Aeolian Saltation Flux Profiles: Comparison of Representation and Measurement Methods
Abstract
1. Introduction
2. Study Sites
3. Methods
3.1. Data Collection
3.2. Evaluating Saltation Flux Distribution Models
3.3. Comparing Continuous and Discontinuous Array Estimates of Total Sand Flux
4. Results
5. Discussion
6. Conclusions
- Saltation flux profiles decay exponentially with height above the surface. Our analysis indicates that exponential functions (RMSE 0.29–0.33; bottom trap absolute error 1.9–2.9%) are much better at fitting the empirical profiles than either the logarithmic (RMSE 0.74–1.32; bottom trap absolute error 4.3–9.9%) or power functions (RMSE 1.21–2.10; bottom trap absolute error 4.9–6.5%). These results support findings from previous research (e.g., Ellis et al. [10], among many others) but contradict those studies that suggest logarithmic or power functions more closely approximate measured flux profiles. Geometric averaging to represent trap centers produces results superior to arithmetic centering, but using 1 mm, median grain size, or grain roughness length to represent the bottom of the bottom trap causes trivial differences.
- The number of traps or sensors in a discontinuous array is secondary to the heights of the devices above the surface in terms of contributing to the magnitude of potential error in fitted model predictions. Average errors, relative to the continuous profile data for arrays comprising 3, 4, 5, or 6 devices, average only about 2.5% when the installations are as close as feasible to a non-cohesive sand surface. This discounts the results for saltation over a moist surface, i.e., Site 3 data in this study. When discontinuous arrays comprise measurements at greater distances from the surface, errors average almost 16% for three device configurations.
- In this study, creep/reptation transport is inferred to be a relatively small component of total wind-blown sand flux. Creep would move below the lowest measurement heights of the discontinuous arrays but would be captured in the continuous array data. Thus, the fitted curves would vary to reflect the differences, and this would manifest in error percentages. The close correspondence of the least error discontinuous arrays with continuous profiles suggests, therefore, that creep/reptation proportion of sand transport must average less than the 2.5% average error.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagnold, R.A. The Movement of Desert Sand. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1936, 157, 594–620. [Google Scholar] [CrossRef]
- Butterfield, G.R. Near-Bed Mass Flux Profiles in Aeolian Sand Transport: High-Resolution Measurements in a Wind Tunnel. Earth Surf. Process. Landf. 1999, 24, 393–412. [Google Scholar] [CrossRef]
- Andreotti, B. A Two-Species Model of Aeolian Sand Transport. J. Fluid Mech. 2004, 510, 47–70. [Google Scholar] [CrossRef]
- Sørensen, M. On the Rate of Aeolian Sand Transport. Geomorphology 2004, 59, 53–62. [Google Scholar] [CrossRef]
- Sherman, D.J.; Li, B. Predicting Aeolian Sand Transport Rates: A Reevaluation of Models. Aeolian Res. 2012, 3, 371–378. [Google Scholar] [CrossRef]
