Earth System Science and Education: From Foundational Thoughts to Geoethical Engagement in the Anthropocene
Abstract
:1. Introduction
2. Earth System Science (ESS): An Integrated Understanding of the Planet
“In the world today, there is a feeling like that before a coming war, or of the ominous calm that precedes a tropical hurricane. With a hurricane we know what to do before it comes, what precautions to take, where to go to escape disaster. For the changes that threaten the world now, we have no detailed guide, we can only guess what they will be. Change may come gradually, but more often in a stressed system it arrives in a sequence of abrupt events, stepping from one level to another. We are in for surprises, events that could not have been predicted.” (Lovelock [5], p.16).James Lovelock (1919–2022)
2.1. Early Ideas Leading to Earth System Science (ESS)
2.2. Establishment and Evolution of Earth System Science (ESS)
2.3. The Anthropocene: Challenges of a New Geological Epoch in Earth System Science (ESS)
3. Earth System Education (ESE): A Systemic Educational Approach to Teaching Science
3.1. The Emergence of Earth System Education (ESE) in the Science Education Landscape
3.2. From System Thinking to the Development of Environmental Insight
3.3. Developing Pro-Environmental Knowledge, Attitudes, and Behaviours Within Earth System Education (ESE)
4. Geoethics and Earth System Education (ESE): From Reflection to Action
Geoethics in Earth System Education (ESE): Insights into How to Live in the Anthropocene
5. Integrating Earth System Education (ESE): Challenges and Opportunities
- Curriculum integration: The systematic incorporation of Earth system concepts into the existing curricular frameworks, particularly within science, geography, and social studies may contribute to fostering interdisciplinary learning and promoting system thinking.
- Teacher professional development: Comprehensive professional development programmes focused on system thinking, geoethics, and interdisciplinary pedagogical strategies appear essential to enhance educators’ competencies relevant to ESE.
- Development of educational resources: The creation and broad dissemination of high-quality, accessible, and interdisciplinary teaching resources are considered important for supporting the integration of ESE principles across various educational levels.
- Assessment reform: Adapting assessment methods to reflect competencies, such as problem-solving, system thinking, and critical thinking, as well as ethical reasoning, as a fundamental component in aligning evaluation practices with ESE objectives.
- Institutional support and policy alignment: The development of an institutional culture that values interdisciplinary teaching alongside educational policies that endorse ESE principles as a facilitating factor for broader implementation.
- Public engagement and awareness: Enhancing public understanding of the significance of ESE through outreach initiatives may play a key role in supporting educational reforms aimed at addressing contemporary environmental and sustainability challenges.
6. Final Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Drüke, M.; Lucht, W.; Von Bloh, W.; Petri, S.; Sakschewski, B.; Tobian, A.; Loriani, S.; Schaphoff, S.; Feulner, G.; Thonicke, K. The long-term impact of transgressing planetary boundaries on biophysical atmosphere–land interactions. Earth Syst. Dyn. 2024, 15. [Google Scholar] [CrossRef]
- Franzke, C.; Ciullo, A.; Gilmore, E.; Matias, D.; Nagabhatla, N.; Orlov, A.; Paterson, S.; Scheffran, J.; Sillmann, J. Perspectives on tipping points in integrated models of the natural and human Earth system: Cascading effects and telecoupling. Environ. Res. Lett. 2021, 17, 12345. [Google Scholar] [CrossRef]
- Trenberth, K. Climate change caused by human activities is happening and it already has major consequences. J. Energy Nat. Resour. Law 2018, 36, 463–481. [Google Scholar] [CrossRef]
- Ribeiro, T.; Orion, N. Educating for a Holistic View of the Earth System: A Review. Geosciences 2021, 11, 485. [Google Scholar] [CrossRef]
- Lovelock, J. Healing Gaia: Practical Medicine for the Planet; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Steffen, W.; Richardson, K.; Rockström, J.; Schellnhuber, H.J.; Dube, O.P.; Dutreuil, S.; Lenton, T.M.; Lubchenco, J. The emergence and evolution of Earth System Science. Nat. Rev. Earth Environ. 2020, 1, 54–63. [Google Scholar] [CrossRef]
