Velocity Model Construction and Time-to-Depth Conversion of a Vintage Seismic Reflection Profile for Improving the Constraints on a Subsurface Geological Model: An Example from the Sicily Channel (Central Mediterranean Sea)
Abstract
1. Introduction
2. Brief Geological Framework of the Study Area
3. Materials
4. Methods
5. Results and Discussion
5.1. Velocity Analysis from Velocity Models for Uncertain Portion
5.2. Time-to-Depth Conversion for Stratigraphic and Structural Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diviacco, P.; Wardell, N.; Forlin, E.; Sauli, C.; Burca, M.; Busato, A.; Centonze, J.; Pelos, C. Data rescue to extend the value of vintage seismic data: The OGS-SNAP experience. GeoResJ 2015, 6, 44–52. [Google Scholar] [CrossRef]
- Sopher, D. Converting scanned images of seismic reflection data into SEG-Y format. Earth Sci. Inform. 2018, 11, 241. [Google Scholar] [CrossRef]
- Cicala, M.; Chiarella, D.; De Giosa, F.; Festa, V. Conventional data display and implications for the interpretation of seismic profiles: A discussion on the ViDEPI seismic database offshore Apulia (southern Italy). Arab. J. Geosci. 2022, 15, 395. [Google Scholar] [CrossRef]
- Cicala, M.; De Giosa, F.; Piscitelli, A.; Scicchitano, G.; Festa, V. Conversion of vintage seismic reflection profiles of the ViDEPI dataset crossing the Gondola Line seismogenic fault (offshore Apulia, Adriatic Sea, Southern Italy) to SEG-Y. Data Brief 2024, 55, 110705. [Google Scholar] [CrossRef]
- Diviacco, P.; Carlino, F.M.; Busato, A. Enhancing the value of public vintage seismic data in the Italian offshore. Geosci. Data J. 2019, 6, 6–15. [Google Scholar] [CrossRef]
- Berra, F.; Stucchi, E.M.; Moretti, S. New information from “old” seismic lines: An updated seismic dataset for the northern Apennines. J. Geophys. Eng. 2019, 16, 215–225. [Google Scholar]
- Maffucci, R.; Petracchini, L.; Livani, M.; Billi, A.; Carminati, E.; Cuffaro, M.; Petricca, P.; Doglioni, C. Seismic reflection profile dataset in a 3D environment of the northern Adriatic area. Geophys. J. Int. 2020, 221, 564–580. [Google Scholar]
- Buttinelli, M.; Maesano, F.E.; Sopher, D.; Feriozzi, F.; Maraio, S.; Mazzarini, F.; Improta, L.; Vallone, R.; Villani, F.; Basili, R. Revitalizing vintage seismic reflection profiles by converting into SEG-Y format: Case studies from publicly available data on the Italian territory. Ann. Geophys. 2022, 65, DM538. [Google Scholar] [CrossRef]
- Etris, E.; Crabtree, N.J.; Dewar, J. True depth conversion: More than a pretty picture. CSEG Rec. 2001, 26, 11–22. [Google Scholar]
- Thore, P.; Shtuka, A.; Lecour, M.; Ait-Ettajer, T.; Cognot, R. Structural uncertainties: Determination, management, and applications. Geophysics 2002, 67, 840–852. [Google Scholar] [CrossRef]
- Pon, S.; Lines, L.R. Sensitivity analysis of seismic depth migrations. Geophysics 2005, 70, S39–S42. [Google Scholar] [CrossRef]
- Usman, M.; Siddiqui, N.A.; Garzanti, E.; Jamil, M.; Imran, Q.S.; Ahmed, L. 3-D seismic interpretation of stratigraphic and structural features in the Upper Jurassic to Lower Cretaceous sequence of the Gullfaks Field, Norwegian North Sea: A case study of reservoir development. Energy Geosci. 2021, 2, 287–297. [Google Scholar] [CrossRef]
