Established and Proposed Geosites of Visean (Carboniferous) Plants from the Moscow Basin
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Geological and Paleobotanical Features
4.1.1. Mountainous Msta
Putlino
Yogla
4.1.2. Tula Region
Georgievo
Schyokino
4.2. Properties and Comparison of Geosites
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burke, P.J.C.; Mayer, P.S.; McCoy, V.E. Mazon Creek fossils brought to you by coal, concretions and collectors. Geol. Soc. Spec. Publ. 2024, 543, 179–192. [Google Scholar] [CrossRef]
- Dinis, J.L.; Oliveira, F.P.; Rey, J.; Duarte, I.L. Finding Geological Heritage: Legal Issues on Private Property and Fieldwork. The Case of Outstanding Early Angiosperms (Barremian to Albian, Portugal). Geoheritage 2010, 2, 77–90. [Google Scholar] [CrossRef]
- Leipner, A.; Fischer, T.; Chellouche, P. The Piesberg: A NW-German site of international importance for the Pennsylvanian (Late Carboniferous). Geoconserv. Res. 2021, 4, 218–234. [Google Scholar]
- Martinetto, E.; Caleca, R. Overview of Pliocene plant macrofossil localities of the Piemonte region (NW Italy) with a partial analysis of palaeobotanical and geoconservation interest. Acta Palaeobot. 2024, 64, 75–108. [Google Scholar] [CrossRef]
- Meakin, S. Geodiversity of the lightning ridge area and implications for geotourism. Proc. Linn. Soc. N. S. W. 2011, 132, 71–82. [Google Scholar]
- Mencl, V.; Mikuláš, R.; Nedvědická, B. Late Paleozoic Petrified Trees of the Bohemian Paradise—An Insight into the Tropical Forest in Central Europe. Geoconserv. Res. 2021, 4, 235–244. [Google Scholar]
- Strullu-Derrien, C.; Spencer, A.R.T.; Cleal, C.J.; Leshyk, V.O. The 330–320 Million-Year-Old Tranchée des Malécots (Chaudefonds-sur-Layon, South of the Armorican Massif, France): A Rare Geoheritage Site Containing In Situ Palaeobotanical Remains. Geoheritage 2022, 14, 42. [Google Scholar] [CrossRef]
- Edwards, D. Climate signals in Palaeozoic land plants. Philos. Trans. R. Soc. B Biol. Sci. 1998, 353, 141–157. [Google Scholar] [CrossRef]
- Opluštil, S.; Cleal, C.J.; Wang, J.; Wan, M. Carboniferous macrofloral biostratigraphy: An overview. Geol. Soc. Spec. Publ. 2022, 512, 813–863. [Google Scholar] [CrossRef]
- Roberts, R. Brymbo Fossil Forest: A Sustainable Management of Natural Resources (SMNR) Approach to Geoconservation and Geotourism. Geoheritage 2019, 11, 1325–1334. [Google Scholar] [CrossRef]
- Thomas, B.A. A Carboniferous Fossil Forest in North Wales: Problems and Potentials Associated with Developing and Conserving a ‘Soft-Rock’ Site. Geoheritage 2016, 8, 401–406. [Google Scholar] [CrossRef]
- Wilson, J.P.; Montañez, I.P.; White, J.D.; DiMichele, W.A.; McElwain, J.C.; Poulsen, C.J.; Hren, M.T. Dynamic Carboniferous tropical forests: New views of plant function and potential for physiological forcing of climate. New Phytol. 2017, 215, 1333–1353. [Google Scholar] [CrossRef] [PubMed]
- Gradstein, F.M.; Ogg, J.G.; Schmitz, M.D.; Ogg, G.M. (Eds.) Geologic Time Scale 2020; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- International Commission on Stratigraphy. Available online: https://stratigraphy.org/ (accessed on 5 March 2025).