- Valance, A.; Rasmussen, K.R.; Ould El Moctar, A.; Dupont, P. The Physics of Aeolian Sand Transport. C. R. Phys. 2015, 16, 105–117. [Google Scholar] [CrossRef]
- Pähtz, T.; Tholen, K. Aeolian Sand Transport: Scaling of Mean Saltation Length and Height and Implications for Mass Flux Scaling. Aeolian Res. 2021, 52, 100730. [Google Scholar] [CrossRef]
- Zingg, A.W. Wind Tunnel Studies of the Movement of Sedimentary Material. In Proceedings of the 5th Hydraulic Conference Bulletin; John Wiley & Sons: New York, NY, USA, 1953; Volume 34, pp. 111–134. [Google Scholar]
- Dong, Z.; Qian, G.; Luo, W.; Wang, H. Analysis of the Mass Flux Profiles of an Aeolian Saltating Cloud. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Ellis, J.T.; Li, B.; Farrell, E.J.; Sherman, D.J. Protocols for Characterizing Aeolian Mass-Flux Profiles. Aeolian Res. 2009, 1, 19–26. [Google Scholar] [CrossRef]
- Ho, T.D.; Valance, A.; Dupont, P.; Ould El Moctar, A. Aeolian Sand Transport: Length and Height Distributions of Saltation Trajectories. Aeolian Res. 2014, 12, 65–74. [Google Scholar] [CrossRef]
- Martin, R.L.; Kok, J.F.; Hugenholtz, C.H.; Barchyn, T.E.; Chamecki, M.; Ellis, J.T. High-Frequency Measurements of Aeolian Saltation Flux: Field-Based Methodology and Applications. Aeolian Res. 2018, 30, 97–114. [Google Scholar] [CrossRef]
- Scott, W.D.; Hopwood, J.M.; Summers, K.J. A Mathematical Model of Suspension with Saltation. Acta Mech. 1995, 108, 1–22. [Google Scholar] [CrossRef]
- Sterk, G.; Raats, P.A.C. Comparison of Models Describing the Vertical Distribution of Wind-Eroded Sediment. Soil Sci. Soc. Am. J. 1996, 60, 1914–1919. [Google Scholar] [CrossRef]
- Stout, J.E.; Zobeck, T.M. The Wolfforth Field Experiment: A Wind Erosion Study. Soil Sci. 1996, 161, 616–632. [Google Scholar] [CrossRef]
- Ni, J.R.; Li, Z.S.; Mendoza, C. Vertical Profiles of Aeolian Sand Mass Flux. Geomorphology 2003, 49, 205–218. [Google Scholar] [CrossRef]
- Mertia, R.S.; Santra, P.; Kandpal, B.K.; Prasad, R. Mass–Height Profile and Total Mass Transport of Wind Eroded Aeolian Sediments from Rangelands of the Indian Thar Desert. Aeolian Res. 2010, 2, 135–142. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C. Field Observations of Sand Flux and Dust Emission above a Gobi Desert Surface. J. Soils Sediments 2021, 21, 1815–1825. [Google Scholar] [CrossRef]
- Ishihara, T.; Iwagaki, Y. On the Effect of Sand Storm in Controlling the Mouth of the Kiku River. Bulletins 1952, 2, 1–32. [Google Scholar]
- Rasmussen, K.R.; Mikkelsen, H.E. On the Efficiency of Vertical Array Aeolian Field Traps. Sedimentology 1998, 45, 789–800. [Google Scholar] [CrossRef]
- Miri, A.; Dragovich, D.; Dong, Z. Wind-Borne Sand Mass Flux in Vegetated Surfaces–Wind Tunnel Experiments with Live Plants. Catena 2019, 172, 421–434. [Google Scholar] [CrossRef]
- Williams, G. Some Aspects of the Eolian Saltation Load. Sedimentology 1964, 3, 257–287. [Google Scholar] [CrossRef]
- Gerety, K.M.; Slingerland, R. Nature of the Saltating Population in Wind Tunnel Experiments with Heterogeneous Size-Density Sands. Dev. Sedimentol. 1983, 38, 115–131. [Google Scholar]