- Lenton, T. Earth System Science: A Very Short Introduction; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- National Research Council. Earth System Science: Overview: A Program for Global Change; The National Academies Press: Washington, DC, USA, 1986. [Google Scholar] [CrossRef]
- Ed Edwards, M.G.; Alcaraz, J.M.; Cornell, S.E. Management Education and Earth System Science: Transformation as if Planetary Boundaries Mattered. Bus. Soc. 2021, 60, 26–56. [Google Scholar] [CrossRef]
- Grotzinger, J.; Jordan, T.H. Understanding Earth, 8th ed.; Macmillan: New York, NY, USA, 2020. [Google Scholar]
- Ben-Zvi-Assaraf, O.; Orion, N. Development of system thinking skills in the context of Earth system education. J. Res. Sci. Teach. 2005, 42, 518–560. [Google Scholar] [CrossRef]
- Orion, N. An Earth Systems Curriculum Development Model. In Global Science Literacy; Mayer, V.J., Ed.; Springer: Dordrecht, The Netherlands, 2002; pp. 159–168. [Google Scholar] [CrossRef]
- Skinner, B.J.; Murck, B.W. The Blue Planet: An Introduction to Earth System Science; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Orion, N. The future challenge of Earth science education research. Discip. Interdscip. Sci. Educ. Res. 2019, 1, 3. [Google Scholar] [CrossRef]
- Mayer, V.J. Using the Earth system for integrating the science curriculum. Sci. Educ. 1995, 79, 375–391. [Google Scholar] [CrossRef]
- Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T.M.; Folke, C.; Liverman, D.; Summerhayes, C.P.; Barnosky, A.D.; Cornell, S.E.; Crucifix, M.; et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. USA 2018, 115, 8252–8259. [Google Scholar] [CrossRef]
- Vasconcelos, C.; Orion, N. Earth Science Education as a Key Component of Education for Sustainability. Sustainability 2021, 13, 1316. [Google Scholar] [CrossRef]
- Levit, G.S.; Krumbein, W.E. The biosphere theory of V. I. Vernadsky and the Gaia theory of James Lovelock: A comparative analysis of the two theories and traditions. Zh. Obs. Biol. 2000, 61, 133–144. [Google Scholar]
- Vernadsky, V.I. Biosfera (The Biosphere); Leningrad: Saint Petersburg, Russia, 1926. [Google Scholar]
- Edmunds, W.M.; Bogush, A.A. Geochemistry of natural waters—The legacy of V.I. Vernadsky and his students. Appl. Geochem. 2012, 27, 1871–1886. [Google Scholar] [CrossRef]
- Doel, R.E. Constituting the postwar earth sciences; the military’s influence on the environmental sciences in the USA after 1945. Soc. Stud. Sci. 2003, 33, 635–666. [Google Scholar] [CrossRef]
- Lovelock, J. Gaia: A New Look at Life on Earth; Oxford University Press: Oxford, UK, 1979. [Google Scholar]
- Oreskes, N.; Krige, J. Science and Technology in the Global Cold War; The MIT Press: Cambridge, UK, 2014. [Google Scholar]
- Beynon, W.J.G. Annals of the International Geophysical Year, 1st ed.; Pergamon Press: Oxford, UK, 1970. [Google Scholar]
- Oreskes, N. The Rejection of Continental Drift: Theory and Method in American Earth Science; Oxford University Press: Oxford, UK, 1999. [Google Scholar] [CrossRef]
- Oreskes, N.; Doel, R. The Physics and Chemistry of the Earth. In The Cambridge History of Science: Volume 5: The Modern Physical and Mathematical Sciences; Nye, M.J., Ed.; Cambridge University Press: Cambridge, UK, 2018; pp. 538–558. [Google Scholar] [CrossRef]
- Carson, R. Silent Spring; Houghton Mifflin Harcourt: Boston, MA, USA, 1962. [Google Scholar]
- Meadows, D.H.; Meadows, D.L.; Randers, J.; Behrens, W.W., III. Limits to Growth; Universe Books: New York, NY, USA, 1972. [Google Scholar]
- Boston, P.J. Gaia Hypothesis. In Encyclopedia of Ecology; Fath, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 86–90. [Google Scholar] [CrossRef]
- Lovelock, J. Letter to the Editors: Gaia as seen through the Atmosphere. Atmos. Environ. 1972, 6, 579–580. [Google Scholar] [CrossRef]
- Lovelock, J.; Margulis, L. Atmospheric homeostasis by and for the biosphere: The Gaia hypothesis. Tellus 1974, 26, 2–10. [Google Scholar] [CrossRef]
- Scherer, H.H.; Holder, L.; Herbert, B. Student Learning of Complex Earth Systems: Conceptual Frameworks of Earth Systems and Instructional Design. J. Geosci. Educ. 2017, 65, 473–489. [Google Scholar] [CrossRef]
- Kirchner, J.W. The Gaia hypothesis: Can it be tested? Rev. Geophys. 1989, 27, 223–235. [Google Scholar] [CrossRef]
