An Overview of the Use of Absolute Dating Techniques in Ancient Construction Materials
Abstract
:1. Introduction
2. Dating Wooden Materials
3. Dating Bricks
4. Dating Mortars
5. Dating Stone Surfaces
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Schweingruber, F.H. Tree Rings. Basics and Applications of Dendrochronology; Kluwer Academic Publishers: Dordrecht, Holland, 1989. [Google Scholar]
- Bernabei, M.; Bontadi, J. Dendrochronological analysis of the timber structure of the Church of the Nativity in Bethlehem. J. Cult. Herit. 2012, 13, 54–60. [Google Scholar] [CrossRef]
- Taylor, R.E.; Long, A.; Kra, R.S. Radiocarbon after Four Decades; Springer: New York, NY, USA, 1992; p. 596. [Google Scholar]
- Aitken, M.J. Thermoluminescence Dating; Academic Press: London, UK, 1985. [Google Scholar]
- Bailiff, I.K. Methodological developments in the luminescence dating of brick from English late-medieval and post-medieval buildings. Archaeometry 2008, 49, 827–851. [Google Scholar] [CrossRef] [Green Version]
- Blain, S. An application of luminiscence dating to building archaeology: The study of ceramic building materials in early medieval churches in north-western France and south-eastern England. Arqueol. Arquit. 2010, 7, 43–66. [Google Scholar] [CrossRef]
- Blain, S.; Bailiff, I.K.; Guibert, P.; Bouvier, A.; Bayle, M. An intercomparison study of luminescence dating protocols and techniques applied to medieval brick samples from Normandy (France). Quat. Geochronol. 2010, 5, 311–316. [Google Scholar] [CrossRef]
- Blanco Rotea, R.; Benavides Garcia, R.; Sanjurjo Sánchez, J.; Fernández Mosquera, D. Evolución constructiva de Santa Eulalia de Bóveda (Lugo, Galicia). Arqueol. Arquit. 2010, 6, 149–198. [Google Scholar] [CrossRef]
- Barnett, S.M. Luminescence dating of pottery from later prehistoric Britain. Archaeometry 2000, 42, 431–457. [Google Scholar] [CrossRef]
- Sanjurjo Sánchez, J.; Fernández Mosquera, D.; Bello, J.M. Establecimiento y validación de procedimientos de datación por luminiscencia de material arqueológico en el laboratorio de geocronología de la Universidad de A Coruña: Primeros resultados. Traba. Prehist. 2008, 65, 131–136. [Google Scholar] [CrossRef]
- Johnson, R.A.; Clark, J.; Miller-Antonio, S.; Robins, D.F.; Schiffer, M.R.; Skibo, J.M. Effects of firing temperature on the fate of naturally occurring organic matter in clays. J. Archaeol. Sci. 1988, 15, 403–414. [Google Scholar] [CrossRef]
- Bonsall, C.; Cook, G.; Manson, J.L.; Sanderson, D. Direct dating of Neolithic pottery: Progress and prospects. Doc. Praehist. 2002, 29, 47–59. [Google Scholar]
- Evin, J.; Gabasio, M.; Lefèvre, J.-C. Preparation techniques for radiocarbon dating of potsherds. Radiocarbon 1980, 31, 276–283. [Google Scholar]
- De Atley, S.P. Radiocarbon dating of ceramic materials: Progress and prospects. Radiocarbon 1980, 22, 987–993. [Google Scholar]
- Kolik, A.D. Direct radiocarbon dating of pottery: Selective heat treatment to retrieve smoke-derived carbon. Radiocarbon 1995, 37, 275–284. [Google Scholar]
- Wilson, M.A.; Carter, M.A.; Hall, C.; Hoff, W.D.; Ince, C.; Savage, S.D.; McKay, B.; Betts, I.M. Dating fired-clay ceramics using long-term power law rehydroxylation kinetics. Pro. R. Soc. A-Math. Phys. 2009, 465, 2407–2415. [Google Scholar] [CrossRef]