- Rasmussen, K.R.; Sorensen, M.; Willetts, B.B. Measurement of Saltation and Wind Strength on Beaches; Barndorff-Nielsen, O.E., Moller, J.T., Rasmussen, K.R., Willets, B.B., Eds.; Department of Theoretical Statistics, Aarhus University: Aarhus Centrum, Denmark, 1985; Volume 8, pp. 301–326. [Google Scholar]
- Shao, Y.; Raupach, M.R. The Overshoot and Equilibration of Saltation. J. Geophys. Res. Atmos. 1992, 97, 20559–20564. [Google Scholar] [CrossRef]
- White, B.R.; Mounla, H. An Experimental Study of Froude Number Effect on Wind-Tunnel Saltation. In Aeolian Grain Transport 1; Barndorff-Nielsen, O.E., Willetts, B.B., Eds.; Springer: Vienna, Austria, 1991; Volume 1, pp. 145–157. ISBN 978-3-211-82269-2/978-3-7091-6706-9. [Google Scholar]
- Weinan, C.; Zuotao, Y.; Jiashen, Z.; Zhiwen, H. Vertical Distribution of Wind-Blown Sand Flux in the Surface Layer, Taklamakan Desert, Central ASIA. Phys. Geogr. 1996, 17, 193–218. [Google Scholar] [CrossRef]
- Greeley, R.; Blumberg, D.G.; Williams, S.H. Field Measurements of the Flux and Speed of Wind-blown Sand. Sedimentology 1996, 43, 41–52. [Google Scholar] [CrossRef]
- Zhou, Y.-H.; Guo, X.; Zheng, X.J. Experimental Measurement of Wind-Sand Flux and Sand Transport for Naturally Mixed Sands. Phys. Rev. E 2002, 66, 021305. [Google Scholar] [CrossRef] [PubMed]
- Namikas, S.L. Field Measurement and Numerical Modelling of Aeolian Mass Flux Distributions on a Sandy Beach. Sedimentology 2003, 50, 303–326. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, X.; Wang, H.; Zhao, A.; Wang, X. The Flux Profile of a Blowing Sand Cloud: A Wind Tunnel Investigation. Geomorphology 2003, 49, 219–230. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, H.; Liu, X.; Wang, X. The Blown Sand Flux over a Sandy Surface: A Wind Tunnel Investigation on the Fetch Effect. Geomorphology 2004, 57, 117–127. [Google Scholar] [CrossRef]
- Feng, D.J.; Li, Z.S.; Ni, J.R. Sidewall Effects of a Wind Tunnel on Wind Velocity and Mass Flux in Aeolian Sand Transport. Geomorphology 2009, 106, 253–260. [Google Scholar] [CrossRef]
- Wu, J.-J.; Luo, S.-H.; He, L.-H. The Characteristic of Streamwise Mass Flux of Windblown Sand Movement. Geomorphology 2012, 139–140, 188–194. [Google Scholar] [CrossRef]
- Bauer, B.O.; Davidson-Arnott, R.G.D. Aeolian Particle Flux Profiles and Transport Unsteadiness. J. Geophys. Res. Earth Surf. 2014, 119, 1542–1563. [Google Scholar] [CrossRef]
- Martin, R.L.; Kok, J.F. Wind-Invariant Saltation Heights Imply Linear Scaling of Aeolian Saltation Flux with Shear Stress. Sci. Adv. 2017, 3, e1602569. [Google Scholar] [CrossRef]
- Kamath, S.; Shao, Y.; Parteli, E.J.R. Scaling Laws in Aeolian Sand Transport Under Low Sand Availability. Geophys. Res. Lett. 2022, 49, e2022GL097767. [Google Scholar] [CrossRef]
- Tan, L.; Wang, H.; An, Z.; Qu, J. Aeolian Sand Transport over a Dry Playa Surface: Sand Flux Density Profiles, Saltation Layer Height, and Flux Scaling Laws and Implications for Dust Emission Dynamics. Catena 2023, 224, 106970. [Google Scholar] [CrossRef]
- Zhou, L.; Li, Z.; Huang, B.; Pu, O. Wind Tunnel Test of Sand Particle Size Distribution along Height in Blown Sand. Sustainability 2024, 16, 3914. [Google Scholar] [CrossRef]