- Usman, M.; Siddiqui, N.A.; Zhang, S.Q.; Mathew, M.J.; Zhang, Y.X.; Jamil, M.; Liu, X.L.; Ahmed, N. 3D geo-cellular static virtual outcrop model and its implications for reservoir petro-physical characteristics and heterogeneities. Petrol. Sci. 2021, 18, 1357–1369. [Google Scholar] [CrossRef]
- Sheriff, R.E.; Geldart, L.P. Exploration Seismology, 2nd ed.; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Yilmaz, Ö. Seismic Data Analysis; Society of Exploration Geophysicists: Tulsa, OK, USA, 2001; p. 2065. [Google Scholar] [CrossRef]
- Bêche, M.; Kirkwood, D.; Jardin, A.; Desaulniers, E.; Saucier, D.; Roure, F. 2D Depth Seismic Imaging in the Gaspé Belt, a Structurally Complex Fold and Thrust Belt in the Northern Appalachians, Québec, Canada. In Thrust Belts and Foreland Basins; Springer: Berlin/Heidelberg, Germany, 2007; pp. 75–90. [Google Scholar]
- Totake, Y.; Butler, R.W.; Bond, C.E. Structural validation as an input into seismic depth conversion to decrease assigned structural uncertainty. J. Struct. Geol. 2017, 95, 32–47. [Google Scholar] [CrossRef]
- Miles, P.R.; Schaming, M.; Lovera, R. Resurrecting vintage paper seismic records. Mar. Geophys. Res. 2007, 28, 319–329. [Google Scholar] [CrossRef]
- Conti, A.; Maffucci, R.; Bigi, S. The use of public vintage seismic reflection profiles: An example of data rescue from the eastern Tyrrhenian margin (Italy). In Interpreting Subsurface Seismic Data; Bell, R., Iacopini, D., Vardy, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 127–156. [Google Scholar] [CrossRef]
- Maiorana, M.; Sulli, A.; Marelli, M.; Agate, M. Geological characterization of a potential CO2 storage play in the Gela offshore (southern Sicily) and the role of a gravitational slide. Mar. Petrol. Geol. 2024, 170, 107127. [Google Scholar] [CrossRef]
- Minissale, A.; Donato, A.; Procesi, M.; Pizzino, L.; Giammanco, S. Systematic review of geochemical data from thermal springs, gas vents and fumaroles of Southern Italy for geothermal favourability mapping. Earth Sci. Rev. 2019, 188, 514–535. [Google Scholar]
- Civile, D.; Baradello, L.; Accaino, F.; Zecchin, M.; Lodolo, E.; Ferrante, G.M.; Markezic, N.; Volpi, V.; Burca, M. Fluid-Related Features in the Offshore Sector of the Sciacca Geothermal Field (SW Sicily): The Role of the Lithospheric Sciacca Fault System. Geosciences 2023, 13, 231. [Google Scholar] [CrossRef]
- Scarascia, S.; LOZEJ, A.T.; Cassinis, R. Crustal structures of the Ligurian, Tyrrhenian and Ionian seas and adjacent onshore areas interpreted from wide-angle seismic profiles. Boll. Geofis. Teor. Appl. 1994, 36, 5–19. [Google Scholar]
- Cassinis, R.; Scarascia, S.; Lozej, A. The deep crustal structure of Italy and surrounding areas from seismic refraction data; a new synthesis. Boll. Soc. Geol. Ital. 2003, 122, 365–376. [Google Scholar]
- Torelli, L.; Zitellini, N.; Argnani, A.; Brancolini, G.; Cillia, C.; Peis, D.; Tricart, P. Sezione geologica crostale dall’avampaese pelagiano al bacino di retroarco tirrenico (Mediterraneo centrale). Mem. Soc. Geol. Ital. 1991, 4, 385–399. [Google Scholar]
- Torelli, L.; Grasso, M.; Mazzoldi, G.; Peis, D.; Gori, D. Cretaceous to Neogene structural evolution of the Lampedusa Shelf (Pelagian Sea, Central Mediterranean). Terra Nova 1995, 7, 200–212. [Google Scholar] [CrossRef]