- Waldrop, M.M. Washington Embraces Global Earth Sciences: For reasons of science and for reasons of strategy, the funding agencies want to study the earth as an integrated whole. Science 1986, 233, 1040–1042. [Google Scholar] [CrossRef]
- Seitzinger, S.P.; Gaffney, O.; Brasseur, G.; Broadgate, W.; Ciais, P.; Claussen, M.; Erisman, J.W.; Kiefer, T.; Lancelot, C.; Monks, P.S.; et al. International Geosphere–Biosphere Programme and Earth system science: Three decades of co-evolution. Anthropocene 2015, 12, 3–16. [Google Scholar] [CrossRef]
- Bretherton, F.P. Earth system science and remote sensing. Proc. IEEE 1985, 73, 1118–1127. [Google Scholar] [CrossRef]
- Kwa, C. Local Ecologies and Global Science: Discourses and Strategies of the International Geosphere-Biosphere Programme. Soc. Stud. Sci. 2005, 35, 923–950. [Google Scholar] [CrossRef]
- Richardson, K.; Steffen, W. Network of Cooperation Between Science Organizations. In Handbook of Science and Technology Convergence; Bainbridge, W.S., Roco, M.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 607–620. [Google Scholar] [CrossRef]
- Brundtland Commission. Our Common Future: Report of the World Commission on Environment and Development; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Rockström, J. Reflections on the past and future of whole Earth system science. Glob. Sustain. 2024, 7, e32. [Google Scholar] [CrossRef]
- Daszak, P.; Díaz, S.; Duraiappah, A.; Elmqvist, T.; Faith, D.P.; Jackson, L.E.; Krug, C.; Leadley, P.W.; Le Prestre, P.; Matsuda, H.; et al. Biodiversity and ecosystem services science for a sustainable planet: The DIVERSITAS vision for 2012–20. Curr. Opin. Environ. Sustain. 2012, 4, 101–105. [Google Scholar] [CrossRef]
- Falkenhayn, L.; Rechkemmer, A.; Young, O.R. The International Human Dimensions Programme on Global Environmental Change—Taking Stock and Moving Forward. In Coping with Global Environmental Change, Disasters and Security: Threats, Challenges, Vulnerabilities and Risks; Brauch, H.G., Oswald Spring, Ú., Mesjasz, C., Grin, J., Kameri-Mbote, P., Chourou, B., Dunay, P., Birkmann, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1221–1233. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, J.; Yang, Z.; Zhu, Y. Social-ecological system research in a changing world: State of the art and future challenges. J. Clean. Prod. 2025, 489, 144725. [Google Scholar] [CrossRef]
- Alves, D. Two Cultures, Multiple Theoretical Perspectives: The Problem of Integration of Natural and Social Sciences in Earth System Research. In International Perspectives on Global Environmental Change; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Currie, T.; Mulder, B.; Fogarty, L.; Schlüter, M.; Folke, C.; Haider, L.; Caniglia, G.; Tavoni, A.; Jansen, R.; Jørgensen, P.; et al. Integrating evolutionary theory and social–ecological systems research to address the sustainability challenges of the Anthropocene. Philos. Trans. R. Soc. B Biol. Sci. 2023, 379, 20220262. [Google Scholar] [CrossRef]
- Olsson, L.; Jerneck, A. Social fields and natural systems: Integrating knowledge about society and nature. Ecol. Soc. 2018, 23, 26. [Google Scholar] [CrossRef]
- Schellnhuber, H.J.; Wenzel, V. Earth System Analysis: Integrating Science for Sustainability; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef]
- Leemans, R.; Asrar, G.; Busalacchi, A.; Canadell, J.; Ingram, J.; Larigauderie, A.; Mooney, H.; Nobre, C.; Patwardhan, A.; Rice, M.; et al. Developing a common strategy for integrative global environmental change research and outreach: The Earth System Science Partnership (ESSP). Curr. Opin. Environ. Sustain. 2009, 1, 4–13. [Google Scholar] [CrossRef]
- Steffen, W.; Sanderson, A.; Tyson, P.; Jäger, J.; Matson, P.; Moore, B.; Oldfield, F.; Richardson, K.; Schellnhuber, H.J.; Turner, B.L.; et al. Global Change and the Earth System: A Planet Under Pressure; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Kotzé, L.; Kim, R. Earth system law: The juridical dimensions of earth system governance. Earth Syst. Gov. 2019, 1, 100003. [Google Scholar] [CrossRef]
- Biermann, F.; Betsill, M.; Burch, S.; Dryzek, J.; Gordon, C.; Gupta, A.; Gupta, J.; Inoue, C.; Kalfagianni, A.; Kanie, N.; et al. The Earth System Governance Project as a network organization: A critical assessment after ten years. Curr. Opin. Environ. Sustain. 2019, 39, 17–23. [Google Scholar] [CrossRef]
- Future Earth: Our Work. Available online: https://futureearth.org/about/our-work/ (accessed on 20 March 2025).
