-quartz deposits in Yakutia. In Seismic Methods of Studying Complicated Media in Ore Regions; NPO Rudgeofizika: Leningrad, Russia, 1986; pp. 109–116. (In Russian) [Google Scholar]
- Maxwell, M.; Russel, R.D.; Kepic, A.W.; Butler, K.E. Electromagnetic responses from seismically excited targets: Non-Piezoelectric Phenomena. Explor. Geophys.
**1992**, 23, 201–208. [Google Scholar] [CrossRef] - Neishtadt, N.M.; Mazanova, Z.V.; Suvorov, V.D.; Popov, A. Technology of the piezoelectric method application in ore-quartz deposits using the Ametist-type station. In Proceedings of the Transaction of SEG-EAGE Moscow Geophysical Conference and Exhibition, Moscow, Russia, 16–19 August 1993; pp. 76–77. [Google Scholar]
- Butler, K.E.; Russell, R.D.; Kepic, A.W.; Maxwell, M. Mapping of a Stratigraphic Boundary by its Seismoelectric Response. In Proceedings of the SAGEEP 1994 Conference, Englefield, OH, USA, 27 March 1994; pp. 689–699. [Google Scholar]
- Kepic, A.W.; Maxwell, M.; Russell, R.D. Field trials of a seismoelectric method for detecting massive sulfides. Geophysics
**1995**, 60, 365–373. [Google Scholar] [CrossRef] - Neishtadt, N.; Eppelbaum, L.; Levitski, A. Application of seismo-electric phenomena in exploration geophysics: Review of Russian and Israeli experience. Geophysics
**2006**, 71, B41–B53. [Google Scholar] [CrossRef] - Haartsen, M.W.; Pride, S.R. Electroseismic waves from point sources in layered media. J. Geophys. Res.
**1997**, 102, 24745–24769. [Google Scholar] [CrossRef] - Mikhailov, O.V.; Haarsten, M.W.; Toksoz, N. Electroseismic investigation of the shallow subsurface: Field measurements and numerical modeling. Geophysics
**1997**, 62, 97–105. [Google Scholar] [CrossRef] - Sasaoka, H.; Yamanaka, S.; Ikea, M. Measurements of electric potential variation by piezoelectricity of granite. Geophys. Res. Lett.
**1998**, 25, 2225–2228. [Google Scholar] [CrossRef] - Beamish, D. Characteristics of near surface electrokinetic coupling. Geophys. J. Int.
**1999**, 137, 231–242. [Google Scholar] [CrossRef] - Boulytchov, A. Seismic-electric effect method on guided and reflected waves. Phys. Chem. Earth Part A Solid Earth Geod.
**2000**, 25, 333–336. [Google Scholar] [CrossRef] - Neishtadt, N.M. Application of piezoelectric method in ore deposits. In Proceedings of the Transaction of the 15th Conference of Israel Mineral Science and Engineering Association, Jerusalem, Israel, 12–13 April 2000; pp. 74–78. [Google Scholar]
- Zhu, Z.; Haartsen, M.W.; Toksöz, M.N. Experimental studies of seismoelectric conversions in fluid-saturated porous media. J. Geophys. Res. Solid Earth