- Leatherman, S.P. A New Aeolian Sand Trap Design. Sedimentology 1978, 25, 303–306. [Google Scholar] [CrossRef]
- Rosen, P.S. An Efficient, Low Cost, Aeolian Sampling System. Geol. Surv. Can. Curr. Res. 1978, Part A, 531–532. [Google Scholar]
- Jackson, D.W.T. A New, Instantaneous Aeolian Sand Trap Design for Field Use. Sedimentology 1996, 43, 791–796. [Google Scholar] [CrossRef]
- Nickling, W.G.; McKenna Neuman, C. Wind Tunnel Evaluation of a Wedge-Shaped Aeolian Sediment Trap. Geomorphology 1997, 18, 333–345. [Google Scholar] [CrossRef]
- Bagnold, R.A. The Measurement of Sand Storms. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1938, 167, 282–291. [Google Scholar] [CrossRef]
- Dong, Z.; Lv, P.; Zhang, Z.; Qian, G.; Luo, W. Aeolian Transport in the Field: A Comparison of the Effects of Different Surface Treatments. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Rotnicka, J. Aeolian Vertical Mass Flux Profiles above Dry and Moist Sandy Beach Surfaces. Geomorphology 2013, 187, 27–37. [Google Scholar] [CrossRef]
- Li, B.; Sherman, D.J.; Farrell, E.J.; Ellis, J.T. Variability of the Apparent von Kármán Parameter during Aeolian Saltation. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Farrell, E.J.; Sherman, D.J. Estimates of the Schmidt Number for Vertical Flux Distributions of Wind-Blown Sand. J. Coast. Res. 2013, 165, 1289–1294. [Google Scholar] [CrossRef]
- Swann, C.; Lee, D.; Trimble, S.; Key, C. Aeolian Sand Transport over a Wet, Sandy Beach. Aeolian Res. 2021, 51, 100712. [Google Scholar] [CrossRef]
- Strypsteen, G.; Delgado-Fernandez, I.; Derijckere, J.; Rauwoens, P. Fetch-driven Aeolian Sediment Transport on a Sandy Beach: A New Study. Earth Surf. Process. Landf. 2024, 49, 1530–1543. [Google Scholar] [CrossRef]
- Zhang, P.; Sherman, D.J.; Li, B. Aeolian Creep Transport: A Review. Aeolian Res. 2021, 51, 100711. [Google Scholar] [CrossRef]
- Gillette, D.A.; Chen, W. Particle Production and Aeolian Transport from a “Supply-limited” Source Area in the Chihuahuan Desert, New Mexico, United States. J. Geophys. Res. Atmos. 2001, 106, 5267–5278. [Google Scholar] [CrossRef]
- Flores-Aqueveque, V.; Alfaro, S.; Muñoz, R.; Rutllant, J.A.; Caquineau, S.; Le Roux, J.P.; Vargas, G. Aeolian Erosion and Sand Transport over the Mejillones Pampa in the Coastal Atacama Desert of Northern Chile. Geomorphology 2010, 120, 312–325. [Google Scholar] [CrossRef]
- Arnalds, O.; Gisladottir, F.O.; Orradottir, B. Determination of Aeolian Transport Rates of Volcanic Soils in Iceland. Geomorphology 2012, 167–168, 4–12. [Google Scholar] [CrossRef]
- Gillies, J.A.; Nickling, W.G.; Tilson, M. Frequency, Magnitude, and Characteristics of Aeolian Sediment Transport: McMurdo Dry Valleys, Antarctica. J. Geophys. Res. Earth Surf. 2013, 118, 461–479. [Google Scholar] [CrossRef]
- Tan, L.; An, Z.; Zhang, K.; Qu, J.; Han, Q.; Wang, J. Intermittent Aeolian Saltation Over a Gobi Surface: Threshold, Saltation Layer Height, and High-Frequency Variability. J. Geophys. Res. Earth Surf. 2020, 125, e2019JF005329. [Google Scholar] [CrossRef]