- Argnani, A.; Torelli, L. Pelagian Shelf and its graben system (Italy/Tunisia). Mem. Mus. Natn. Hist. Nat. 2001, 186, 529–544. [Google Scholar]
- Zarudzki, E.F.K. The Strait of Sicily. A Geophysical Study. Rev. Geograph. Phys. Geo. Dynam. 1972, 14, 11–28. [Google Scholar]
- Winnock, E. Structure du Bloc Pelagien. In Sedimentary Basins of Mediterranean Margins; Wezel, I.F.C., Ed.; Tecnoprint: Bologna, Italy, 1981; pp. 445–464. [Google Scholar]
- Finetti, I.R. Geophysical study of the Sicily Channel Rift Zone. Boll. Geofis. Teor. Appl. 1984, 26, 3–28. [Google Scholar]
- Jongsma, D.; Van Hinte, J.E.; Woodside, J.M. Geologic structure and neotectonics of the North African continental margin south of Sicily. Mar. Petrol. Geol. 1985, 2, 156–179. [Google Scholar]
- Reuther, C.D.; Eisbacher, G.H. Pantelleria rift-crustal extension in a convergent intraplate setting. Geol. Rundsch. 1985, 74, 585–597. [Google Scholar] [CrossRef]
- Calanchi, N.; Colantoni, P.; Rossi, P.L.; Saitta, M.; Serri, G. The Strait of Sicily continental rift system: Physiography and petrochemistry of the submarine volcanic centres. Mar. Geol. 1989, 87, 55–83. [Google Scholar] [CrossRef]
- Dart, C.J.; Bosence, W.J.; McClay, K.R. Stratigraphy and structure of the Maltese graben system. J. Geol. Soc. Lond. 1993, 150, 1153–1166. [Google Scholar] [CrossRef]
- Civile, D.; Lodolo, E.; Accettella, D.; Geletti, R.; Ben-Avraham, Z.; Deponte, M.; Facchin, L.; Ramella, R.; Romeo, R. The Pantelleria Graben (Sicily Channel, Central Mediterranean): An example of intraplate “passive” rift. Tectonophysics 2010, 490, 173–183. [Google Scholar] [CrossRef]
- Civile, D.; Brancolini, G.; Lodolo, E.; Forlin, E.; Accaino, F.; Zecchin, M.; Brancatelli, G. Morphostructural Setting and Tectonic Evolution of the Central Part of the Sicilian Channel (Central Mediterranean). Lithosphere 2021, 2021, 7866771. [Google Scholar] [CrossRef]
- Maiorana, M.; Artoni, L.; Le Breton, E.; Sulli, A.; Chizzini, N.; Torelli, L. Is the Sicily Channel a simple Rifting Zone? New evidence from seismic analysis with geodynamic implications. Tectonophysics 2023, 864, 230019. [Google Scholar] [CrossRef]
- Uyeda, S. Subduction zones: An introduction to comparative subductology. Tectonophysics 1982, 81, 3–4. [Google Scholar] [CrossRef]
- Gueguen, E.; Doglioni, C.; Fernandez, M. On the post-25 Ma geodynamic evolution of the western Mediterranean. Tectonophysics 1998, 298, 259–269. [Google Scholar] [CrossRef]
- Faccenna, C.; Funiciello, F.; Giardini, D.; Lucente, P. Episodic back-arc extension during restricted mantle convection in the central Mediterranean. Earth Planet. Sci. Lett. 2001, 187, 105–116. [Google Scholar] [CrossRef]
- Faccenna, C.; Becker, T.W.; Lucente, F.P.; Jolivet, L.; Rossetti, F. History of subduction and back-arc extension in the central Mediterranean. Geophys. J. Int. 2001, 145, 809–820. [Google Scholar] [CrossRef]
- Carminati, E.; Lustrino, M.; Doglioni, C. Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints. Tectonophysics 2012, 579, 173–192. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.J.; Wissers, R.L.M.; Spakman, W. Origin and consequences of western Mediterranean subduction, rollback and slab segmentation. Tectonics 2014, 33, 347–595. [Google Scholar] [CrossRef]