- Cascales-Miñana, B. Apparent changes in the Ordovician-Mississippian plant diversity. Rev. Palaeobot. Palynol. 2016, 227, 19–27. [Google Scholar] [CrossRef]
- Pfefferkorn, H.W.; Alleman, V.; Iannuzzi, R. A greenhouse interval between icehouse times: Climate change, long-distance plant dispersal, and plate motion in the Mississippian (late Visean-earliest Serpukhovian) of Gondwana. Gondwana Res. 2014, 25, 1338–1347. [Google Scholar] [CrossRef]
- Scott, A.C. The anatomically preserved Early Carboniferous flora of Pettycur, Fife, Scotland. Proc. Geol. Assoc. 2024, 135, 389–415. [Google Scholar] [CrossRef]
- Kolodyazhny, S.Y.; Poleshchuk, A.V.; Zykov, D.S. Latent Tectonics of the Central Russian Deformation Belt of the East European Platform. Geotectonics 2021, 55, 473–501. [Google Scholar] [CrossRef]
- Nikishin, A.M.; Ziegler, P.A.; Stephenson, R.A.; Cloetingh, S.A.P.L.; Furne, A.V.; Fokin, P.A.; Ershov, A.V.; Bolotov, S.N.; Korotaev, M.N.; Alekseev, A.S.; et al. Late Precambrian to Triassic history of the East European Craton: Dynamics of sedimentary basin evolution. Tectonophysics 1996, 268, 23–63. [Google Scholar] [CrossRef]
- Cocks, L.R.M.; Torsvik, T.H. Baltica from the late Precambrian to mid-Palaeozoic times: The gain and loss of a terrane’s identity. Earth-Sci. Rev. 2005, 72, 39–66. [Google Scholar] [CrossRef]
- Golonka, J.; Porębski, S.J.; Barmuta, J.; Papiernik, B.; Bebenek, S.; Barmuta, M.; Botor, D.; Pietsch, K.; Słomka, T. Palaeozoic palaeogeography of the East European Craton (Poland) in the framework of global plate tectonics. Ann. Soc. Geol. Pol. 2019, 89, 381–403. [Google Scholar] [CrossRef]
- Kalvoda, J.; Bábek, O. The Margins of Laurussia in Central and Southeast Europe and Southwest Asia. Gondwana Res. 2010, 17, 526–545. [Google Scholar] [CrossRef]
- Vai, G.B. Development of the palaeogeography of Pangaea from Late Carboniferous to Early Permian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 196, 125–155. [Google Scholar] [CrossRef]
- Hasterok, D.; Halpin, J.A.; Collins, A.S.; Hand, M.; Kreemer, C.; Gard, M.G.; Glorie, S. New Maps of Global Geological Provinces and Tectonic Plates. Earth-Sci. Rev. 2022, 231, 104069. [Google Scholar] [CrossRef]
- Alekseev, A.S.; Kononova, L.I.; Nikishin, A.M. The Devonian and Carboniferous of the Moscow Syneclise (Russian Platform): Stratigraphy and sea-level changes. Tectonophysics 1996, 268, 149–168. [Google Scholar] [CrossRef]
- Iosifidi, A.G.; Mikhailova, V.A.; Popov, V.V.; Sergienko, E.S.; Danilova, A.V.; Otmas, N.M. The Carboniferous of the Moscow syneclise: Paleomagnetic data. Izv. Phys. Solid Earth 2018, 54, 163–177. [Google Scholar] [CrossRef]
- Makhlina, M.K. Cyclic stratigraphy, facies and fauna of the Lower Carboniferous (Dinantian) of the Moscow Syneclise and Voronezh Anteclise. Geol. Soc. Spec. Publ. 1997, 107, 359–364. [Google Scholar] [CrossRef]
- Alekseeva, T.V.; Alekseev, A.O.; Gubin, S.V.; Kabanov, P.B.; Alekseeva, V.A. Palaeoenvironments of the Middle-Late Mississippian Moscow Basin (Russia) from multiproxy study of palaeosols and palaeokarsts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 450, 1–16. [Google Scholar] [CrossRef]
- Mosseichik, Y.V.; Ruban, D.A. Viséan flora from the Moscow Coal Basin (Baltic Plate; European Russia): Local evolution in the context of global tendencies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 292, 168–183. [Google Scholar] [CrossRef]