- Wilson, M.A.; Hoff, W.D.; Hall, C.; McKay, B.; Hiley, A. Kinetics of moisture expansion in fired clay ceramics: A time^1/4 law. Phys. Rev. Lett. 2003, 90, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Savage, S.D.; Wilson, M.A.; Carter, M.A.; Hoff, W.D.; Hall, C.; McKay, B. Moisture expansion and mass gain in fired clay ceramics: A two stage (time) 1/4 process. J. Phys. D Appl. Phys. 2008, 41. [Google Scholar] [CrossRef]
- Wilson, M.A.; Hamilton, A.; Ince, C.; Carter, M.A.; Hall, C. Rehydroxylation (RHX) dating of archaeological pottery. Proc. Roy. Soc. Lond. A Math. Phy. Eng. Sci. 2012, 468, 3476–3493. [Google Scholar] [CrossRef]
- Shoval, S.; Paz, Y. A study of the mass-gain of ancient pottery in relation to archaeological ages using thermal analysis. Appl. Clay Sci. 2013, 82, 113–120. [Google Scholar] [CrossRef]
- Hamilton, A.; Hall, C. A review of rehydroxylation in fired-clay ceramics. J. Am. Ceram. Soc. 2012, 95, 2673–2678. [Google Scholar] [CrossRef]
- Burakov, K.S.; Nachasova, I.E. Archaeomagnetic study and rehydroxylation dating of fired-clay ceramics. Phys. Solid Earth (Izvestiya) 2013, 49, 105–112. [Google Scholar] [CrossRef]
- Grim, R.E.; Bradley, W.F. Rehydration and dehydration of the clay minerals. Am. Min. 1948, 33, 50–59. [Google Scholar]
- Heller, L.; Farmer, V.C.; Mackenzie, R.C.; Mitchell, B.D.; Taylor, H.F.W. The dehydroxylation and rehydroxylation of triphormic dioctahedral clay minerals. Clay Miner. 1962, 5, 5–72. [Google Scholar] [CrossRef]
- Cultrone, G.; Sebastian, E.; Elert, K.; de la Torre, M.J.; Cazalla, O.; Rodriguez-Navarro, C. Influence of mineralogy and firing temperature on the porosity of bricks. J. Eur. Cram. Soc. 2004, 24, 547–564. [Google Scholar] [CrossRef]
- Bonani, G.; Haas, H.; Hawass, Z.; Lehner, M.; Nakhla, S.; Nolan, J.; Wenke, R.; Wölfli, W. Radiocarbon dates of Old and Middle Kingdom monuments in Egypt. Radiocarbon 2001, 43, 1297–1320. [Google Scholar]
- Haas, H.; Devine, J.M.; Wenke, R.; Lehner, M.; Wölfli, W.; Bonani, G. Radiocarbon chronology and the historical calendar in Egypt. In Chronologies in the Near East; Aurenche, O., Evin, J., Hours, F., Eds.; BAR International Series: Oxford, UK, 1987; Volume 379, pp. 585–606. [Google Scholar]
- Burleigh, R.; Hewson, A.; Meeks, N. Britich Museum natural radiocarbon measurements IX. Radiocarbon 1977, 19, 143–160. [Google Scholar]
- Sanjurjo-Sánchez, J.; Mosquera, D.; Fenollós, J.M. TL and OSL dating of sediment and pottery from two Syrian archaeological sites. Geochronometria 2008, 31, 21–29. [Google Scholar]
- Sanjurjo-Sánchez, J.; Montero Fenollós, J.L. A Late Bronze Age site and fluvial environmental context in the Middle Euphrates Valley (Northern Syria). Holocene 2014, 24, 743–748. [Google Scholar] [CrossRef]
- Sanjurjo-Sánchez, J.; Montero Fenollós, J.L. First test for luminescence dating of ancient mud-brick buildings from Northern of Mesopotamia. In Monumental Earthen Architecture in Early Societies; Daneels, A., Ed.; Archaeopress: Oxford, UK, 2016; pp. 45–52. [Google Scholar]
- Games, K.P. The magnitude of the palaeomagnetic field: A new non-thermal, non-detrital method using sun-dried bricks. Geophys. J. R. Astron. Soc. Can. 1977, 48, 315–330. [Google Scholar] [CrossRef]
- McIntosh, G.; Catanzariti, G. Introduction to archaeomagnetic dating. Geochronometria 2006, 25, 11–18. [Google Scholar]
