Geochemical Features of the Weathered Materials Developed on Gabbro in a Semi-Arid Zone, Northern Cameroon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field and Laboratory Methods
- Coarse saprolite (200–75 cm): yellowish (10YR 7/8) horizon. It is compact, massive, and characterised by many fissures surrounding compact undifferentiated blocks; the original structure of the bedrock is preserved; the mean bulk density and pH are 2.35 g/cm3 and 7.5 at the bottom (Ma2) and 2.23 g/cm3 and 7.6 at the upper part (Ma3) of the horizon; in the upper part, the colour becomes reddish yellow (7.5YR 7/8);
- Fine saprolite (75–30 cm): reddish yellow (7.5YR 6/8) horizon, characterised by a loamy texture and a massive structure. There are many fissures surrounding small grey compact blocks, globally embedded in a loose matrix; the structure of the bedrock was preserved in grey compact blocks; the bulk density is 1.84 g/cm3 and the pH is 7.8 (Ma4);
- Loose loamy clayey texture horizon (30–7 cm); reddish yellow (5YR 6/8) horizon; it had a weakly blocky to massive structure, a high matrix porosity and many rootlets; its mean bulk density is 1.30 g/cm3 and the pH is 6.7 (Ma5);
- Humiferous horizon (7–0 cm); yellowish red (5YR 5/8) horizon, characterised by a loamy clayey texture and a weakly expressed lumpy structure, high matrix porosity and the presence of many rootlets; its mean bulk density is 1.10 g/cm3 and the pH is 6.5 (Ma6).
3. Results
3.1. Petrology of Gabbro
3.2. Petrology of Weathering Materials
3.2.1. Mineralogical Characterisation
3.2.2. Geochemical Characteristics
Major elements
Trace elements
- -
- Elements with high concentrations in soil sample upper than 150 mg/kg are Ba, Sr, V, and Zn. From the bottom of the profile, Zn concentration, which is the lowest in this group, progressively decreases towards the humiferous horizon (Figure 6a). Sr and V show similar behaviour except in the saprolite zone, where V decreases while Sr increases (Figure 6a). Ba concentrations are the highest except in the middle part of the weathering profile, where they are similar to those of Sr. Globally, barium behaviour is opposite to that of Sr and V (Figure 6a);
- -
- -
- Elements whose contents varied between 5 and 50 mg/kg are Ga, Y, Co, Cu, Ni and Sc (Table 1). Sc concentrations are the highest (Table 1 and Figure 6c). Its behaviour is opposite to that of Y, Ni and Cu (Figure 6c). Cu exhibits lowest concentrations in the lower part of the weathering profile (Table 1 and Figure 6c). Co displays a zigzag signature (Figure 6c);
- -
- Elements of low concentrations below 5 mg/kg are Cs, Hf, Nb, Rb, Sn, Ta, Th, U and Pb (Table 1). Among them Cs, Sn, Ta and U showed a similar trend and their concentrations vary slightly along the weathering profile (Figure 6d). Thorium, Hf and Nb concentrations decrease slightly from the base towards the middle part of the profile and increase progressively towards the humiferous surface (Figure 6d). Their behaviour was close to that of Zr and Cr (Figure 6d,b). Pb and Rb show a zigzag trend, as do Co and Ni (Figure 6d,c);
- -
- Elements of concentrations below the detection limit, not detected in the studied soils, include Tl, Mo, W, Ag, As, Cd and Li (Table 1).