- Karpunin, A.M.; Mamonov, S.V.; Mironenko, O.A.; Sokolov, A.R. Geological Monuments of Nature of Russia; Lorien: Moscow, Russia, 1998; 200p. (In Russian) [Google Scholar]
- Mosseichik, Y.V.; Privalova, M.V.; Ignatiev, I.A.; Kuralenko, N.P.; Smirnova, E.V.; Muchnik, E.E.; Evsyunin, A.A.; Lakomov, A.F. A unique geological-paleobotanical monument of nature in the Tula Region (Russia). Lethaea Ross. 2024, 27, 1–13. (In Russian) [Google Scholar]
- Yablokov, V.S. A History of Studies of Carboniferous Deposits and Coals of the Moscow Basin (1722–1966); Nauka: Moscow, Russia, 1967; 260p. (In Russian) [Google Scholar]
- Makhlina, M.K.; Vdovenko, M.V.; Alekseev, A.S.; Byvsheva, T.V.; Donakova, L.M.; Zhulitova, V.E.; Kononova, L.I.; Umnova, N.I.; Shik, E.M. Lower Carboniferous of the Moscow Syneclise and the Voronezh Anteclise; Nauka: Moscow, Russia, 1993; 222p. (In Russian) [Google Scholar]
- Osipova, A.I.; Bel’skaya, T.N.; Gekker, R.F. A study of ecology and development of the main groups of benthos in Carboniferous seas of the Russian Platform. Treatise Paleontol. Inst. Acad. Sci. USSR 1983, 194, 98–119. [Google Scholar]
- Aleksseev, A.S.; Nikolaeva, S.V.; Goreva, N.V.; Donova, N.B.; Kossovaya, O.L.; Kulagina, E.I.; Kucheva, N.A.; Kurilenko, A.V.; Kutygin, R.V.; Popeko, L.I.; et al. Russian regional Carboniferous stratigraphy. Geol. Soc. Lond. Spec. Publ. 2022, 512, 49–117. [Google Scholar] [CrossRef]
- Decision of the Interdepartmental Regional Stratigraphical Meeting on the Middle and Upper Paleozoic of the Russian Platform; Leningrad, Russia, 1990; 95p. (In Russian)
- Stratigraphical Dictionary of USSR. New Stratigraphical Subdivisions of the Paleozoic of USSR; Nedra: Leningrad, Russia, 1991; 555p. (In Russian) [Google Scholar]
- Porshnyakov, S.N.; Porshnyakov, G.S. Geological Excursion in the Vicinity of Borovichi Town (a Guide to Excursion Guiders); GEOS: Moscow, Russia, 2021; 128p. (In Russian) [Google Scholar]
- Brilha, J. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Arcentales-Rosado, M.; Jaya-Montalvo, M.; Briones-Bitar, J.; Duenas-Tovar, J.; Espinel, R.L.; Mata-Perelló, J.; Morante-Carballo, F. Assessment of geosites and geotouristic routes proposal for geoheritage promotion on volcanic islands. Geomorphology 2025, 472, 109606. [Google Scholar] [CrossRef]
- Gutak, J.M.; Ruban, D.A. Neverovsky Palaeoreef and Associated Deep-Marine Facies: High-Value Late Devonian Geoheritage from the Rudny Altai. Heritage 2024, 7, 2385–2398. [Google Scholar] [CrossRef]
- Kubalíková, L. Risk assessment on dynamic geomorphosites: A case study of selected abandoned pits in South-Moravian Region (Czech Republic). Geomorphology 2024, 458, 109249. [Google Scholar] [CrossRef]
- Kudla, M.; Javorská, M.; Vašková, J.; Čech, V.; Tometzová, D. Inventory and Evaluation of Geosites: Case Studies of the Slovak Karst as a Potential Geopark in Slovakia. Sustainability 2024, 16, 7783. [Google Scholar] [CrossRef]
- Pasquaré Mariotto, F.; Drymoni, K.; Bonali, F.L.; Tibaldi, A.; Corti, N.; Oppizzi, P. Geosite Assessment and Communication: A Review. Resources 2023, 12, 29. [Google Scholar] [CrossRef]
- Szepesi, J.; Ésik, Z.; Soós, I.; Novak, T.; Suto, L.; Rozsa, P.; Lukács, R.; Harangi, S. Methodological review of geosite inventory and assessment work in the light of protection, sustainability and the development of geotourism. Foldt. Kozlony 2018, 148, 143–160. [Google Scholar]
