Comparative Flexural Response of Mineralized Massive Sulfides and Meta-Rhyolitic Rocks
Abstract
1. Introduction
2. Experimental Work
2.1. Sample Preparation
2.2. Petrographic–Mineralogic Examination
2.3. Flexural Strength Testing
- P = maximum load at failure (N);
- L = span length between supports (mm);
- b = width of the specimen (mm);
- d = depth of the specimen (mm).
3. Results and Discussion
3.1. Petrographic Observation of the Mineralized and Meta-Volcanic Rocks
3.2. Structural and Alteration Features of Meta-Rhyolitic Tuff
3.3. Multi-Stage Sulfide Mineralization in Meta-Rhyolitic Tuff
3.4. Physical Properties
Density and P-Wave Velocity
3.5. Flexural Strength Test Results
- ▪
- Average Maximum Load (kN): Mineralized rock samples demonstrated a higher average maximum load of 1.82 kN, indicating greater resistance to applied force before failure, compared to 1.57 kN for the metamorphic rocks.
- ▪
- Average Maximum Deflection (mm): Mineralized rocks exhibited a slightly lower average maximum deflection of 0.373 mm prior to failure, in contrast to 0.389 mm for the metamorphic rocks. This suggests a comparatively stiffer mechanical response in the mineralized samples.
- ▪
- Average Maximum Bending Strength (GPa): A notable difference was observed in the average maximum bending strength, with mineralized rocks displaying a significantly higher value of 99.02 GPa compared to 43.17 GPa for the metamorphic rocks. This substantial increase in flexural strength in the mineralized samples underscores the considerable strengthening effect imparted by sulfide mineralization on the host rock.
4. Conclusions
- ○
- Mining operations may benefit from simplified support systems in highly mineralized zones due to the inherent strength of these zones.
- ○
- Infrastructure projects in mineralized terrains can leverage these enhanced properties to reduce construction costs and improve long-term durability.
- ○
- Geological disposal programs, such as those considering host rocks for radioactive waste repositories, should carefully evaluate mineralized zones not only for chemical containment but also in view of their superior structural performance under mechanical stress.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fontboté, L.; Kouzmanov, K.; Chiaradia, M.; Pokrovski, G.S. Sulfide Minerals in Hydrothermal Deposits. Elements 2017, 13, 97–103. [Google Scholar] [CrossRef]
- Boyle, A.P. Sulphide Metamorphism and Deformation—introduction. Mineral. Mag. 1993, 57, 1–2. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, P.-P.; Zheng, Y.; Shan, H.-X.; Chen, X. Texture and composition evolution of sphalerite in metamorphosed depos its: An example from the Keketale Pb-Zn(-Ag) deposit, NW China. Ore Geol. Rev. 2024, 165, 105924. [Google Scholar] [CrossRef]
- Paradis, S.; Petts, D.; Simandl, G.J.; Sharpe, R.; Hamilton, T.S.; Fayek, M.; Jackson, S.E. Impact of deformation and metamorphism on sphalerite chemistry—Eleme nt mapping of sphalerite in carbonate-hosted Zn-Pb sulfide deposits of the Kootenay Arc, southern British Columbia, Canada and northeastern Washington, USA. Ore Geol. Rev. 2023, 158, 105482. [Google Scholar] [CrossRef]
- Giacometti, F.; Evans, K.A.; Rebay, G.; Cliff, J.; Tomkins, A.G.; Rossetti, P.; Vaggelli, G.; Adams, D.T. Sulfur isotope evolution in sulfide ores from Western Alps: Assessing the influence of subduction-related metamorphism. Geochem. Geophys. Geosyst. 2014, 15, 3808–3829. [Google Scholar] [CrossRef]
- Craig, J.R.; Vokes, F.M. The metamorphism of pyrite and pyritic ores: An overview. Mineral. Mag. 1993, 57, 3–18. [Google Scholar] [CrossRef]