Rare-earth elements
Relative element mobility
4. Discussion
4.1. Geochemistry of Gabbro
4.2. Petrology of Weathered Materials
4.3. Behaviour of Trace Elements
4.4. Behaviour of REE
4.5. Mass Balance Evaluation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Muller, J.-P.; Calas, G. Tracing kaolinites through their defect carters: Kaolinite paragenesis in a laterite (Cameroon). Econ. Geol. 1989, 84, 694–707. [Google Scholar] [CrossRef]
- Ndjigui, P.-D.; Bilong, P.; Bitom, D.; Dia, A. Mobilization and redistribution of major and trace elements in two weathering profiles developed on serpentinites in the Lomié ultramafic complex, South-East Cameroon. J. Afr. Earth Sci. 2008, 50, 305–328. [Google Scholar] [CrossRef]
- Tsozué, D.; Bitom, D.; Lucas, Y. Biogeochemistry of Iron, Aluminium and Silicon in Humid Tropical Mountainous Soils (Bambouto Mountain, West Cameroon). Open Geol. J. 2009, 3, 70–81. [Google Scholar]
- Lambiv Dzemua, G.; Gleeson, S.A.; Schofield, P.F. Mineralogical characterization of the Nkamouna Co–Mn laterite ore, southeast Cameroon. Int. J. Geol. Mineral. Geochem. Miner. Depos. 2013, 48, 155–171. [Google Scholar] [CrossRef]
- Muller, J.P.; Manceau, A.; Calas, G.; Allard, T.; Ildefonse, P.; Hazemann, G. Crystal chemistry of kaolinite and Fe-Mn oxides: Relation with formation conditions of low temperature systems. Am. J. Sci. 1995, 295, 1115–1155. [Google Scholar] [CrossRef]
- Braun, J.J.; Viers, J.; Dupre, B.; Polve, M.; Ndam, J.; Muller, J.-P. Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: The implication for the present dynamics of the soil covers of the humid tropical regions. Geochim. Cosmochim. Acta 1998, 62, 273–299. [Google Scholar] [CrossRef]
- Bayiga, E.C.; Bitom, D.; Ndjigui, P.-D.; Bilong, P. Mineralogical and geochemical characterization of weathering products of amphibolites at SW Eséka (Northern border of the Nyong unit, SW Cameroon). J. Geol. Miner. Res. 2011, 3, 281–293. [Google Scholar]
- Nguetnkam, J.P.; Villiéras, F.; Kamga, R.; Ekodeck, G.E.; Yvon, J. Mineralogy and geochemical behaviour during weathering of greenstone belt under tropical dry conditions in the extreme North Cameroon (Central Africa). Chemie Erde-Geochem. 2014, 74, 185–193. [Google Scholar] [CrossRef]
- Suchel, J.-B. Les climats du Cameroun. Ph.D. Thesis, Université de Bordeaux III, Pessac, France, 1987; p. 1186. [Google Scholar]
- Letouzey, R. Notice Explicative de la Carte Phytogéographique du Cameroun à L’échelle de 1/500000; Institut de la Carte Internationale de la Végétation: Toulouse, France, 1985; p. 240. (In French) [Google Scholar]
- Kouske, A.P.; Suh, C.E.; Ghogomu, R.T.; Ngako, V. Na-Metasomatism and Uranium Mineralization during a Two-Stage Albitization at Kitongo, Northern Cameroon: Structural and Geochemical Evidence. Int. J. Geosci. 2012, 3, 258–279. [Google Scholar] [CrossRef]
- Dumort, J.C.; Peronne, Y. Notice Explicative sur la Feuille Maroua. 1 Carte géologique de Reconnaissance au1/500000; Direction des Mines et de la Géologie: Yaoundé, Cameroon, 1966. [Google Scholar]
- Lasserre, M. Etude de Géologique et prospection générale orientée du complexe volcano-sédimentaire Tcholliré-Bibemi-Maroua. In Mesures géochronologiques sur les formations du Nord Cameroun par les méthodes au rubidium/strontium et au potassium/argon sur minéraux et roches totals; Direction des Mines et de la Géologie: Yaoundé, Cameroon, 1975; p. 37. (In French) [Google Scholar]
- Guitián, O.F.; Carballas, T. Técnicas de análisis de Suelos [Techniques of Soil Analysis]; Pico Sacro: Santiago de Compostela, Spain, 1976; p. 288. (In Spanish) [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk Density, in Methods of Soil Analysis Part 1. Physical and Mineralogical Methods; Agronomy Monograph No. 9; Soil Science Society of America: Madison, WI, USA, 1986; pp. 363–373. [Google Scholar]
- USDA. Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report 2004; United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2004; Volume 42, p. 700.