- Yaseen, M.; Ahmad, J.; Anjum, M.N.; Naseem, A.A.; Shah, S.T. Characterization and Quantification of Outcrops Exposed Along the Karakoram Highway (KKH) and Part of Central Karakoram National Park (CKNP), North Pakistan; Implications for Geoheritage Assessments and Geosite Recognition. Geoheritage 2024, 16, 107. [Google Scholar] [CrossRef]
- Mosseichik, Y.V. Early Carboniferous Flora of the Moscow Basin; GEOS: Moscow, Russia, 2009, 2014; Volume 1,2. [Google Scholar]
- Kirillova, K. A review of aesthetics research in tourism: Launching the Annals of Tourism Research Curated Collection on beauty and aesthetics in tourism. Ann. Tour. Res. 2023, 100, 103553. [Google Scholar] [CrossRef]
- Kirillova, K.; Fu, X.; Lehto, X.; Cai, L. What makes a destination beautiful? Dimensions of tourist aesthetic judgment. Tour. Manag. 2014, 42, 282–293. [Google Scholar] [CrossRef]
- Mosseichik, Y.V.; Gomankov, A.V.; Ignatiev, I.A. A Paleobotanical Excursion Guide to Lower Carboniferous Sections of the Northwestern Wing of the Moscow Basin (Vicinities of Borovichi Town, Novgorod Region); GEOS: Moscow, Russia, 2021; 38p. (In Russian) [Google Scholar]
- Mosseichik, Y.V. New data on lepidodendroid lycopods from the Lower Carboniferous of the Moscow Basin. Lethaea Ross. 2023, 26, 1–17. (In Russian) [Google Scholar]
- D’Antonio, M.P.; Breasley, C.M.; Pfefferkorn, H.W.; Wang, J.; Boyce, C.K. Stigmaria: On the substrate before in the substrate. Palaeoworld 2024, 33, 925–936. [Google Scholar] [CrossRef]
- Dimichele, W.A.; Bateman, R.M.; Rothwell, G.W.; Duijnstee, I.A.P.; Elrick, S.D.; Looy, C.V. Stigmaria: A review of the anatomy, development, and functional morphology of the rootstock of the arboreous lycopsids. Int. J. Plant Sci. 2022, 183, 493–534. [Google Scholar] [CrossRef]
- Mosseichik, Y.V.; Ignatiev, I.A. Visean lycopods from the Moscow Basin: New species and suprageneric affinity. Lethaea Ross. 2017, 15, 1–19. [Google Scholar]
- Ioannidou, D.; Sonnemann, G.; Suh, S. Do we have enough natural sand for low-carbon infrastructure? J. Ind. Ecol. 2020, 24, 1004–1015. [Google Scholar] [CrossRef]
- Lamb, V. Constructing the global sand crisis: Four reasons to interrogate crisis and scarcity in narrating extraction. Extr. Ind. Soc. 2023, 15, 101282. [Google Scholar] [CrossRef]
- Torres, A.; Simoni, M.U.; Keiding, J.K.; Muller, D.B.; zu Ermgassen, S.O.S.E.; Liu, J.; Jaeger, J.A.G.; Winter, M.; Lambin, E.F. Sustainability of the global sand system in the Anthropocene. One Earth 2021, 4, 639–650. [Google Scholar] [CrossRef]
- González, F.; Moreno, C.; Playford, G. The Gondwana-Laurussia convergence process: Evidence from the Middle Mississippian (Viséan) palynostratigraphic record. Geol. Mag. 2011, 148, 317–328. [Google Scholar] [CrossRef]
- Scotese, C.R. An Atlas of Phanerozoic Paleogeographic Maps: The Seas Come In and the Seas Go Out. Annu. Rev. Earth Planet. Sci. 2021, 49, 679–728. [Google Scholar] [CrossRef]
- Xu, Y.; Han, B.-F.; Liao, W.; Li, A. The Serpukhovian–Bashkirian Amalgamation of Laurussia and the Siberian Continent and Implications for Assembly of Pangea. Tectonics 2022, 41, e2022TC007218. [Google Scholar] [CrossRef]
- Frank, T.D.; Birgenheier, L.P.; Montañez, L.P.; Fielding, C.R.; Rygel, M.C. Late Paleozoic climate dynamics revealed by comparison of ice-proximal stratigraphic and ice-distal isotopic records. Spec. Pap. Geol. Soc. Am. 2008, 441, 331–342. [Google Scholar]