- Mendez, M.J. A New Wind Erosion Sampler Called “Mendeźs Trap (MT)”. Description and Field Performance Test in a Loamy Sand Soil. Aeolian Res. 2022, 56, 100800. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Z.; Han, G.; Tian, J.; Zhang, H.; Tan, L. Aeolian Saltation over Plateau Gobi: Field Studies in the Zhongzaohuo Gobi Area, Northeastern Tibetan Plateau, China. J. Wind. Eng. Ind. Aerodyn. 2024, 250, 105763. [Google Scholar] [CrossRef]
- Strypsteen, G.; Rauwoens, P. Aeolian Sand Transport on a Natural Beach with Shells and Moist Sand Patches. J. Coast. Res. 2023, 39, 700–711. [Google Scholar] [CrossRef]
- Nelli, N.; Francis, D.; Sow, M.; Fonseca, R.; Alkatheeri, A.; Bosc, E.; Bergametti, G. The Wind-Blown Sand Experiment in the Empty Quarter Desert: Roughness Length and Saltation Characteristics. Earth Space Sci. 2024, 11, e2024EA003512. [Google Scholar] [CrossRef]
- Webb, N.P.; Wheeler, B.; Edwards, B.L.; Schallner, J.W.; Macanowicz, N.; Van Zee, J.W.; Courtright, E.M.; Cooper, B.; McCord, S.E.; Browning, D.; et al. Magnitude Shifts in Aeolian Sediment Transport Associated With Degradation and Restoration Thresholds in Drylands. J. Geophys. Res. Biogeosci. 2025, 130, e2024JG008581. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.G.D.; Bauer, B.O.; Hesp, P.A.; Ollerhead, J.; Delgado-Fernandez, I. Instantaneous and Mean Aeolian Sediment Transport Rate on Beaches: An Intercomparison of Measurements from Two Sensor Types. J. Coast. Res. 2009, I, 297–301. [Google Scholar]
- Davidson-Arnott, R.G.D.; Bauer, B.O.; Walker, I.J.; Hesp, P.A.; Ollerhead, J.; Chapman, C. High-frequency Sediment Transport Responses on a Vegetated Foredune. Earth Surf. Process. Landf. 2012, 37, 1227–1241. [Google Scholar] [CrossRef]
- Duarte-Campos, L.; Wijnberg, K.M.; Hulscher, S.J.M.H. Field Test of the Accuracy of Laser Particle Counters to Measure Aeolian Sediment Flux. Aeolian Res. 2021, 50, 100676. [Google Scholar] [CrossRef]
- Hilton, M.; Nickling, B.; Wakes, S.; Sherman, D.; Konlechner, T.; Jermy, M.; Geoghegan, P. An Efficient, Self-Orienting, Vertical-Array, Sand Trap. Aeolian Res. 2017, 25, 11–21. [Google Scholar] [CrossRef]
- Mendez, M.J.; Funk, R.; Buschiazzo, D.E. Field Wind Erosion Measurements with Big Spring Number Eight (BSNE) and Modified Wilson and Cook (MWAC) Samplers. Geomorphology 2011, 129, 43–48. [Google Scholar] [CrossRef]
- Fryrear, D.W. A Field Dust Sampler. J. Soil Water Conserv. 1986, 41, 117–120. [Google Scholar] [CrossRef]
- Wilson, S.J.; Cooke, R.U. Wind Erosion. In Soil Erosion; Kirkby, M.J., Morgan, R.P.C., Eds.; Landscape Systems; John Wiley & Sons: Chichester, UK; New York, NY, USA; Brisbane, Australia, 1980; pp. 217–251. ISBN 978-0-471-27802-3. [Google Scholar]
- Kuntze, H.; Beinhauer, R.; Tetzlaff, G. Quantification of Soil Erosion by Wind: I. Final Report of the BMFT Project; Institute of Meteorology and Climatology, University of Hannover: Hannover, Germany, 1990. [Google Scholar]
- Goossens, D.; Nolet, C.; Etyemezian, V.; Duarte-Campos, L.; Bakker, G.; Riksen, M. Field Testing, Comparison, and Discussion of Five Aeolian Sand Transport Measuring Devices Operating on Different Measuring Principles. Aeolian Res. 2018, 32, 1–13. [Google Scholar] [CrossRef]
- Spaan, W.P.; Van Den Abeele, G.D. Wind Borne Particle Measurements with Acoustic Sensors. Soil Technol. 1991, 4, 51–63. [Google Scholar] [CrossRef]