- Crutzen, P.J.; Stoermer, E.F. The ‘Anthropocene’ (2000). In Paul J. Crutzen and the Anthropocene: A New Epoch in Earth’s History; Benner, S., Lax, G., Crutzen, P.J., Pöschl, U., Lelieveld, J., Brauch, H.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 19–21. [Google Scholar] [CrossRef]
- Malm, A.; Hornborg, A. The geology of mankind? A critique of the Anthropocene narrative. Anthr. Rev. 2014, 1, 62–69. [Google Scholar] [CrossRef]
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2015, 2, 81–98. [Google Scholar] [CrossRef]
- Crutzen, P.J. Geology of mankind. Nature 2002, 415, 23. [Google Scholar] [CrossRef] [PubMed]
- Crutzen, P.J.; Stoermer, E.F. The Anthropocene. IGBP Glob. Chang. Newsl. 2000, 41, 17–18. [Google Scholar]
- Angus, I. When Did the Anthropocene Begin…and Why Does It Matter? Mon. Rev. 2015, 67, 1–11. [Google Scholar] [CrossRef]
- Carruthers, J. The Anthropocene. S. Afr. J. Sci. 2019, 115, 1. [Google Scholar] [CrossRef]
- Steffen, W. Introducing the Anthropocene: The human epoch. Ambio 2021, 50, 1784–1787. [Google Scholar] [CrossRef]
- Turpin, E.; Federighi, V. A new element, a new force, a new input: Antonio Stoppani’s Anthropozoic. In Making the Geologic Now; Ellsworth, E., Kruse, J., Eds.; Punctum Books: Brooklyn, NY, USA, 2012; pp. 34–41. [Google Scholar]
- Crutzen, P.J. The “Anthropocene”. J. Phys. IV 2002, 12, 1–5. [Google Scholar] [CrossRef]
- Vasconcelos, C.; Ferreira, F.; Rolo, A.; Moreira, B.; Melo, M. Improved Concept Map-Based Teaching to Promote a Holistic Earth System View. Geosciences 2020, 10, 8. [Google Scholar] [CrossRef]
- Steffen, W.; Crutzen, P.; McNeill, J. The Anthropocene: Are Humans Now Overwhelming the Great Forces of Nature? In Environment and Society: A Reader; Schlottmann, C., Jamieson, D., Jerolmack, C., Rademacher, A., Eds.; New York University Press: New York, NY, USA, 2017; pp. 12–31. [Google Scholar]
- Bobrowsky, P.; Cronin, V.; Di Capua, G.; Kieffer, S.W.; Peppoloni, S. The Emerging Field of Geoethics. In Scientific Integrity and Ethics: With Applications to the Geosciences; Gundersen, L.C., Ed.; Wiley: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Lucchesi, S. Geosciences at the service of society: The path traced by Antonio Stoppani. Ann Geophys. 2017, 60, 1–7. [Google Scholar] [CrossRef]
- Mauser, W. Global Change Research in the Anthropocene: Introductory Remarks. In Earth System Science in the Anthropocene; Ehlers, E., Krafft, T., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 3–4. [Google Scholar] [CrossRef]
- Head, M.; Steffen, W.; Fagerlind, D.; Waters, C.; Poirier, C.; Syvitski, J.; Zalasiewicz, J.; Barnosky, A.; Cearreta, A.; Jeandel, C.; et al. The Great Acceleration is real and provides a quantitative basis for the proposed Anthropocene Series/Epoch. Episodes 2021, 45, 359–376. [Google Scholar] [CrossRef]
- Donges, J.F.; Winkelmann, R.; Lucht, W.; Cornell, S.E.; Dyke, J.G.; Rockström, J.; Heitzig, J.; Schellnhuber, H.J. Closing the loop: Reconnecting human dynamics to Earth System science. Anthr. Rev. 2017, 4, 151–157. [Google Scholar] [CrossRef]
- Orion, N. Earth Systems Education and the Development of Environmental Insight. In Geoscience Education: Indoor and Outdoor; Vasconcelos, C., Ed.; Springer: Dordrecht, The Netherlands, 2016; pp. 59–72. [Google Scholar] [CrossRef]
- Reid, W.V.; Chen, D.; Goldfarb, L.; Hackmann, H.; Lee, Y.T.; Mokhele, K.; Ostrom, E.; Raivio, K.; Rockström, J.; Schellnhuber, H.J.; et al. Earth System Science for Global Sustainability: Grand Challenges. Science 2010, 330, 916–917. [Google Scholar] [CrossRef] [PubMed]