**2000**, 105, 28055–28064. [Google Scholar] [CrossRef] - Gershenzon, N.; Bambakidis, G. Modeling of seismo-electromagnetic phenomena. Russ. J. Earth Sci.
**2001**, 3, 247–275. [Google Scholar] [CrossRef] - Tiesseyre, K.P. Anomalous piezoelectric effects found in the laboratory and reconstructed y numerical simulation. Ann. Geophys.
**2002**, 45, 273–278. [Google Scholar] - Butler, K.E.; Russell, R.D. Cancellation of multiple harmonic noise series in geophysical records. Geophysics
**2003**, 68, 1083–1090. [Google Scholar] [CrossRef] - Pride, S.R.; Garambois, S. Electroseismic wave theory of Frenkel and more recent developments. J. Eng. Mech.
**2005**, 131, 898–907. [Google Scholar] [CrossRef] - Haines, S.S.; Pride, S.R.; Klemperer, S.L.; Biodi, B. Seismoelectric imaging of shallow targets. Geophysics
**2007**, 72, G9–G20. [Google Scholar] [CrossRef] - Dupuis, J.C.; Butler, K.E.; Kepic, A.W.; Harris, B.D. Anatomy of a seismoelectric conversion: Measurements and conceptual modeling in boreholes penetrating a sandy aquifer. J. Geophysl Res.
**2009**, 114, B10306. [Google Scholar] [CrossRef] - Glover, P.W.J.; Jackson, M.D. Borehole electrokinetics. Lead. Edge
**2010**, 29, 724–728. [Google Scholar] [CrossRef] - Schakel, M.D.; Smeulders, D.M.J.; Slob, E.C.; Heller, H.K.J. Seismoelectric interface response: Experimental results and forward model. Geophysics
**2011**, 76, N29–N36. [Google Scholar] [CrossRef] - Neishtadt, N.M.; Eppelbaum, L.V. Perspectives of application of piezoelectric and seismoelectric methods in applied geophysics. Russ. Geophys. J.
**2012**, 51, 63–80. (In Russian) [Google Scholar] - Gershenzon, N.I.; Bambakidis, G.; Ternovskiy, I. Coseismic electromagnetic field due to the electrokinetic effect. Geophysics
**2014**, 79, E217–E229. [Google Scholar] [CrossRef] - Jouniaux, L.; Zyserman, F. A review on electrokinetically induced seismo-electrics, electro-seismics, and seismo-magnetics for Earth sciences. Solid Earth
**2016**, 7, 249–284. [Google Scholar] [CrossRef] [Green Version] - Fridrichsberg, D.A. Course of Colloidal Chemistry; Chemistry Publisher: S.-Petersburg, Russia, 1995. (In Russian) [Google Scholar]
- Ivanov, A.G. The electroseismic effect of the second kind. Izv. Acad. Sci. USSR (Trans. Sov. Acad. Sci.)
**1940**, 5, 699–727, (In Russian, transl. to English). [Google Scholar] - Probstein, R.F. Physiochemical Hydrodynamics: An Introduction, 2nd ed.; Wiley & Sons: New York, NY, USA, 1994. [Google Scholar]
- Frenkel, Y.I. On the theory of seismic and seismoelectric phenomena in a moist soil. Izv. Acad. Sci. USSR
**1944**, 133–150, (In Russian, transl. to English). [Google Scholar] [CrossRef] - Butler, K.E. Seismoelectric Effects of Electrokinetic Origin. Ph.D. Thesis, The University of British Columbia, Vancouver, BC, Canada, 1996. [Google Scholar]
- Jardani, A.; Revil, A.; Slob, E.; Söllner, W. Stochastic joint inversion of 2D seismic and seismoelectric signals in linear poroelastic materials: A numerical investigation. Geophysics
**2010**, 75, N19–N31. [Google Scholar] [CrossRef] - Mahardika, H.; Revil, A. Seismoelectric conversion generated from water-oil boundary in unsaturated porous media. In Proceedings of the Transactions of SEG Meeting, Houston, TX, USA, 22–27 September 2013; pp. 1852–1857. [Google Scholar]
- Antonova, E. Finite Elements for Electrically Unbounded Piezoelectric Vibrations. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 2000. [Google Scholar]