- Grasso, M.; Torelli, L. Cretaceous-Paleogene sedimentation patterns and structural evolution of the Tunisian shelf, offshore the Pelagian Islands (Central Mediterranean). Tectonophysics 1999, 315, 235–250. [Google Scholar] [CrossRef]
- Argnani, A. The Strait of Sicily rift zone: Foreland deformation related to the evolution of a back-arc basin. J. Geodyn. 1990, 12, 311–331. [Google Scholar] [CrossRef]
- Finetti, I.R.; Morelli, C. Geophysical exploration of the Mediterranean Sea. Bull. Theor. Appl. Geophys. 1973, 15, 263–340. [Google Scholar]
- Finetti, I.R.; Del Ben, A. Crustal tectono-stratigraphic setting of the Pelagian foreland from new CROP seismic data. In CROP PROJECT: Deep Seismic Exploration of the Central Mediterranean and Italy; Finetti, I.R., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2005; pp. 581–595. [Google Scholar]
- Colantoni, P. Note di geologia marina sul Canale di Sicilia. Giorn. Geol. 1975, 40, 181–207. [Google Scholar]
- Rotolo, S.G.; Castorina, F.; Cellula, D.; Pompilio, M. Petrology and geochemistry of submarine volcanism in the Sicily Channel. J. Geol. 2006, 114, 355–365. [Google Scholar] [CrossRef]
- Argnani, A.; Cornini, S.; Torelli, L.; Zitellini, N. Diachronous foredeep-system in the Neogene-Quaternary of the Strait of Sicily. Mem. Soc. Geol. Ital. 1988, 38, 407–417. [Google Scholar]
- Civile, D.; Lodolo, E.; Alp, H.; Ben-Avraham, Z.; Cova, A.; Baradello, L.; Accettella, D.; Burca, M.; Centonze, J. Seismic stratigraphy and structural setting of the Adventure Plateau (Sicily Channel). Mar. Geophys. Res. 2014, 35, 37–53. [Google Scholar] [CrossRef]
- Calò, M.; Parisi, L. Evidences of a lithospheric fault zone in the Sicily Channel continental rift (southern Italy) from instrumental seismicity data. Geophys. J. Int. 2014, 199, 219–225. [Google Scholar] [CrossRef]
- Ghisetti, F.C.; Gorman, A.R.; Grasso, M.; Vezzani, L. Imprint of foreland structure on the deformation of a thrust sheet: The Plio-Pleistocene Gela Nappe (southern Sicily, Italy). Tectonics 2009, 28, TC4015. [Google Scholar] [CrossRef]
- Lodolo, E.; Civile, D.; Zanolla, C. Magnetic signature of the Sicily Channel volcanism. Mar. Geophys. Res. 2012, 33, 33–44. [Google Scholar] [CrossRef]
- Micallef, A.; Geldmacher, J.; Watt, S.F.; Ferrante, G.M.; Ford, J.; Lodolo, E.; Civile, D.; Hodgetts, A.G.; Felgendreher, M.; Licari, J.G.; et al. Submarine volcanism in the Sicilian Channel revisited. Mar. Geol. 2024, 474, 107342. [Google Scholar]
- Tesauro, M.; Kaban, M.K.; Cloetingh, S.A.P.L. EuCRUST-07: A new reference model for the European crust. Geophys. Res. Lett. 2008, 35, L05313. [Google Scholar] [CrossRef]
- Milia, A.; Iannace, P.; Tesauro, M.; Torrente, M.M. Marsili and Cefalù basins: The evolution of a rift system in the southern Tyrrhenian Sea (Central Mediterranean). Glob. Planet. Change 2018, 171, 225–237. [Google Scholar] [CrossRef]
- Grasso, M.; Pezzino, A.; Reuther, C.D.; Lanza, R.; Miletto, M. Late Cretaceous and Recent tectonic stress orientations recorded by basalt dykes at Capo Passer (south-eastern Sicily). Tectonophysics 1991, 185, 247–259. [Google Scholar] [CrossRef]
- Grasso, M.; Lanzafame, G.; Rossi, P.L.; Schmincke, H.U.; Tranne, C.A.; Lajoie, J.; Lanti, E. Volcanic evolution of the island of Linosa, Strait of Sicily. Mem. Soc. Geol. Ital. 1991, 47, 509–525. [Google Scholar]