- Enterpinar, P.; Langereis, C.G.; Biggin, A.J.; Frangipane, M.; Matney, T.; Ökse, T.; Engin, A. Archaeomagnetic study of five mounds from Upper Mesopotamia between 2500 and 700 BCE: Further evidence for an extremely strong geomagnetic field ca. 3000 years ago. Earth Planet. Sci. Lett. 2012, 357–358, 84–98. [Google Scholar]
- Downey, W.S. Archaeomagnetic directional determinations on various archaeological materials from the Late Minoan Destruction site at Malia, Crete. Mediterr. Archaeol. Archaeol. 2011, 11, 21–31. [Google Scholar]
- Barba, L.; Blancas, J.; Manzanilla, R.; Ortiz, A.; Barca, D.; Crisci, G.M.; Mirello, D.; Pecci, A. Provenance of the limestone used in Teotihuacan (Mexico): A methodological approach. Archaeometry 2009, 51, 525–545. [Google Scholar] [CrossRef]
- Elsen, J. Microscopy of historic mortars–a review. Cem. Concr. Res. 2006, 36, 1416–1424. [Google Scholar] [CrossRef]
- Sanjurjo-Sánchez, J.; Trindade, M.J.; Blanco Rotea, R.; Benavides, R.; Fernández Mosquera, D.; Burbridge, C.I.; Prudêncio, M.I.; Dias, M.I. Chemical and mineralogical characterization of historic mortars form the Santa Eulalia de Bóveda Temple, NW Spain. J. Archaeol. Sci. 2010, 37, 2346–2351. [Google Scholar]
- Delibrias, G.; Labeyrie, J. Dating of old mortars by the carbon-14 method. Nature 1964, 201. [Google Scholar] [CrossRef]
- Folk, R.L.; Valastro, S., Jr. Successful technique for dating of lime mortars by carbon-14. J. Field Archaeol. 1976, 3, 203–208. [Google Scholar] [CrossRef]
- Heinemeier, J.; Jungner, H.; Lindroos, A.; Ringbom, Å.; von Konow, T.; Rud, N. AMS 14C dating of lime mortar. Nucl. Instrum. Meth. B. 1997, 123, 487–495. [Google Scholar] [CrossRef]
- Hale, J.; Heinemeier, J.; Lancaster, L.; Lindroos, A.; Ringbom, Å. Dating ancient mortar. Am. Sci. 2003, 91, 130–137. [Google Scholar] [CrossRef]
- Pesce, G.L.A.; Ball, R.J. Dating of old lime based mixtures with the “Pure Lime Lumps” technique. In Radiometric Dating; Nawrocka, D.N., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Van Strydonck, M.; Dupas, M. The classification and dating of lime mortars by chemical analysis and radiocarbon dating: A review. In Second Deya International Conference of Prehistory: Recent Developments in Western Mediterranean Prehistory: Archaeological Techniques, Technology, and Theory; Waldren, W.H., Ensenyat, J.A., Kennard, R.C., Eds.; Tempus Reparatum: Oxford, UK, 1991; pp. 5–43. [Google Scholar]
- Elert, K.; Rodriguez-Navarro, C.; Sebastian Pardo, E.; Hansen, E.; Cazalla, O. Lime Mortars for the Conservation of Historic Buildings. Stud. Conserv. 2002, 47, 62–75. [Google Scholar] [CrossRef]
- Sanjurjo-Sánchez, J.; Alves, C. Decay effects of pollutants on stony materials in the built environment. Environ. Chem. Lett. 2012, 10, 131–143. [Google Scholar] [CrossRef]
- Nawrocka, D.; Michniewicz, J.; Pawlyta, J.; Pazdur, A. Application of radiocarbon method for dating of lime mortars. Geochronometria 2005, 24, 109–115. [Google Scholar]
- Nawrocka, D.; Czernik, J.; Goslar, T. C-14 dating of carbonate mortars from Polish and Israeli sites. Radiocarbon 2009, 51, 857–866. [Google Scholar]
- Marzaioli, F.; Lubritto, C.; Nonni, E.; Passariello, I.; Capano, M.; Terrasi, F. Mortar radiocarbon dating: Preliminary accuracy evaluation of novel methodology. Anal. Chem. 2011, 83, 2038–2045. [Google Scholar] [CrossRef] [PubMed]