- Jandaghian, A.A.; Jafari, A.A. Investigating the Effect of Piezoelectric layers on Circular Plates under Forced Vibration. Int. J. Adv. Des. Manuf. Technol.
**2012**, 5, 1–9. [Google Scholar] - Alperovich, L.S.; Neishtadt, N.M.; Berkovitch, A.L.; Eppelbaum, L.V. Tomography approach and interpretation of the piezoelectric data. In Proceedings of the Transactions of the IX General Assembly of the European Geophysical Society, Strasbourg, France; 1997. 59/4P02. p. 546. Available online: https://www.researchgate.net/profile/Lev_Eppelbaum/publication/240527113_Tomography_approach_and_interpretation_of_the_piezoelectric_data/links/0deec531d5667bc6ab000000.pdf (accessed on 15 September 2017).
- Eppelbaum, L.V.; Itkis, S.E.; Khesin, B.E. Optimization of Magnetic Investigations in the Archaeological Sites in Israel. In Filtering, Modeling and Interpretation of Geophysical Fields at Archaeological Objects; Special Issue of Prospezioni Archeologiche; 2000; pp. 65–92. Available online: https://www.researchgate.net/publication/250613019_Optimization_of_magnetic_investigations_in_the_archaeological_sites_in_Israel (accessed on 15 September 2017).
- Eppelbaum, L.V.; Khesin, B.E.; Itkis, S.E. Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli experience. Archaeol. Prospect.
**2001**, 8, 163–185. [Google Scholar] [CrossRef] - Eppelbaum, L.V.; Khesin, B.E.; Itkis, S.E. Archaeological geophysics in arid environments: Examples from Israel. J. Arid Environ.
**2010**, 74, 849–860. [Google Scholar] [CrossRef] - Eppelbaum, L.V. Archaeological geophysics in Israel: Past, Present and Future. Adv. Geosci.
**2010**, 24, 45–68. [Google Scholar] [CrossRef] - Eppelbaum, L.V. Study of magnetic anomalies over archaeological targets in urban conditions. Phys. Chem. Earth
**2011**, 36, 1318–1330. [Google Scholar] [CrossRef] - Eppelbaum, L.V. Quantitative interpretation of magnetic anomalies from thick bed, horizontal plate and intermediate models under complex physical-geological environments in archaeological prospection. Archaeol. Prospect.
**2015**, 23, 255–268. [Google Scholar] [CrossRef] - Eppelbaum, L.V. Quantitative Analysis of Piezoelectric and Seismoelectric Anomalies in Subsurface Geophysics. In Proceedings of the Transactions of the 13th EUG Meeting Geophysical Research Abstracts, Vienna, Austria, 23–28 April 2017; Volume 19. [Google Scholar]
- Eppelbaum, L.V.; Mishne, A.R. Unmanned Airborne Magnetic and VLF investigations: Effective Geophysical Methodology of the Near Future. Positioning
**2011**, 2, 112–133. [Google Scholar] [CrossRef] - Eppelbaum, L.V. Geophysical observations at archaeological sites: Estimating informational content. Archaeol. Prospect.
**2014**, 21, 25–38. [Google Scholar] [CrossRef] - Eppelbaum, L.V.; Alperovich, L.; Zheludev, V.; Pechersky, A. Application of informational and wavelet approaches for integrated processing of geophysical data in complex environments. In Proceedings of the 2011 SAGEEP Conference, Charleston, SC, USA, 10–14 April 2011; pp. 24–60. [Google Scholar]