- Callahan, O.A.; Eichhubl, P.; Olson, J.E.; Davatzes, N.C. Fracture Mechanical Properties of Damaged and Hydrothermally Altered R ocks, Dixie Valley-Stillwater Fault Zone, Nevada, USA. JGR Solid Earth 2019, 124, 4069–4090. [Google Scholar] [CrossRef]
- Day, J.; Clark, M.; Rudderham, G. Where geology meets engineering in hydrothermally altered environments: Considering veins in geotechnical engineering. In Proceedings of the Eighth International Conference & Exhibition on Mass Mining, Santiago, Chile, 4–8 October 2020; pp. 1159–1174. [Google Scholar]
- Rudderham, G.A.; Day, J.J. Veined Rock Performance under Uniaxial and Triaxial Compression Using Calibrated Finite Element Numerical Models. Geotechnics 2023, 3, 1219–1250. [Google Scholar] [CrossRef]
- Heap, M.J.; Harnett, C.E.; Wadsworth, F.B.; Gilg, H.A.; Carbillet, L.; Rosas-Carbajal, M.; Komorowski, J.-C.; Baud, P.; Troll, V.R.; Deegan, F.M.; et al. The tensile strength of hydrothermally altered volcanic rocks. J. Volcanol. Geotherm. Res. 2022, 428, 107576. [Google Scholar] [CrossRef]
- Pereira, M.L.; Zanon, V.; Fernandes, I.; Pappalardo, L.; Viveiros, F. Hydrothermal alteration and physical and mechanical properties of rocks in a volcanic environment: A review. Earth-Sci. Rev. 2024, 252, 104754. [Google Scholar] [CrossRef]
- Heap, M.J.; Baumann, T.; Gilg, H.A.; Kolzenburg, S.; Ryan, A.G.; Villeneuve, M.; Russell, J.K.; Kennedy, L.A.; Rosas-Carbajal, M.; Clynne, M.A. Hydrothermal alteration can result in pore pressurization and volcano instability. Geology 2021, 49, 1348–1352. [Google Scholar] [CrossRef]
- Wetzel, M. Pore Space Alterations and Their Impact on Hydraulic and Mechanical Rock Properties Quantified by Numerical Simulations. Ph.D. Thesis, Universität Potsdam, Potsdam, Germany, 2021. [Google Scholar]
- Schaefer, L.N.; Kereszturi, G.; Kennedy, B.M.; Villeneuve, M. Characterizing lithological, weathering, and hydrothermal alteration i nfluences on volcanic rock properties via spectroscopy and laboratory testing: A case study of Mount Ruapehu volcano, New Zealand. Bull. Volcanol. 2023, 85, 43. [Google Scholar] [CrossRef]
- Sruoga, P.; Rubinstein, N. Processes controlling porosity and permeability in volcanic reservoirs from the Austral and Neuquén basins, Argentina. Bulletin 2007, 91, 115–129. [Google Scholar] [CrossRef]
- Frolova, J.; Chernov, M.; Rychagov, S.; Kuznetsov, R.; Surovtseva, K. Alteration of volcanic rocks and changes in physical-mechanical proper ties on the South-Kambalny thermal field (South Kamchatka). E3S Web Conf. 2019, 98, 08002. [Google Scholar] [CrossRef]
- Han, Z.; Li, D.; Li, X. Dynamic mechanical properties and wave propagation of composite rock-mortar specimens based on SHPB tests. Int. J. Min. Sci. Technol. 2022, 32, 793–806. [Google Scholar] [CrossRef]
- Heap, M.J.; Violay, M.E.S. The mechanical behaviour and failure modes of volcanic rocks: A review. Bull. Volcanol. 2021, 83, 33. [Google Scholar] [CrossRef]
- Askaripour, M.; Saeidi, A.; Mercier-Langevin, P.; Rouleau, A. A Review of Relationship between Texture Characteristic and Mechanical Properties of Rock. Geotechnics 2022, 2, 262–296. [Google Scholar] [CrossRef]
- Robbiano, F.; Liu, K.; Zhang, Q.-B.; Orellana, L.F. Dynamic uniaxial compression testing of veined rocks under high strain rates. Int. J. Rock Mech. Min. Sci. 2022, 153, 105085. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, H.; Yang, J.; Deng, L.; Sun, P. Experimental study on the proportioning and mechanical properties of simulated materials of deep-sea seafloor massive sulfide. Ocean Eng. 2024, 295, 116955. [Google Scholar] [CrossRef]