- Brimhall, G.H.; Dietrich, W.E. Constitutive mass balance relations between chemical composition, volume, density, porosity and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis. Geochim. Cosmochim. Acta 1987, 51, 567–587. [Google Scholar] [CrossRef]
- Colin, F.; Brimhall, G.H.; Nahon, D.; Lewis, C.J.; Baronnet, A.; Danty, K. Equatorial rainforest lateritic mantles: A geomembrane filter. Geology 1992, 20, 523–526. [Google Scholar] [CrossRef]
- Colin, F.; Veillard, P.; Ambrosi, J.-P. Quantitative approach to physical and chemical gold mobility in equatorial rainforest lateritic environment. Earth Planet. Sci. Lett. 1993, 114, 269–285. [Google Scholar] [CrossRef]
- Brimhall, G.H.; Alpers, C.N.; Cunningham, A.B. Analysis of supergene ore–forming processes and grand—Water solute transport using mass balance principles. Econ. Geol. 1985, 80, 1227–1256. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Nguetnkam, J.P.; Kamga, R.; Villiéras, F.; Ekodeck, G.E.; Yvon, J. Variable weathering response of granite in tropical zones. Example of two sequences studied in Cameroon (Central Africa). C. R. Geosci. 2008, 340, 451–461. [Google Scholar] [CrossRef]
- Mella, W.; Mermut, A.R. Genesis and mineralogy of soils formed on uplifted coral reef in West Timor, Indonesia. Geoderma 2010, 154, 544–553. [Google Scholar] [CrossRef]
- Lewis, D.G.; Farmer, V.C. Infrared absorption of surface hydroxyl groups and lattice vibrations in lepidocrocite (γ-FeOOH) and boehmite (γ-ALOOH). Clay Miner. 1986, 21, 93–100. [Google Scholar] [CrossRef]
- Toteu, S.F.; Michard, A.; Bertrand, J.M.; Rocci, G. U–Pb dating of Precambrian rocks from northern Cameroon, orogenic evolution and chronology of the Pan-African belt of central Africa. Precambr. Res. 1987, 37, 71–87. [Google Scholar] [CrossRef]
- Ruy, P.P.; Marcelo, L.; Lauro, V.S.N. Petrology of dioritic, tonalitic and trondhjemitic gneisses from Encantadas Complex, Santana da Boa Vista, southernmost Brazil: Paleoproterozoic continental-arc magmatism. Anais da Academia Brasileira de Ciências 2008, 80, 735–748. [Google Scholar]
- Torkian, A.; Sepahi, A.A. Petrology and geochemistry of the dioritic and granodioritic-granitic magma, Gqorveh granitoid complex (GGC), Sanandaj-Sirjan zone, Western Iran. In Proceedings of the 1st International Applied Geological Congress, Department of Geology, Islamic Azad University, Mashad Branch, Iran, 26–28 April 2010; pp. 26–28.
- Thompson, R.N.; Morrison, M.A.; Henory, G.L.; Parry, S.J. An assessment of the relative roles of crust and mantle in magma genesis: An elemental approach. Philos. Trans. R. Soc. Lond. A 1984, 310, 549–590. [Google Scholar] [CrossRef]
- Haritash, A.K.; Baskar, R.; Sharma, N.; Paliwal, S. Impact of slate quarrying on soil properties in semi-arid Mahendragarh in India. Environ. Geol. 2006, 51, 1439–1445. [Google Scholar] [CrossRef]
- Francis, M.L.; Fey, M.V.; Ellis, F.; Poch, R.M. Petroduric and ‘petrosepiolitic’ horizons in soils of Namaqualand, South Africa. Span. J. Soil Sci. 2012, 2, 8–25. [Google Scholar]