- Powell, M.G.; Schöne, B.R.; Jacob, D.E. Tropical marine climate during the late Paleozoic ice age using trace element analyses of brachiopods. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 280, 143–149. [Google Scholar] [CrossRef]
- Grossman, E.L.; Joachimski, M.M. Ocean temperatures through the Phanerozoic reassessed. Sci. Rep. 2022, 12, 8938. [Google Scholar] [CrossRef]
- Vinogradov, A.P. (Ed.) Atlas of lithological-palaeogeographical maps of the Russian Platform and its geosynclinals vicinity. In Scale 1:5000000. Part 1. Late Precambrian and Paleozoic; MinGeo SSSR: Moscow, Russia, 1961. (In Russian) [Google Scholar]
- Stepanova, A.A.; Dmitruk, N.G. The current state of tourist and recreational activities in rural areas of the Novgorod region. IOP Conf. Ser. Earth Environ. Sci. 2020, 613, 012145. [Google Scholar] [CrossRef]
- Tankieva, T.A.; Ponomareva, M.V. A study of consumers and the development problems of industrial tourism in the old industrial region (on the example of the Tula region). J. New Econ. Assoc. 2021, 49, 165–183. [Google Scholar] [CrossRef]
- Cengiz, C.; Şahin, Ş.; Cengiz, B.; Başkır, M.B.; Dağlı, P.K. Evaluation of the visitor understanding of coastal geotourism and geoheritage potential based on sustainable regional development in western black sea region, Turkey. Sustainability 2021, 13, 11812. [Google Scholar] [CrossRef]
- Mastika, I.K.; Harsono, S.S.; Khristianto, W.; Oktawirani, P.; Hutama, P.S. Creative strategies of local resources in managing geotourism in the Ijen Geopark Bondowoso, East Java, Indonesia. Int. J. Geoherit. Parks 2023, 11, 149–168. [Google Scholar] [CrossRef]
- Górska-Zabielska, M. New Geoeducational Facilities in Central Mazovia (Poland) Disseminate Knowledge about Local Geoheritage. Sustainability 2023, 15, 16115. [Google Scholar] [CrossRef]
Properties | Grades | Notes |
---|---|---|
Geological (also paleontological) content | Rocks, minerals, fossils, etc. | Pure geological features represented at geosite |
Geoheritage types | Stratigraphical, paleontological, geomorphological, etc. | General classes of geological features represented at geosite |
Position | Isolated or not; urban or rural | Isolation relative to other geoheritage features |
Physical view | Single natural outcrop, group of natural outcrops, road cutting, quarry, etc. | |
Size | Diminutive (<1 m), very small (1–10 m), small (10–100 m), 100–1000 m (medium), 1–10 km (large), very large (10–100 km), huge (>100 km) | Approximate length/height or diameter |
Geometry | Point, linear, areal; continuous, dispersed | Mode of occurrence of geological features within geosite |
Dynamics | Static or dynamic | |
Color | Bright or low-intense | Colors of geological features and landscape |
Rarity (spatial) | Global, national, regional, or local | |
Accessibility | Easy, moderate, limited | External access to geosite and easiness to move within geosite |
Vulnerability | Real, potential, absent | Risks from natural forces and/or anthropogenic activities |
Complexity | Professional knowledge required or not for the understanding of geological features | |
Research importance | Past and/or potential | Past importance means the already carried out research projects with publications and potential importance means the presence of topics and unsolved questions for future investigations |