- Biju-Duval, B.; Borsetti, A.M.; Colantoni, P. Geology of the troughs in the Strait of Messina-Tunisia, Pelagian Sea. Geologie des fosses du detroit siculo-tunisien (Mer Pelagienne). Rev.-Inst. Fr. Du Pet. 1985, 40, 691–722. [Google Scholar]
- Jones, I.F. Estimating subsurface parameter fields for seismic migration: Velocity model building. In Encyclopedia of Exploration Geophysics; Society of Exploration Geophysicists: Houston, TX, USA, 2015; p. U1-1. [Google Scholar]
- Dix, C.H. Seismic velocities from surface measurements. Geophysics 1955, 20, 68–86. [Google Scholar] [CrossRef]
- Franke, R. Smooth interpolation of scattered data by local thin plate splines. Comput. Math. Appl. 1982, 8, 273–281. [Google Scholar]
- Nwaila, G.T.; Zhang, S.E.; Bourdeau, J.E.; Frimmel, H.E.; Ghorbani, Y. Spatial interpolation using machine learning: From patterns and regularities to block models. Nat. Resour. Res. 2024, 33, 129–161. [Google Scholar]
- Costa, J.C.; Schleicher, J. Double path-integral migration velocity analysis: A real data example. J. Geophy. Eng. 2011, 8, 154–161. [Google Scholar] [CrossRef]
- Santos, H.B.; Schleicher, J.; Novais, A. Initial-model construction for MVA techniques. In Proceedings of the 75th European Association of Geoscientists and Engineers Conference and Exhibition 2013 Incorporating SPE EUROPEC 2013: Changing Frontiers, London, UK, 10–13 June 2013; pp. 2149–2153. [Google Scholar] [CrossRef]
- Azubuike, I.M.; Akpan, B.N. Spline function as an alternative method to seismic data analysis. Int. J. Stat. Appl. 2017, 7, 36–42. [Google Scholar]
- Cuevas, E.; Luque, A.; Escobar, H. Spline interpolation. In Computational Methods with MATLAB®; Synthesis Lectures on Engineering, Science, and Technology; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Guan, S.; Biswal, B. Spline adaptive filtering algorithm based on different iterative gradients: Performance analysis and comparison. J. Autom. Intell. 2023, 2, 1–13. [Google Scholar]
- Shekar, B.; Sethi, H. Full waveform inversion for microseismic events using sparsity constraints. Geophysics 2018, 84, KS1–KS12. [Google Scholar] [CrossRef]
- Jiang, X.J.; Scott, P.J. Free-form surface filtering using wavelets and multiscale decomposition. In Advanced Metrology 2; Elsevier: Amsterdam, The Netherlands, 2020; pp. 195–246. [Google Scholar] [CrossRef]
- Rointan, A.; Soleimani, M.M.; Aghajani, H. Improvement of seismic velocity model by selective removal of irrelevant velocity variations. Acta Geod. Geophys. 2021, 56, 145–176. [Google Scholar] [CrossRef]
- Cabello, F.C.; León, J.; Iano, Y.; Arthur, R. Implementation of a fixed-point 2D Gaussian filter for image processing based on FPGA. In Proceedings of the 2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 23–25 September 2015; pp. 28–33. [Google Scholar]
- Agustina, I.; Nasir, F.; Setiawan, A. The implementation of image smoothing to reduce noise using Gaussian filter. Int. J. Comput. Appl. 2017, 177, 15–19. [Google Scholar] [CrossRef]
- Rosie, A.M. Information and Communication Theory; Blackie: London, UK, 1966. [Google Scholar]
- Rosin, P. Fitting superellipses. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 726–732. [Google Scholar]