- Duchaufour, P. Pédologie. Tome 1: Pédogenèse et Classification; Masson: Paris, France, 1977; p. 477. (In French) [Google Scholar]
- Pedro, G. Essai sur la caractérisation géochimique des différents processus zonaux résultant de l’altération des roches superficielles (cycle alumino-silicique). C. R. Acad. Sci. 1966, 262, 1828–1831. (In French) [Google Scholar]
- Kabata-Pendias, A. Traces Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2001; p. 413. [Google Scholar]
- Lucas, Y. The role of plants in controlling rates and products of weathering: Importance of biological pumping. Annu. Rev. Earth Planet. Sci. 2001, 29, 135–163. [Google Scholar] [CrossRef]
- Rao, W.; Tan, H.; Jiang, S.; Chen, J. Trace element and REE geochemistry of fine- and coarse-grained sands in the Ordos deserts and links with sediments in surrounding areas. Chem. Erde Geochem. 2011, 71, 155–170. [Google Scholar] [CrossRef]
- Ji, H.H.; Wang, S.; Ouyang, Z.; Zhang, S.; Sun, C.; Liu, X.; Zhou, D. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau. I. The formation of the Pingba profile. Chem. Geol. 2004, 203, 1–27. [Google Scholar] [CrossRef]
- Karadaǧ, M.M.; Küpeli, Ş.; Arýk, F.; Ayhan, A.; Zedef, V.; Döyen, A. Rare earth element (REE) geochemistry and genetic implications of the Mortaş-bauxite deposit (Seydişehir/Konya-Southern Turkey). Chem. Erde Geochem. 2009, 69, 143–159. [Google Scholar] [CrossRef]
- Fleet, A.J. Aqueous and sedimentary geochemistry of the rare earth elements. In Rare Earth Element Geochemistry; Hendersonm, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 343–373. [Google Scholar]
- Marsh, J.S. REE fractionation and Ce anomalies in weathered Karoo dolerite. Chem. Geol. 1990, 90, 189–194. [Google Scholar] [CrossRef]
- Ndjigui, P.-D.; Badinane, M.F.B.; Nyeck, B.; Nandjip, H.P.K.; Bilong, P. Mineralogical and geochemical features of the coarse saprolite developed on orthogneiss in the SW of Yaoundé, South Cameroon. J. Afr. Earth Sci. 2013, 79, 125–142. [Google Scholar] [CrossRef]
- Gromet, P.L.; Silver, L.T. Rare earth element distributions among minerals in a granodiorite and their petrogenetic implications. Geochim. Cosmochim. Acta 1983, 47, 925–939. [Google Scholar] [CrossRef]
- Panahi, A.; Young, G.M.; Rainbird, R.H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an archaean granite near Ville Marie, Québec, Canada. Geochim. Cosmochim. Acta 2000, 64, 2199–2220. [Google Scholar] [CrossRef]
- Marques, J.J.; Schulze, D.G.; Curi, N.; Mertzman, S.A. Trace element geochemistry in Brazilian Cerrado soils. Geoderma 2004, 121, 31–43. [Google Scholar] [CrossRef]
- Muller, D.; Bocquier, G.; Nahon, D.; Paque, H. Analyses des différenciations minéralogiques et structurales d’un sol ferrallitique à horizons nodulaires du Congo. Cah ORSTOM. Sér. Pédol. 1981, 17, 87–109. (In French) [Google Scholar]
- Amhrosi, J.P.; Nahon, D. Petrological and geochemical differentiation of lateritic iron crust profiles. Chem. Geol. 1986, 57, 371–393. [Google Scholar] [CrossRef]