- Transforming our World: The 2030 Agenda for Sustainable Development (A/RES/70/1). Available online: https://undocs.org/en/A/RES/70/1 (accessed on 20 March 2025).
- Hoffman, M.; Barstow, D. Revolutionizing Earth System Science Education for the 21st Century: Report and Recommendations from a 50-State Analysis of Earth Science Education Standards; TERC: Cambridge, UK, 2007. [Google Scholar]
- Fang, C.; Liu, Z. Earth Vitality: An integrated framework for tracking Earth sustainability. Geogr. Sustain. 2023, 5, 96–107. [Google Scholar] [CrossRef]
- Klaassen, R.G. Interdisciplinary education: A case study. Eur. J. Eng. Educ. 2018, 43, 842–859. [Google Scholar] [CrossRef]
- Ribeiro, T.; Vasconcelos, C. Non-formal secondary students’ education to develop environmental insight. Episodes 2024, 47, 753–765. [Google Scholar] [CrossRef]
- King, C. Geoscience education: An overview. Stud. Sci. Educ. 2008, 44, 187–222. [Google Scholar] [CrossRef]
- McNaught, C.; McNeal, K.S.; Libarkin, J.C.; Ledley, T.S.; Bardar, E.; Haddad, N.; Ellins, K.; Dutta, S. The Role of Research in Online Curriculum Development: The Case of EarthLabs Climate Change and Earth System Modules. J. Geosci. Educ. 2014, 62, 560–577. [Google Scholar] [CrossRef]
- Mayer, V.J. Guest editorial: Global science literacy: An Earth system view. J. Res. Sci. Teach. 1997, 34, 101–105. [Google Scholar] [CrossRef]
- Mayer, V.J.; Fortner, R.W. (Eds.) Science Is a Study of Earth: A Resource Guide for Science Curriculum Restructure; The Ohio State University Research Foundation: Columbus, OH, USA, 1995. [Google Scholar]
- Orion, N.; Ault, C.R. Learning Earth Sciences. In Handbook of Research on Science Teaching and Learning; Abell, S., Lederman, N., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2007; pp. 653–688. [Google Scholar]
- Orion, N.; Libarkin, J.C. Earth science education. In Handbook of Research on Science Education; Routledge: Abingdon, UK, 2023; pp. 692–716. [Google Scholar]
- Shankar, R. The International Earth Science Olympiad as a tool to enhance the profile and quality of earth science education. Terrae Didat. 2019, 15, e019019. [Google Scholar] [CrossRef]
- Orion, N. Geoscience education: Changing paradigms. In Geoethics for the Future; Elsevier: Amsterdam, The Netherlands, 2024; pp. 333–338. [Google Scholar] [CrossRef]
- Soltis, N.A.; McNeal, K.S. Development and Validation of a Concept Inventory for Earth System Thinking Skills. J. STEM Educ. Res. 2022, 5, 28–52. [Google Scholar] [CrossRef]
- Soltis, N.A.; McNeal, K.S.; Schnittka, C.G. Understanding undergraduate student conceptions about biogeochemical cycles and the earth system. J. Geosci. Educ. 2021, 69, 265–280. [Google Scholar] [CrossRef]
- Ben-Zvi-Assaraf, O.; Orion, N. Four case studies, six years later: Developing system thinking skills in junior high school and sustaining them over time. J. Res. Sci. Teach. 2010, 47, 1253–1280. [Google Scholar] [CrossRef]
- Orion, N. The relevance of earth science for informed citizenship: Its potential and fulfillment. In Contextualizing Teaching to Improving Learning: The Case of Science and Geography; Leite, L., Dourado, L., Afonso, A., Morgado, S., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2007; pp. 41–56. [Google Scholar]
- Ribeiro, T.; Vasconcelos, C. What do they know about the Earth system and geoethics? Portuguese 11th-grade students and senior citizens’ conceptions. In ICERI2022 Proceedings; Chova, L.G., Martínez, A.L., Lees, J., Eds.; IATED Academy: Seville, Spain, 2022; pp. 5050–5058. [Google Scholar] [CrossRef]