- Ellis, J.T.; Morrison, R.F.; Priest, B.H. Detecting Impacts of Sand Grains with a Microphone System in Field Conditions. Geomorphology 2009, 105, 87–94. [Google Scholar] [CrossRef]
- Poortinga, A.; Van Rheenen, H.; Ellis, J.T.; Sherman, D.J. Measuring Aeolian Sand Transport Using Acoustic Sensors. Aeolian Res. 2015, 16, 143–151. [Google Scholar] [CrossRef]
- Stockton, P.H.; Gillette, D.A. Field Measurement of the Sheltering Effect of Vegetation on Erodible Land Surfaces. Land Degrad. Dev. 1990, 2, 77–85. [Google Scholar] [CrossRef]
- Baas, A.C.W. Evaluation of Saltation Flux Impact Responders (Safires) for Measuring Instantaneous Aeolian Sand Transport Intensity. Geomorphology 2004, 59, 99–118. [Google Scholar] [CrossRef]
- Sherman, D.J.; Li, B.; Farrell, E.J.; Ellis, J.T.; Cox, W.D.; Maia, L.P.; Sousa, P.H.G.O. Measuring Aeolian Saltation: A Comparison of Sensors. J. Coast. Res. 2011, 59, 280–290. [Google Scholar] [CrossRef]
- Barchyn, T.E.; Hugenholtz, C.H.; Li, B.; Neuman, C.M.; Steven Sanderson, R. From Particle Counts to Flux: Wind Tunnel Testing and Calibration of the ‘Wenglor’ Aeolian Sediment Transport Sensor. Aeolian Res. 2014, 15, 311–318. [Google Scholar] [CrossRef]
- Sherman, D.J.; Swann, C.; Barron, J.D. A High-Efficiency, Low-Cost Aeolian Sand Trap. Aeolian Res. 2014, 13, 31–34. [Google Scholar] [CrossRef]
- Zhang, P.; Araújo, A.; Bae, J.; Carvalho, A.; Ellis, J.; Parteli, E.; Sherman, D.; Sherman, D.; Swann, C. Measuring Aeolian Saltation Flux Profiles: Comparison of Methods [Data Set]. Zenodo 2025. [Google Scholar] [CrossRef]
- Shao, Y.; Mctainsh, G.; Leys, J.; Raupach, M. Efficiencies of Sediment Samplers for Wind Erosion Measurement. Aust. J. Soil Res. 1993, 31, 519. [Google Scholar] [CrossRef]
- Li, Z.S.; Ni, J.R. Sampling Efficiency of Vertical Array Aeolian Sand Traps. Geomorphology 2003, 52, 243–252. [Google Scholar] [CrossRef]
- Lämmel, M.; Rings, D.; Kroy, K. A Two-Species Continuum Model for Aeolian Sand Transport. New J. Phys. 2012, 14, 093037. [Google Scholar] [CrossRef]
- Durán, O.; Claudin, P.; Andreotti, B. Direct Numerical Simulations of Aeolian Sand Ripples. Proc. Natl. Acad. Sci. USA 2014, 111, 15665–15668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P. Calculating Error Statistics for Aeolian Flux Profiles Measurement (MATLAB). Zenodo 2025. [Google Scholar] [CrossRef]
- Namikas, S.L.; Bauer, B.O.; Edwards, B.L.; Hesp, P.A.; Zhu, Y. Measurements of Aeolian Mass Flux Distributions on a Fine-Grained Beach: Implications for Grain-Bed Collision Mechanics. J. Coast. Res. 2009, I, 337–341. [Google Scholar]
- Dong, Z.; Wang, H.; Liu, X.; Li, F.; Zhao, A. Velocity Profile of a Sand Cloud Blowing over a Gravel Surface. Geomorphology 2002, 45, 277–289. [Google Scholar] [CrossRef]
- Ho, T.D.; Valance, A.; Dupont, P.; Ould El Moctar, A. Scaling Laws in Aeolian Sand Transport. Phys. Rev. Lett. 2011, 106, 094501. [Google Scholar] [CrossRef] [PubMed]
Trap/Sensor | Study | Elevations (m) * |
---|---|---|
BSNE | Gillette and Chen [52] | 0.05, 0.10, 0.20, 0.50 |
Flores-Aqueveque et al. [53] | 0.10, 0. 51, 1.12 | |
0.085, 0.208, 0.52 | ||
0.08, 0.50, 1.10 | ||