- Gries, D.; Schneider, F.B. Boolean expressions. In A Logical Approach to Discrete Math; Texts and Monographs in Computer Science; Springer: New York, NY, USA, 1993. [Google Scholar] [CrossRef]
- Orsi, G.; Gallo, G.; Zanchi, A. Simple-shearing block resurgence in caldera depressions: A model from Pantelleria and Ischia. J. Volcanol. Geotherm. Res. 1991, 47, 2342931. [Google Scholar]
- Sulli, A.; Calarco, M.; Agate, M.; Albano, L.; Bosman, A.; Di Grigoli, G.; Gargano, F.; Lo Presti, V.; Martorelli, E.; Pennino, V.; et al. Geohazard features of the north-western Sicily and Pantelleria. J. Maps 2024, 20, 2342931. [Google Scholar]
- Rossi, P.L.; Tranne, C.A.; Calanchi, N.; Lanti, E. Geology, stratigraphy and volcanological evolution of the island of Linosa (Sicily Channel). Acta Vulcanol. 1996, 8, 73–90. [Google Scholar]
- Distefano, S.; Gamberi, F.; Baldassini, N.; Di Stefano, A. Neogene stratigraphic evolution of a tectonically controlled continental shelf: The example of the Lampedusa Island. Ital. J. Geosci. 2019, 138, 418–431. [Google Scholar]
Acquisition Parameters | Acquisition Geometry | Processing | |||
---|---|---|---|---|---|
Shot by | OGS* | Energy source | Air gun | Bination* | 50/62 Hz |
Vessel | OGS Explora | Source depth | 6 m | Trace sum | Trace sum of two adjacent traces |
Recorder | SERCEL SN-358 | Streamer | 2975 m | Velocity analysis | Stacking velocity |
Sample rate | 4 ms | Streamer depth | 12 m | NMO correction | Application of NMO correction and mute |
Field filters | Low 8 Hz High 77 Hz | Shot interval | 50 m | Stack | 3000% |
Coverage | 3000% | Groups interval | 25 m | Filter | 200ms zero-phase bandpass filter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qadir, A.; Chizzini, N.; Maiorana, M.; Artoni, A.; Torelli, L.; Sulli, A. Velocity Model Construction and Time-to-Depth Conversion of a Vintage Seismic Reflection Profile for Improving the Constraints on a Subsurface Geological Model: An Example from the Sicily Channel (Central Mediterranean Sea). Geosciences 2025, 15, 114. https://doi.org/10.3390/geosciences15040114
Qadir A, Chizzini N, Maiorana M, Artoni A, Torelli L, Sulli A. Velocity Model Construction and Time-to-Depth Conversion of a Vintage Seismic Reflection Profile for Improving the Constraints on a Subsurface Geological Model: An Example from the Sicily Channel (Central Mediterranean Sea). Geosciences. 2025; 15(4):114. https://doi.org/10.3390/geosciences15040114
Chicago/Turabian StyleQadir, Aasiya, Nicolò Chizzini, Mariagiada Maiorana, Andrea Artoni, Luigi Torelli, and Attilio Sulli. 2025. "Velocity Model Construction and Time-to-Depth Conversion of a Vintage Seismic Reflection Profile for Improving the Constraints on a Subsurface Geological Model: An Example from the Sicily Channel (Central Mediterranean Sea)" Geosciences 15, no. 4: 114. https://doi.org/10.3390/geosciences15040114
APA StyleQadir, A., Chizzini, N., Maiorana, M., Artoni, A., Torelli, L., & Sulli, A. (2025). Velocity Model Construction and Time-to-Depth Conversion of a Vintage Seismic Reflection Profile for Improving the Constraints on a Subsurface Geological Model: An Example from the Sicily Channel (Central Mediterranean Sea). Geosciences, 15(4), 114. https://doi.org/10.3390/geosciences15040114