Educational importance | Basic or advanced geological learning | Suitability to university students and schoolchildren; terms “basic” and “advanced” refer to objects figuring in introductory and specialized courses/topics, respectively |
Touristic importance | Interesting to experts, geotourists, or all tourists | |
Landscape scenery | Present or absent | See [48,49] for diversity of aesthetic attributes |
Status and protection | Present, planned, or proposed | Designation of a protected natural/cultural area or object depends on laws and traditions of particular countries; note that protection status can be assigned to either geosites or larger areas, and it can be either related or not to geology |
Properties | Geosites | |||
---|---|---|---|---|
Putlino | Yogla | Georgievo | Schyokino | |
Geoheritage types | Paleontological, sedimentary, paleogeographical | Paleontological, sedimentary, paleogeographical | Paleontological, sedimentary, paleogeographical, economic | Paleontological, sedimentary, paleogeographical, economic |
Position | Not isolated, rural | Not isolated, rural | Isolated, rural | Isolated, rural |
Physical view | Group of natural outcrops | Single outcrop | Single quarry | Single quarry |
Size | Small | Very small | Small | Small |
Geometry | Point | Point | Point | Point |
Dynamics | Static (with dynamic component) | Static (with dynamic component) | Static | Static |
Color | Bright | Bright | Bright | Bright |
Rarity | Regional | Global | National | Regional |
Accessibility | Easy | Easy | Easy | Easy |
Vulnerability | Potential | Potential | Potential | Potential |
Complexity | Professional knowledge required | Professional knowledge required | Professional knowledge required | Professional knowledge required |
Research importance | Past, potential | Past, potential | Past, potential | Past, potential |
Educational importance | Advanced geological learning | Advanced geological learning | Basic geological learning | Basic geological learning |
Touristic importance | Interesting to experts | Interesting to experts | Interesting to geotourists | Interesting to experts |
Landscape scenery | Present | Present | Absent | Absent |
Status and protection | Proposed geosite, planned natural park (protected area), established ecological trail | Proposed geosite, planned natural park (protected area), established ecological trail | Geosite established officially as monument of nature (protected area) | Proposed geosite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosseichik, Y.V.; Ignatiev, I.A.; Yashalova, N.N.; Ruban, D.A. Established and Proposed Geosites of Visean (Carboniferous) Plants from the Moscow Basin. Geosciences 2025, 15, 159. https://doi.org/10.3390/geosciences15050159
Mosseichik YV, Ignatiev IA, Yashalova NN, Ruban DA. Established and Proposed Geosites of Visean (Carboniferous) Plants from the Moscow Basin. Geosciences. 2025; 15(5):159. https://doi.org/10.3390/geosciences15050159
Chicago/Turabian StyleMosseichik, Yulia V., Igor A. Ignatiev, Natalia N. Yashalova, and Dmitry A. Ruban. 2025. "Established and Proposed Geosites of Visean (Carboniferous) Plants from the Moscow Basin" Geosciences 15, no. 5: 159. https://doi.org/10.3390/geosciences15050159
APA StyleMosseichik, Y. V., Ignatiev, I. A., Yashalova, N. N., & Ruban, D. A. (2025). Established and Proposed Geosites of Visean (Carboniferous) Plants from the Moscow Basin. Geosciences, 15(5), 159. https://doi.org/10.3390/geosciences15050159