- Herbert, B.E. Student Understanding of Complex Earth Systems. In Earth & Mind: How Geoscientists Think and Learn About the Earth; Manduca, C., Mogk, D., Eds.; Geological Society of America: New York, NY, USA, 2006; pp. 95–104. [Google Scholar]
- Orion, N.; Libarkin, J. Earth system science education. In Handbook of Research on Science Education; Lederman, N.G., Abell, S.K., Eds.; Routledge: London, UK, 2014; pp. 481–496. [Google Scholar]
- Vasconcelos, C. (Ed.) Geoscience Education: Indoor and Outdoor; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Orion, N. A Model for the Development and Implementation of Field Trips as an Integral Part of the Science Curriculum. Sch. Sci. Math. 1993, 93, 325–331. [Google Scholar] [CrossRef]
- Orion, N.; Ben-Shalom, R.; Ribeiro, T.; Vasconcelos, C. Geoethics in field-trips: A global geoethics perspective. In Teaching Geoethics: Resources for Higher Education; Vasconcelos, C., Schneider-Voß, S., Peppoloni, S., Eds.; U.Porto Edições: Porto, Portugal, 2020; pp. 19–29. [Google Scholar]
- Kioupi, V.; Voulvoulis, N. Education for Sustainable Development: A Systemic Framework for Connecting the SDGs to Educational Outcomes. Sustainability 2019, 11, 6104. [Google Scholar] [CrossRef]
- Vasconcelos, C.; Calheiros, C. (Eds.) Enhancing Environmental Education Through Nature-Based Solutions; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Metzger, E. Reimagining Geoscience Education for Sustainability. Earth Sci. Syst. Soc. 2024, 4, 10116. [Google Scholar] [CrossRef]
- Castellanos, P.; Queiruga-Dios, A. From environmental education to education for sustainable development in higher education: A systematic review. Int. J. Sustain. High. Educ. 2021, 23, 622–644. [Google Scholar] [CrossRef]
- Al-Naqbi, A.K.; Alshannag, Q. The status of education for sustainable development and sustainability knowledge, attitudes, and behaviors of UAE University students. Int. J. Sustain. High. Educ. 2018, 19, 566–588. [Google Scholar] [CrossRef]
- Borges, F. Knowledge, Attitudes and Behaviours Concerning Sustainable Development: A Study among Prospective Elementary Teachers. Stud. High. Educ. 2019, 9, 22–33. [Google Scholar] [CrossRef]
- Taskin-Ekici, F.; Ekici, E.; Cokadar, H. Exploring Pre-Service Elementary Teachers’ Mental Models of the Environment. Int. Electron. J. Environ. Educ. 2015, 5, 21–39. [Google Scholar] [CrossRef]
- Vasconcelos, C.; Cruz, T.; Ribeiro, T. A Natural Park Visitors’ Knowledge, Attitudes and Behaviours About Sustainable Development. In Enhancing Environmental Education Through Nature-Based Solutions; Vasconcelos, C., Calheiros, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 221–230. [Google Scholar] [CrossRef]
- DeVille, N.V.; Tomasso, L.P.; Stoddard, O.P.; Wilt, G.E.; Horton, T.H.; Wolf, K.L.; Brymer, E.; Kahn, P.H.; James, P. Time Spent in Nature Is Associated with Increased Pro-Environmental Attitudes and Behaviors. Int. J. Environ. Res. Public Health 2021, 18, 7498. [Google Scholar] [CrossRef] [PubMed]
- Tamar, M.; Wirawan, H.; Arfah, T.; Putri, R.P.S. Predicting pro-environmental behaviours: The role of environmental values, attitudes and knowledge. Manag. Environ. Qual. 2021, 32, 328–343. [Google Scholar] [CrossRef]
- VandenBos, G.R. (Ed.) APA Dictionary of Psychology; American Psychological Association: Washington, DC, USA, 2007. [Google Scholar]