- Ortega, L.A.; Zuluaga, M.C.; Alonso-Olazabal, A.; Insausti, M.; Murelaga, X.; Ibañez, A. Improved Sample Preparation Methodology on Lime Mortar for Reliable 14C Dating. In Radiometric Dating; Nawrocka, D.N., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Lindroos, A.; Heinemeier, J.; Ringbom, A.; Braskén, M.; Sveinbjörnsdóttir, A.E. Mortar dating using AMS 14C and sequential dissolution: Examples from medieval, non-hydraulic lime mortars from the Aland Islands, SW Finland. Radiocarbon 2007, 49, 47–67. [Google Scholar]
- Heinemeier, J.; Ringbom, A.; Lindroos, A.; Sveinbjörnsdóttir, A.E. Succesful AMS 14C dating of non-hydraulic lime mortars from the medieval churches of the Aland Islands, Finland. Radiocarbon 2010, 52, 171–204. [Google Scholar]
- Botter-Jensen, L.; Solongo, S.; Murray, A.S.; Banerjee, D.; Jungner, H. Using the OSL single-aliquot regenerative-dose protocol with quartz extracted from building materials in retrospective dosimetry. Radiat. Meas. 2000, 32, 841–845. [Google Scholar] [CrossRef]
- Zacharias, N.; Mauz, B.; Michael, C.T. Luminescence quartz dating of lime mortars. A first research approach. Radiat. Prot. Dosim. 2002, 101, 379–382. [Google Scholar] [CrossRef]
- Goedicke, C. Dating historical calcite mortar by blue OSL: Results from known age samples. Radiat. Meas. 2003, 37, 409–415. [Google Scholar] [CrossRef]
- Jain, M.; Botter-Jensen, L.; Murray, A.S.; Jungner, H. Retrospective dosimetry: Dose evaluation using unheated and heated quartz from a radioactive waste storage building. Radiat. Prot. Dosim. 2002, 101, 525–530. [Google Scholar] [CrossRef]
- Jain, M.; Thomsen, K.J.; Botter-Jensen, L.; Murray, A.S. Thermal transfer and apparent-dose distributions in poorly bleached mortar samples: Results from sigle grains and small aliquots of quartz. Radiat. Meas. 2004, 38, 101–109. [Google Scholar] [CrossRef]
- Stella, G.; Fontana, D.; Gueli, A.M.; Troja, S.O. Historical mortars dating from OSL signals of fine grain fraction enriched in quartz. Geochronometria 2013, 40, 153–164. [Google Scholar] [CrossRef]
- Goedicke, C. Dating mortar by optically stimulated luminescence: A feasibility study. Geochronometria 2011, 38, 42–49. [Google Scholar] [CrossRef]
- Urbanova, P.; Hourcade, D.; Ney, C.; Guibert, P. Sources of unertainties in OSL dating of archaeological mortars: The case study of the Roman amphitheatre “Palais-Gallien” in Bordeaux. Radiat. Meas. 2015, 72, 100–110. [Google Scholar] [CrossRef]
- Göksu, H.Y.; Bailiff, I.K.; Mikhailik, V.B. New approaches to retrospective dosimetry using cementitious building materials. Radiat. Meas. 2003, 37, 323–327. [Google Scholar] [CrossRef]
- Thomsen, K.J.; Jain, M.; Boter-Jensen, L.; Murray, A.S.; Jungner, H. Variation with depth of dose distributions in sigle grains of quartz extracted from an irradiated concrete block. Radiat. Meas. 2003, 37, 315–321. [Google Scholar] [CrossRef]
- Feathers, J.K.; Johnson, J.; Kembel, S.R. Luminescence dating of monumental stone architecture at Chavín De Huántar, Perú. J. Archaeol. Method Th. 2008, 15, 266–296. [Google Scholar] [CrossRef]
- Chiari, G.; Lanza, R. Pictorial remanent magnetization as an indicator of secular variation of the Earth’s magnetic field. Phys. Earth Planet. In. 1997, 101, 79–83. [Google Scholar] [CrossRef]