- Braun, J.J.; Pagel, M.; Herbillon, A.; Rosin, C. Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: A mass balance study. Geochim. Cosmochim. Acta 1993, 57, 4419–4434. [Google Scholar] [CrossRef]
- Mathieu, D.; Bernat, M.; Nahon, D. Short-lived U and Th isotope distribution in a tropical laterite derived from granite (Pitinga river basin, Amazonia, Brazil): Application to assessment of weathering rate. Earth Planet. Sci. Lett. 1995, 136, 703–714. [Google Scholar] [CrossRef]
- Kamgang, K.B.V.; Onana, V.L.; Ndome Effoudou Priso, E.; Parisot, J.-C.; Ekodeck, G.E. Behaviour of REE and mass balance calculations in a lateritic profile over chlorite schists in South Cameroon. Chem. Erde Geochem. 2009, 69, 61–73. [Google Scholar] [CrossRef]
- Boulangé, B.; Colin, F. Rare earth element mobility during conversion of nepheline syenite into lateritic bauxite at Passo Quatro, Minas Gerais, Brazil. Appl. Geochem. 1994, 96, 701–711. [Google Scholar] [CrossRef]
- Nesbitt, H.W. Mobility and fractionation of rare earth elements during weathering of a granidiorite. Nature 1979, 279, 206–210. [Google Scholar] [CrossRef]
- Laufer, F.; Yariv, S.; Steinber, M. The adsorption of quadrivalent cerium by kaolinite. Clay Miner. 1984, 19, 137–149. [Google Scholar] [CrossRef]
- Heiserman, D.L. Exploring Chemical Elements and Their Compounds; TAB Books: Blue Ridge Summit, PA, USA, 1992; pp. 236–238. [Google Scholar]
- Aubert, D.; Stille, P.; Probst, A. REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim. Cosmochim. Acta 2001, 65, 387–406. [Google Scholar] [CrossRef] [Green Version]
- Migaszewski, Z.M.; Gałuszka, A. The Characteristics, Occurrence, and Geochemical Behavior of Rare Earth Elements in the Environment: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 429–471. [Google Scholar] [CrossRef]
Elements | dl | Ma1 | Ma2 | Ma3 | Ma4 | Ma5 | Ma6 |
---|---|---|---|---|---|---|---|
SiO2 | 0.01 | 48.90 | 53.90 | 53.10 | 52.10 | 51.60 | 50.80 |
Al2O3 | 0.01 | 16.95 | 15.00 | 14.70 | 15.55 | 16.25 | 15.90 |
Fe2O3 | 0.01 | 10.55 | 10.75 | 10.90 | 11.20 | 11.80 | 11.85 |
CaO | 0.01 | 9.55 | 1.02 | 4.22 | 3.23 | 3.02 | 5.12 |
MgO | 0.01 | 6.87 | 2.06 | 1.76 | 1.78 | 1.68 | 1.76 |
Na2O | 0.01 | 2.50 | 4.11 | 4.33 | 4.76 | 3.55 | 3.02 |
K2O | 0.01 | 1.17 | 0.46 | 0.27 | 0.31 | 0.24 | 0.30 |
TiO2 | 0.01 | 1.15 | 1.06 | 1.14 | 1.20 | 1.23 | 1.20 |
MnO | 0.01 | 0.17 | 0.22 | 0.23 | 0.24 | 0.31 | 0.27 |
P2O5 | 0.01 | 0.20 | 0.22 | 0.28 | 0.21 | 0.08 | 0.10 |
LOI | 0.01 | 3.38 | 9.05 | 8.88 | 10.10 | 11.50 | 10.30 |
Ba | 0.50 | 771.00 | 400.00 | 300.00 | 393.00 | 375.00 | 322.00 |
Cr | 10.00 | 310.00 | 50.00 | 50.00 | 40.00 | 50.00 | 90.00 |
Cs | 0.01 | 0.08 | 0.03 | 0.07 | 0.06 | 0.06 | 0.12 |
Ga | 0.10 | 18.30 | 21.00 | 19.80 | 20.00 | 22.20 | 23.20 |
Hf | 0.20 | 2.10 | 2.60 | 2.20 | 2.21 | 2.20 | 3.00 |
Nb | 0.20 | 2.20 | 2.60 | 2.20 | 2.30 | 2.50 | 3.00 |
Rb | 0.20 | 13.40 | 3.50 | 2.40 | 2.40 | 2.20 | 4.00 |