- Kollmuss, A.; Agyeman, J. Mind the Gap: Why do people act environmentally and what are the barriers to pro-environmental behavior? Environ. Educ. Res. 2002, 8, 239–260. [Google Scholar] [CrossRef]
- Carmi, N.; Arnon, S.; Orion, N. Transforming Environmental Knowledge into Behavior: The Mediating Role of Environmental Emotions. J. Environ. Educ. 2015, 46, 183–201. [Google Scholar] [CrossRef]
- Jakučionytė-Skodienė, M.; Dagiliūtė, R.; Liobikienė, G. Do general pro-environmental behaviour, attitude, and knowledge contribute to energy savings and climate change mitigation in the residential sector? Energy 2020, 193, 116784. [Google Scholar] [CrossRef]
- Zsóka, Á.; Szerényi, Z.; Széchy, A.; Kocsis, T. Greening due to environmental education? Environmental knowledge, attitudes, consumer behavior and everyday pro-environmental activities of Hungarian high school and university students. J. Clean. Prod. 2013, 48, 126–138. [Google Scholar] [CrossRef]
- Bouman, T.; Steg, L.; Kiers, H.A.L. Measuring Values in Environmental Research: A Test of an Environmental Portrait Value Questionnaire. Front. Psychol. 2018, 9, 564. [Google Scholar] [CrossRef]
- Paswan, A.; Guzmán, F.; Lewin, J. Attitudinal determinants of environmentally sustainable behavior. J. Consum. Mark. 2017, 34, 414–426. [Google Scholar] [CrossRef]
- Ardoin, N.; Bowers, A.; Gaillard, E. Environmental education outcomes for conservation: A systematic review. Biol. Conserv. 2020, 241, 108224. [Google Scholar] [CrossRef]
- Koutnik, G. Aldo Leopold and the Stewardship Vocation: A Civic Education in Ecological Perception. Am. Polit. Thought 2020, 9, 235–263. [Google Scholar] [CrossRef]
- Meine, C. Land, ethics, justice, and Aldo Leopold. Socio-Ecol. Pract. Res. 2022, 4, 167–187. [Google Scholar] [CrossRef]
- Hadjichambis, A.C.; Reis, P. Introduction to the Conceptualisation of Environmental Citizenship for Twenty-First-Century Education. In Conceptualizing Environmental Citizenship for 21st Century Education; Hadjichambis, A.C., Reis, P., Paraskeva-Hadjichambi, D., Činčera, J., Boeve-de Pauw, J., Gericke, N., Knippels, M.-C., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2020; pp. 1–14. [Google Scholar] [CrossRef]
- Liu, P.; Teng, M.; Han, C. How does environmental knowledge translate into pro-environmental behaviors? The mediating role of environmental attitudes and behavioral intentions. Sci. Total Environ. 2020, 728, 138126. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, C.; Schneider-Voß, S.; Peppoloni, S. (Eds.) Teaching Geoethics: Resources for Higher Education; U.Porto Edições: Porto, Portugal, 2020. [Google Scholar] [CrossRef]
- Peppoloni, S.; Di Capua, G. Geoethics to start up a pedagogical and political path towards future sustainable societies. Sustainability 2021, 13, 10024. [Google Scholar] [CrossRef]
- Peppoloni, S.; Di Capua, G. Current Definition and Vision of Geoethics. In Geo-Societal Narratives; Bohle, M., Marone, E., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2021; pp. 17–27. [Google Scholar] [CrossRef]
- Peppoloni, S.; Bilham, N.; Di Capua, G. Contemporary Geoethics Within the Geosciences. In Exploring Geoethics: Ethical Implications, Societal Contexts, and Professional Obligations of the Geosciences; Bohle, M., Ed.; Palgrave Pivot: London, UK, 2019; pp. 25–70. [Google Scholar] [CrossRef]