**Figure 1.**Prof. Naum Neishtadt, one of the founders of the piezoelectric method of geophysical prospecting (1927–2016).

**Figure 2.**Piezoelectric measurement array (after [14] with some modifications): (1) projection of the piezoactive body to the earth’s surface; (2) geophone; and (3) electrode.

**Figure 3.**Quantitative analysis of piezoelectric measurements at a gold-bearing quartz deposit Ustnerinskoe (Yakutia region, Russia) (initial geological-geophysical data from [14]): (1) deluvium; (2) limestone; (3) quartz-mica shales; (4) veined quartz; and (5) obtained parameters for the model of thick bed: (a) angle points; and (b) center of the anomalous body.

**Figure 4.**Quantitative examination of piezoelectric anomaly observed at one of gold-quartz deposits of Yakutia region (Russia) (initial geological-geophysical data from [30]: (1) soil-vegetation layer; (2) oxidized upper part of quartz vein; (3) quartz vein; (4) sandstone; (5) siltstone; and (6) determined position of the center of upper edge of anomalous body.

**Figure 5.**Quantitative analysis of piezoelectric anomaly in the crystal-quartz deposit Pilengichey of the Subpolar Ural (Russia) (initial geological-geophysical data from [30]. (1) ore-quartz zone; (2) host rocks, siltstone; results of quantitative examination ((3) and (4)): (3) position of the center of HCC inscribed to the upper part of the anomalous body; and (4) position of the center of upper edge of a thin bed.

**Figure 6.**Quantitative analysis of piezoelectric anomaly from gold-containing quartz vein (Tel Karra Hadid, southern Israel) (initial geological-geophysical data after [14]). Results of interpretation: (1) location of angle points of anomalous target; and (2) position of the center of the upper edge of anomalous target.

Piezoactivity Group | Rock/Ore/Mineral | D_{min}–D_{max} | D_{aver} |
---|---|---|---|

I | Quartz-tourmaline-cassiterite ore | 0.8–28.0 | 15.7 |

Antimonite-quartz ore | 0.2–1.35 | 0.6 | |

Apatite-nepheline ore | 0–5.0 | 0.9 | |

Galenite-sphalerite ore | 0.2–7.7 | 3.3 | |

Ijolite | 0.1–8 | 1.3 | |

II | Melteigite | 0.2–5.0 | 1.6 |

Pegmatite | 0.1–4.8 | 1.3 | |

Skarn with galenite-sphalerite mineralization | 0.1–3.0 | 0.6 | |

Sphalerite-galenite ore | 0.3–7.7 | 3.8 | |

Turjaite | 0.9–4.8 | 2.2 | |

Urtite | 0.1–32.5 | 3.4 | |

Juvite | 0.2–5.4 | 1.8 | |

III | Aleurolite silicificated | 0–0.5 | 0.2 |

Aplite | 0–1.7 | 0.6 | |

Breccia aleurolite-quartz | 0.1–0.4 | 0.2 | |

Gneiss | 0–1.4 | 0.3 | |

Granite | 0–1.6 | 0.4 | |

Granodiorite | 0–0.2 | 0.1 | |

Quartzite | 0–3.3 | 0.6 | |

Pegmatite ceramic | 0–1.0 | 0.1 | |

Sandstone silicificated and tourmalinised | 0.1–1.4 | 0.5 | |

Feldspars | 0–0.4 | 0.15 | |

Porphyrite | 0–0.3 | 0.1 | |

Ristschorrite | 0.3–0.9 | 0.5 | |

Schist argillaceous | 0–0.6 | 0.1 | |

Hornfels | 0–0.4 | 0.2 | |

Skarn sphaleritic-garnet | 0–1 | 0.3 | |

Skarn pyroxene-garnet | 0–0.2 | 0.1 | |

IV | Aleurolite, amphibolites, andesite, gabbro, greisens, diabase, sandstone | 0–0.1 | 0.05 |

Argillite, beresite, dacite, diorite-porphyrite, felsite-liparite, limestone, tuff, fenite | 0 | 0 |

^{−14}C/N; II (moderately active): piezo-activity of samples is (0.5–5.0) × 10

^{−14}C/N; III (weakly active): piezo-activity of samples is less than 0.5 × 10

^{−14}C/N; IV (non-active): piezo-activity of samples are near zero.

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Eppelbaum, L.
Quantitative Examination of Piezoelectric/Seismoelectric Anomalies from Near-Surface Targets. *Geosciences* **2017**, *7*, 90.
https://doi.org/10.3390/geosciences7030090

**AMA Style**

Eppelbaum L.
Quantitative Examination of Piezoelectric/Seismoelectric Anomalies from Near-Surface Targets. *Geosciences*. 2017; 7(3):90.
https://doi.org/10.3390/geosciences7030090

**Chicago/Turabian Style**

Eppelbaum, Lev.
2017. "Quantitative Examination of Piezoelectric/Seismoelectric Anomalies from Near-Surface Targets" *Geosciences* 7, no. 3: 90.
https://doi.org/10.3390/geosciences7030090