Sn | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Sr | 0.10 | 291.00 | 261.00 | 304.00 | 218.00 | 221.00 | 317.00 |
Ta | 0.10 | 0.10 | 0.20 | 0.10 | 0.10 | 0.20 | 0.20 |
Th | 0.05 | 0.33 | 0.31 | 0.22 | 0.24 | 0.37 | 1.09 |
Tl | 0.05 | <dl | <dl | <dl | <dl | <dl | <dl |
U | 0.05 | 0.15 | 0.13 | 0.10 | 0.11 | 0.14 | 0.35 |
V | 5.00 | 292.00 | 271.00 | 272.00 | 242.00 | 280.00 | 308.00 |
W | 1.00 | <dl | <dl | <dl | <dl | <dl | <dl |
Y | 0.50 | 22.10 | 28.70 | 27.50 | 27.70 | 27.00 | 29.20 |
Zr | 2.00 | 68.00 | 87.00 | 73.00 | 70.00 | 76.00 | 105.00 |
Ag | 0.50 | <dl | <dl | <dl | <dl | <dl | <dl |
As | 5.00 | <dl | <dl | <dl | <dl | <dl | <dl |
Cd | 0.50 | <dl | <dl | <dl | <dl | <dl | <dl |
Co | 1.00 | 39.00 | 24.00 | 26.00 | 24.00 | 30.00 | 26.00 |
Cu | 1.00 | 64.00 | 5.00 | 2.00 | 1.00 | 10.00 | 30.00 |
Li | 10.00 | 10.00 | <dl | <dl | <dl | <dl | <dl |
Mo | 1.00 | <dl | <dl | <dl | <dl | <dl | <dl |
Ni | 1.00 | 97.00 | 12.00 | 12.00 | 12.00 | 13.00 | 12.00 |
Pb | 2.00 | <dl | 4.00 | 3.00 | <dl | <dl | 3.00 |
Sc | 1.00 | 28.00 | 31.00 | 33.00 | 34.00 | 36.00 | 34.00 |
Zn | 2.00 | 81.00 | 163.00 | 155.00 | 155.00 | 159.00 | 131.00 |
La | 0.50 | 4.80 | 6.90 | 6.10 | 7.10 | 7.30 | 9.90 |
Ce | 0.50 | 12.90 | 17.70 | 15.10 | 15.70 | 18.50 | 23.30 |
Pr | 0.03 | 2.13 | 2.79 | 2.52 | 2.88 | 2.88 | 3.53 |
Nd | 0.10 | 9.90 | 13.00 | 12.10 | 14.00 | 13.50 | 15.8 |
Sm | 0.03 | 3.04 | 4.02 | 3.84 | 4.20 | 4.01 | 4.62 |
Eu | 0.03 | 1.16 | 1.63 | 1.67 | 1.81 | 1.78 | 2.04 |
Gd | 0.05 | 3.99 | 5.16 | 4.94 | 5.44 | 5.19 | 5.48 |
Tb | 0.01 | 0.67 | 0.87 | 0.82 | 0.89 | 0.83 | 0.88 |
Dy | 0.05 | 4.10 | 2.22 | 4.96 | 5.24 | 4.97 | 5.23 |
Ho | 0.01 | 0.88 | 1.14 | 1.05 | 1.13 | 1.07 | 1.14 |
Er | 0.03 | 2.50 | 3.17 | 3.00 | 2.99 | 2.92 | 3.10 |
Tm | 0.01 | 0.36 | 0.47 | 0.43 | 0.44 | 0.43 | 0.45 |
Yb | 0.03 | 2.21 | 2.97 | 2.70 | 2.68 | 2.64 | 2.87 |
Lu | 0.01 | 0.36 | 0.48 | 0.42 | 0.39 | 0.41 | 0.47 |
ΣREE | - | 49.00 | 62.52 | 59.65 | 64.89 | 66.43 | 78.81 |
LREE | - | 33.93 | 46.04 | 41.33 | 45.69 | 47.97 | 59.19 |
HREE | - | 15.07 | 16.48 | 18.32 | 19.20 | 18.46 | 19.62 |
LREE/HREE | - | 2.25 | 2.80 | 2.26 | 2.38 | 2.60 | 3.02 |
(La/Yb)N (1) | - | 1.48 | - | - | - | - | - |
(La/Yb)N (2) | - | - | 1.06 | 1.04 | 1.22 | 1.27 | 1.59 |
Ce/Ce* (1) | - | 0.98 | - | - | - | - | - |
Ce/Ce* (2) | - | - | 1.00 | 0.95 | 0.86 | 1.00 | 0.98 |
Eu/Eu* (1) | - | 1.02 | - | - | - | - | - |
Eu/Eu* (2) | - | - | 1.07 | 1.15 | 1.14 | 1.17 | 1.22 |
Ma2 | Ma3 | Ma4 | Ma5 | Ma6 | Mean Mobilization Rate | |
---|---|---|---|---|---|---|
ε-Th | 31.36 | 95.07 | 116.71 | 98.96 | −20.18 | / |
SiO2 | 13.33 | 62.88 | 46.50 | −5.89 | −68.55 | 9.65 |
Al2O3 | −5.80 | 30.09 | 26.14 | −14.49 | −71.60 | −7.13 |
Fe2O3 | 8.46 | 54.98 | 45.97 | −0.24 | −65.99 | 8.64 |
CaO | −88.63 | −33.72 | −53.49 | −71.79 | −83.77 | −66.28 |
MgO | −68.08 | −61.57 | −64.37 | −78.19 | −92.24 | −72.89 |
Na2O | 75.00 | 159.8 | 162.00 | 26.64 | −63.42 | 72.00 |