- Cao, R.-h.; Yao, R.; Hu, T.; Wang, C.; Li, K.; Meng, J. Failure and mechanical behavior of transversely isotropic rock under compression-shear tests: Laboratory testing and numerical simulation. Eng. Fract. Mech. 2021, 241, 107389. [Google Scholar] [CrossRef]
- Kleb, B.; Vásárhelyi, B. Test results and empirical formulas of rock mechanical parameters of r hyolitic tuff samples from Eger’s cellars. Acta Geol. Hung. 2003, 46, 301–312. [Google Scholar] [CrossRef]
- Pamuk, E.; Büyüksaraç, A. Investigation of Strength Characteristics of Natural Stones in Ürgüp (Nevşehir/Turkey). Bitlis Eren Univ. J. Sci. Technol. 2017, 7, 74–79. [Google Scholar] [CrossRef]
- Barnwal, V.K.; Lee, S.-Y.; Choi, J.; Kim, J.-H.; Barlat, F. Fracture assessment in dual phase and transformation-induced plasticit y steels during 3-point bending. Theor. Appl. Fract. Mech. 2020, 110, 102834. [Google Scholar] [CrossRef]
- Keshavarzi, M.M.; Gilaki, M.; Sahraei, E. Characterization of in-situ material properties of pouch lithium-ion b atteries in tension from three-point bending tests. Int. J. Mech. Sci. 2022, 219, 107090. [Google Scholar] [CrossRef]
- G.Dempers, S.M.; Harris, B. Optimising Geotechnical Logging to Accurately Represent the Geotechnic al Environment. In Proceedings of the Second Australasian Ground Control in Mining Conference, Sydney, NSW, Australia, 23–24 November 2010. [Google Scholar]
- As, A.V. Geotechnical Engineering for Mass Mining. SEG Discov. 2020, 6, 22–31. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, Y.; Li, Y.; Zhang, D.; Yang, T.; Sui, Z. Determining Tensile Strength of Rock by the Direct Tensile, Brazilian Splitting, and Three-Point Bending Methods: A Comparative Study. Adv. Civ. Eng. 2021, 2021, 5519230. [Google Scholar] [CrossRef]
- Aghaei, H.; Penkov, G.M.; Solomoichenko, D.A.; Toorajipour, A.; Petrakov, D.G.; Jafarpour, H.; Ghosh, S. Density-dependent relationship between changes in ultrasonic wave velo cities, effective stress, and petrophysical-elastic properties of sand stone. Ultrasonics 2023, 132, 106985. [Google Scholar] [CrossRef]
Sample ID | P-Wave Velocity, m/s | Weight, gm | Avg Length, mm | Density, kg/m3 |
---|---|---|---|---|
OR-1 | 6083 | 235.2 | 146.365 | 3.55 |
OR-2 | 6130 | 236.3 | 141.405 | 3.60 |
OR-3 | 6125 | 275.3 | 147.095 | 3.95 |
OR-4 | 6083 | 217.8 | 146.425 | 3.51 |
AVG OR | 6105.25 ± 22.3 | 3.65 ± 0.17 | ||
HW-1 | 5615 | 182 | 145.765 | 2.73 |
HW-2 | 5800 | 185.3 | 145.08 | 2.70 |
HW-3 | 5692 | 164.2 | 148.78 | 2.72 |
HW-4 | 5615 | 162.3 | 146.095 | 2.74 |
AVG HW | 5680.5 ± 75.8 | 2.72 ± 0.014 |
Avg. Max Load (KN) | Avg. Max Deflection (mm) | Avg. Max Bending Strength (GPa) | |
---|---|---|---|
Metamorphic rock | 1.57 ± 0.36 | 0.389 ± 0.07 | 43.17 ± 6.45 |
Mineralized rock | 1.82 ± 0.13 | 0.373 ± 0.08 | 99.02 ± 4.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, H.M.; Moustafa, E.B. Comparative Flexural Response of Mineralized Massive Sulfides and Meta-Rhyolitic Rocks. Geosciences 2025, 15, 263. https://doi.org/10.3390/geosciences15070263
Ahmed HM, Moustafa EB. Comparative Flexural Response of Mineralized Massive Sulfides and Meta-Rhyolitic Rocks. Geosciences. 2025; 15(7):263. https://doi.org/10.3390/geosciences15070263
Chicago/Turabian StyleAhmed, Haitham M., and Essam B. Moustafa. 2025. "Comparative Flexural Response of Mineralized Massive Sulfides and Meta-Rhyolitic Rocks" Geosciences 15, no. 7: 263. https://doi.org/10.3390/geosciences15070263
APA StyleAhmed, H. M., & Moustafa, E. B. (2025). Comparative Flexural Response of Mineralized Massive Sulfides and Meta-Rhyolitic Rocks. Geosciences, 15(7), 263. https://doi.org/10.3390/geosciences15070263