- Pronk, J. The Amsterdam Declaration on Global Change. In Challenges of a Changing Earth; Global Change—The IGBP Series; Steffen, W., Jäger, J., Carson, D.J., Bradshaw, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Mogk, D.W. Geoethics and Professionalism: The Responsible Conduct of Scientists. Ann. Geophys. 2017, 60, 1–12. [Google Scholar] [CrossRef]
- Bohle, M. (Ed.) Exploring Geoethics: Ethical Implications, Societal Contexts, and Professional Obligations of the Geosciences; Palgrave Pivot: London, UK, 2019. [Google Scholar] [CrossRef]
- Di Capua, G.; Peppoloni, S.; Bobrowsky, P.T. The Cape Town statement on geoethics. Ann. Geophys. 2017, 60, 1–6. [Google Scholar] [CrossRef]
- Peppoloni, S.; Di Capua, G. Geoethics as global ethics to face grand challenges for humanity. In Geoethics: Status and Future Perspectives; Di Capua, G., Bobrowsky, P.T., Kieffer, S.W., Palinkas, C., Eds.; The Geological Society of London: London, UK, 2020; pp. 1–17. [Google Scholar] [CrossRef]
- Peppoloni, S.; Di Capua, G. Geoethics: Manifesto for an Ethics of Responsibility Towards the Earth; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Crookall, D.; Promduangsri, P. On the necessity of making geoethics a central concern in eduethics world-wide. In EGU General Assembly Conference Abstracts; EGU General Assembly: Vienna, Austria, 2017; p. 4092. [Google Scholar]
- Keane, C.M.; Asher, P. Addressing the geoethics skills gap through co-curricular approaches. Geol. Soc. Spec. Publ. 2021, 508, 47–54. [Google Scholar] [CrossRef]
- Procesi, M.; Di Capua, G.; Peppoloni, S.; Corirossi, M.; Valentinelli, A. Science and Citizen Collaboration as Good Example of Geoethics for Recovering a Natural Site in the Urban Area of Rome (Italy). Sustainability 2022, 14, 4429. [Google Scholar] [CrossRef]
- Santos, C.; Piranha, J. Earth history and evolution of life in curriculum the high school of the State of São Paulo. Terrae Didat. 2018, 14, 296–303. [Google Scholar] [CrossRef]
- LaDue, N.; Clark, S. Educator Perspectives on Earth System Science Literacy: Challenges and Priorities. J. Geosci. Educ. 2012, 60, 372–383. [Google Scholar] [CrossRef]
- Sreerekha, M. Sustainable Development—Barriers and Challenges in Integrating Sustainable Development in Education. Res. Rev. Int. J. Multidiscip. 2025, 10, 131–133. [Google Scholar] [CrossRef]
- Mongkonthan, S. Implementing the Earth System Science Curriculum in School through Research-Based Learning and Technology Enhancing 21st Century Skills. J. Phys. Conf. Ser. 2021, 1957, 012026. [Google Scholar] [CrossRef]
- Vieyra, R.; Bailey, J.; Lopez, R.; McAuliffe, C. Integration of Earth and space science contexts for teaching physics. Phys. Educ. 2020, 55, 055026. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, T.; Vasconcelos, C. Earth System Science and Education: From Foundational Thoughts to Geoethical Engagement in the Anthropocene. Geosciences 2025, 15, 224. https://doi.org/10.3390/geosciences15060224
Ribeiro T, Vasconcelos C. Earth System Science and Education: From Foundational Thoughts to Geoethical Engagement in the Anthropocene. Geosciences. 2025; 15(6):224. https://doi.org/10.3390/geosciences15060224
Chicago/Turabian StyleRibeiro, Tiago, and Clara Vasconcelos. 2025. "Earth System Science and Education: From Foundational Thoughts to Geoethical Engagement in the Anthropocene" Geosciences 15, no. 6: 224. https://doi.org/10.3390/geosciences15060224
APA StyleRibeiro, T., & Vasconcelos, C. (2025). Earth System Science and Education: From Foundational Thoughts to Geoethical Engagement in the Anthropocene. Geosciences, 15(6), 224. https://doi.org/10.3390/geosciences15060224