0.075, 0.227, 0.52 | ||
Arnalds et al. [54] | 0.10, 0.30, 0.60, 1.00, 1.50 | |
0.10, 0.30, 0.60 | ||
0.10, 0.30, 0.60, 1.00 | ||
Gillies et al. [55] | 0.264, 0.569, 0.870, 1.35 | |
Martin et al. [12] | 0.10–0.52 | |
0.08–0.70 | ||
0.05–0.46 | ||
Tan et al. [56] | 0.025, 0.175, 0.285, 0.585, 1.16, 1.79, 3.00 | |
Mendez [57] | 0.225, 0.43, 0.63, 1.12, 1.64 | |
Zhang et al. [58] | 0.025, 0.175, 0.285, 0.585, 1.16, 2 | |
MWAC | Mendez [57] | 0.225, 0.43, 0.63, 1.12, 1.64 |
Strypsteen and Rauwoens [59] | 0.065, 0.135, 0.21, 0.285, 0.54 | |
Nelli et al. [60] | 0.05, 0.1, 0.2, 0.4, 0.8 | |
Webb et al. [61] | 0.065, 0.135, 0.21, 0.285, 0.54 | |
Wenglor | Davidson-Arnott et al. [62] | 0.02 |
Davidson-Arnott et al. [63] | 0.014, 0.086, 0.177, 0.275, 0.374, 0.472 | |
Martin et al. [12] | 0.02–0.29 | |
0.02–0.32 | ||
0.06–0.47 | ||
Duarte-Campos et al. [64] | 0.04, 0.09, 0.15, 0.2, 0.26 | |
Nelli et al. [60] | 0.09 | |
Sensit | Tan et al. [56] | 0.05, 0.12, 0.38, 0.8, 1.38 |
Zhang et al. [58] | 0.05, 0.12, 0.38, 0.8, 1.5 | |
Others | Hilton et al. [65] ◊ | 0.035, 0.089, 0.143, 0.197, 0.251, 0.305, 0.359, 0.412 |
Duarte-Campos et al. [64] † | 0.025, 0.075, 0.125, 0.175, 0.225, 0.275 | |
Mendez [57] ‡ | 0.225, 0.43, 0.63, 1.12, 1.64 |
Fit Methods | Trap Center Methods | R2 | RMSE (%) | Bottom Trap Absolute Error (%) |
---|---|---|---|---|
Exponential | AC | 0.99 | 0.33 | 2.9% |
GC (1 mm bottom) | 0.99 | 0.29 | 2.1% | |
GC (d50 mm bottom) | 0.99 | 0.29 | 2.0% | |
GC (d50/15 mm bottom) | 0.99 | 0.29 | 1.9% | |
Logarithmic | AC | 0.97 | 0.74 | 4.3% |
GC (1 mm bottom) | 0.97 | 0.74 | 4.6% | |
GC (d50 mm bottom) | 0.95 | 0.91 | 7.0% | |
GC (d50/15 mm bottom) | 0.90 | 1.32 | 9.9% | |
Power | AC | 0.92 | 1.21 | 6.5% |
GC (1 mm bottom) | 0.85 | 1.66 | 6.5% | |
GC (d50 mm bottom) | 0.81 | 1.84 | 6.0% | |
GC (d50/15 mm bottom) | 0.76 | 2.10 | 4.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherman, D.J.; Bae, J.; Ellis, J.T.; Swann, C.; Parteli, E.J.R.; Farrell, E.; Li, B.; Araújo, A.D.; de Carvalho, A.M.; Sherman, D.L.; et al. Aeolian Saltation Flux Profiles: Comparison of Representation and Measurement Methods. Geosciences 2025, 15, 323. https://doi.org/10.3390/geosciences15080323
Sherman DJ, Bae J, Ellis JT, Swann C, Parteli EJR, Farrell E, Li B, Araújo AD, de Carvalho AM, Sherman DL, et al. Aeolian Saltation Flux Profiles: Comparison of Representation and Measurement Methods. Geosciences. 2025; 15(8):323. https://doi.org/10.3390/geosciences15080323
Chicago/Turabian StyleSherman, Douglas J., Jinsu Bae, Jean T. Ellis, Christy Swann, Eric J. R. Parteli, Eugene Farrell, Bailiang Li, Ascânio Dias Araújo, Alexandre Medeiros de Carvalho, Diane L. Sherman, and et al. 2025. "Aeolian Saltation Flux Profiles: Comparison of Representation and Measurement Methods" Geosciences 15, no. 8: 323. https://doi.org/10.3390/geosciences15080323
APA StyleSherman, D. J., Bae, J., Ellis, J. T., Swann, C., Parteli, E. J. R., Farrell, E., Li, B., Araújo, A. D., de Carvalho, A. M., Sherman, D. L., & Zhang, P. (2025). Aeolian Saltation Flux Profiles: Comparison of Representation and Measurement Methods. Geosciences, 15(8), 323. https://doi.org/10.3390/geosciences15080323