- Liritzis, I. A new dating method by thermoluminescence of carved megalithic Stone building. Comptes Rendus Acad. Sci. Paris Serie II 1994, 319, 603–610. [Google Scholar]
- Galloway, R.B. Luminescence lifetimes in quartz: Dependence on annealing temperature prior to beta irradiation. Radiat. Meas. 2002, 35, 67–77. [Google Scholar] [CrossRef]
- Liritzis, I.; Sideris, C.; Vafiadou, A.; Mitsis, J. Mineralogical petrological and radioactivity aspects of some building material from Egyptian Old Kingdom monuments. J. Cult. Herit. 2007, 9, 1–13. [Google Scholar] [CrossRef]
- Liritzis, I.; Drivaliari, A.; Polymeris, G.; Katagas, C.H. New quartz technique for OSL dating of limestones. Mediterr. Archaeol. Archaeol. 2010, 10, 81–87. [Google Scholar]
- Greilich, S.; Glasmacher, G.A.; Wagner, G.A. Optical dating of granitic stone surfaces. Archaeometry 2005, 47, 645–665. [Google Scholar] [CrossRef]
- Vafiadou, A.; Murray, A.S.; Liritzis, I. Optically Stimulated Luminescence (OSL) dating investigations of rock and underlying soil from three case studies. J. Archaeol. Sci. 2007, 34, 1659–1669. [Google Scholar] [CrossRef]
- Liritzis, I.; Laskaris, N. A new mathematical approximation of sunlight attenuation in rocks for surface luminescence dating. J. Lumin. 2011, 131, 1874–1884. [Google Scholar]
- Sohbati, R.; Murray, A.S.; Chapot, M.S.; Jain, M.; Pederson, J. Optically Stimulated Luminescence (OSL) as a chronometer for surface exposure dating. J. Geophys. Res. Sol-Ea. 2012, 117. [Google Scholar] [CrossRef]
- Liritzis, I.; Polymeris, G.; Zacharias, N. Surface luminescence dating of “Dragon Houses” and Armena Gate at Styra (Euboea, Greece). Mediterr. Archaeol. Archaeol. 2010, 10, 65–81. [Google Scholar]
- Greilich, S.; Glasmacher, U.A.; Wagner, G.A. Spatially resolved detection of luminescence: A unique tool for archaeochronometry. Naturwissenschaften 2002, 89, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Chapot, M.S.; Sohbati, R.; Murray, A.S.; Pederson, J.L.; Rittenour, T.M. Constraining the age of rock art by dating a rockfall event using sediment and rock-surface luminescence dating techniques. Quat. Geochronol. 2012, 13, 18–25. [Google Scholar] [CrossRef]
- Liritzis, I.; Singhvi, A.K.; Feathers, J.K.; Wagner, G.A.; Kadereit, A.; Zacharias, N.; Li, S.H. Luminescence Dating in Archaeology, Anthropology and Geoarchaeology; Springer: Heidelberg, Germany, 2013. [Google Scholar]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanjurjo-Sánchez, J. An Overview of the Use of Absolute Dating Techniques in Ancient Construction Materials. Geosciences 2016, 6, 22. https://doi.org/10.3390/geosciences6020022
Sanjurjo-Sánchez J. An Overview of the Use of Absolute Dating Techniques in Ancient Construction Materials. Geosciences. 2016; 6(2):22. https://doi.org/10.3390/geosciences6020022
Chicago/Turabian StyleSanjurjo-Sánchez, Jorge. 2016. "An Overview of the Use of Absolute Dating Techniques in Ancient Construction Materials" Geosciences 6, no. 2: 22. https://doi.org/10.3390/geosciences6020022
APA StyleSanjurjo-Sánchez, J. (2016). An Overview of the Use of Absolute Dating Techniques in Ancient Construction Materials. Geosciences, 6(2), 22. https://doi.org/10.3390/geosciences6020022