K2O | −58.15 | −65.38 | −64.00 | −81.70 | −92.24 | −72.29 |
TiO2 | −1.88 | 49.00 | 44.00 | −5.00 | −68.41 | 3.54 |
MnO | 37.75 | 103.00 | 94.11 | 63.00 | −52.00 | 49.17 |
P2O5 | 17.09 | 110.00 | 44.37 | −64.32 | −85.00 | 4.43 |
Ba | −45.00 | −42.00 | −30.00 | −57.00 | −87.35 | −52.27 |
Cr | −83.00 | −76.00 | −82.26 | −86.00 | −91.21 | −83.69 |
Cs | −60.08 | 31.25 | 3.12 | −33.11 | −54.58 | −22.68 |
Ga | 22.15 | 62.30 | 50.27 | 8.20 | −62.00 | 16.18 |
Hf | 31.79 | 57.14 | 45.00 | −7.00 | −57.00 | 13.99 |
Nb | 25.80 | 50.00 | 44.00 | 1.35 | −59.00 | 12.43 |
Rb | −72.20 | −73.13 | −75.37 | −85.36 | −91.00 | −79.41 |
Sn | 6.45 | 50.00 | 38.00 | −10.81 | −70.00 | 2.73 |
Sr | −5.00 | 57.00 | 3.01 | −32.26 | −67.02 | −8.85 |
Ta | 112.89 | 50.00 | 38.00 | 78.38 | −39.45 | 47.96 |
Th | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
U | −8.00 | −0.00 | 0.83 | −17.00 | −29.35 | −10.70 |
V | −1.20 | 40.00 | 14.00 | −14.48 | −68.06 | −5.95 |
Y | 38.24 | 87.00 | 72.34 | −8.96 | −60.00 | 25.72 |
Zr | 36.19 | 61.03 | 42.00 | −0.32 | −53.25 | 17.13 |
Co | −34.50 | −0.00 | −15.38 | −31.39 | −80.00 | −32.25 |
Cu | −92.00 | −95.31 | −98.00 | −86.06 | −86.00 | −91.47 |
Ni | −87.00 | −81.44 | −83.00 | −90.00 | −96.25 | −87.54 |
Sc | 18.00 | 77.00 | 67.00 | 15.00 | −63.23 | 22.75 |
Zn | 114.21 | 187.04 | 163.11 | 75.07 | −51.03 | 97.68 |
La | 53.02 | 91.00 | 104.00 | 35.64 | −37.55 | 49.22 |
Ce | 46.05 | 76.00 | 67.34 | 28.00 | −45.31 | 34.42 |
Pr | 39.49 | 77.47 | 86.00 | 21.00 | −50.00 | 34.79 |
Nd | 39.78 | 83.33 | 94.44 | 21.62 | −52.00 | 37.43 |
Sm | 40.76 | 89.48 | 90.00 | 18.00 | −54.00 | 36.85 |
Eu | 49.58 | 116.00 | 115.00 | 37.00 | −47.00 | 54.12 |
Gd | 37.66 | 86.00 | 87.47 | 16.01 | −58.42 | 33.74 |
Tb | 38.22 | 83.58 | 83.00 | 10.49 | −60.23 | 31.01 |
Dy | −42.36 | 81.46 | 76.00 | 8.11 | −61.38 | 12.37 |
Ho | 38.00 | 79.00 | 77.00 | 8.44 | −61.00 | 28.29 |
Er | 35.00 | 80.00 | 64.45 | 4.17 | −62.46 | 24.23 |
Tm | 39.00 | 79.17 | 68.05 | 7.00 | −62.15 | 26.21 |
Yb | 43.05 | 83.26 | 67.00 | 7.00 | −61.00 | 27.86 |
Lu | 42.00 | 75.00 | 49.00 | 2.00 | −60.47 | 21.51 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsozué, D.; Ndjigui, P.-D. Geochemical Features of the Weathered Materials Developed on Gabbro in a Semi-Arid Zone, Northern Cameroon. Geosciences 2017, 7, 16. https://doi.org/10.3390/geosciences7020016
Tsozué D, Ndjigui P-D. Geochemical Features of the Weathered Materials Developed on Gabbro in a Semi-Arid Zone, Northern Cameroon. Geosciences. 2017; 7(2):16. https://doi.org/10.3390/geosciences7020016
Chicago/Turabian StyleTsozué, Désiré, and Paul-Désiré Ndjigui. 2017. "Geochemical Features of the Weathered Materials Developed on Gabbro in a Semi-Arid Zone, Northern Cameroon" Geosciences 7, no. 2: 16. https://doi.org/10.3390/geosciences7020016
APA StyleTsozué, D., & Ndjigui, P. -D. (2017). Geochemical Features of the Weathered Materials Developed on Gabbro in a Semi-Arid Zone, Northern Cameroon. Geosciences, 7(2), 16. https://doi.org/10.3390/geosciences7020016