Velocity Model Construction and Time-to-Depth Conversion of a Vintage Seismic Reflection Profile for Improving the Constraints on a Subsurface Geological Model: An Example from the Sicily Channel (Central Mediterranean Sea)
Abstract
:1. Introduction
2. Brief Geological Framework of the Study Area
3. Materials
4. Methods
5. Results and Discussion
5.1. Velocity Analysis from Velocity Models for Uncertain Portion
5.2. Time-to-Depth Conversion for Stratigraphic and Structural Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diviacco, P.; Wardell, N.; Forlin, E.; Sauli, C.; Burca, M.; Busato, A.; Centonze, J.; Pelos, C. Data rescue to extend the value of vintage seismic data: The OGS-SNAP experience. GeoResJ 2015, 6, 44–52. [Google Scholar] [CrossRef]
- Sopher, D. Converting scanned images of seismic reflection data into SEG-Y format. Earth Sci. Inform. 2018, 11, 241. [Google Scholar] [CrossRef]
- Cicala, M.; Chiarella, D.; De Giosa, F.; Festa, V. Conventional data display and implications for the interpretation of seismic profiles: A discussion on the ViDEPI seismic database offshore Apulia (southern Italy). Arab. J. Geosci. 2022, 15, 395. [Google Scholar] [CrossRef]
- Cicala, M.; De Giosa, F.; Piscitelli, A.; Scicchitano, G.; Festa, V. Conversion of vintage seismic reflection profiles of the ViDEPI dataset crossing the Gondola Line seismogenic fault (offshore Apulia, Adriatic Sea, Southern Italy) to SEG-Y. Data Brief 2024, 55, 110705. [Google Scholar] [CrossRef]
- Diviacco, P.; Carlino, F.M.; Busato, A. Enhancing the value of public vintage seismic data in the Italian offshore. Geosci. Data J. 2019, 6, 6–15. [Google Scholar] [CrossRef]
- Berra, F.; Stucchi, E.M.; Moretti, S. New information from “old” seismic lines: An updated seismic dataset for the northern Apennines. J. Geophys. Eng. 2019, 16, 215–225. [Google Scholar]
- Maffucci, R.; Petracchini, L.; Livani, M.; Billi, A.; Carminati, E.; Cuffaro, M.; Petricca, P.; Doglioni, C. Seismic reflection profile dataset in a 3D environment of the northern Adriatic area. Geophys. J. Int. 2020, 221, 564–580. [Google Scholar]
- Buttinelli, M.; Maesano, F.E.; Sopher, D.; Feriozzi, F.; Maraio, S.; Mazzarini, F.; Improta, L.; Vallone, R.; Villani, F.; Basili, R. Revitalizing vintage seismic reflection profiles by converting into SEG-Y format: Case studies from publicly available data on the Italian territory. Ann. Geophys. 2022, 65, DM538. [Google Scholar] [CrossRef]
- Etris, E.; Crabtree, N.J.; Dewar, J. True depth conversion: More than a pretty picture. CSEG Rec. 2001, 26, 11–22. [Google Scholar]
- Thore, P.; Shtuka, A.; Lecour, M.; Ait-Ettajer, T.; Cognot, R. Structural uncertainties: Determination, management, and applications. Geophysics 2002, 67, 840–852. [Google Scholar] [CrossRef]
- Pon, S.; Lines, L.R. Sensitivity analysis of seismic depth migrations. Geophysics 2005, 70, S39–S42. [Google Scholar] [CrossRef]
- Usman, M.; Siddiqui, N.A.; Garzanti, E.; Jamil, M.; Imran, Q.S.; Ahmed, L. 3-D seismic interpretation of stratigraphic and structural features in the Upper Jurassic to Lower Cretaceous sequence of the Gullfaks Field, Norwegian North Sea: A case study of reservoir development. Energy Geosci. 2021, 2, 287–297. [Google Scholar] [CrossRef]
- Usman, M.; Siddiqui, N.A.; Zhang, S.Q.; Mathew, M.J.; Zhang, Y.X.; Jamil, M.; Liu, X.L.; Ahmed, N. 3D geo-cellular static virtual outcrop model and its implications for reservoir petro-physical characteristics and heterogeneities. Petrol. Sci. 2021, 18, 1357–1369. [Google Scholar] [CrossRef]
- Sheriff, R.E.; Geldart, L.P. Exploration Seismology, 2nd ed.; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Yilmaz, Ö. Seismic Data Analysis; Society of Exploration Geophysicists: Tulsa, OK, USA, 2001; p. 2065. [Google Scholar] [CrossRef]
- Bêche, M.; Kirkwood, D.; Jardin, A.; Desaulniers, E.; Saucier, D.; Roure, F. 2D Depth Seismic Imaging in the Gaspé Belt, a Structurally Complex Fold and Thrust Belt in the Northern Appalachians, Québec, Canada. In Thrust Belts and Foreland Basins; Springer: Berlin/Heidelberg, Germany, 2007; pp. 75–90. [Google Scholar]
- Totake, Y.; Butler, R.W.; Bond, C.E. Structural validation as an input into seismic depth conversion to decrease assigned structural uncertainty. J. Struct. Geol. 2017, 95, 32–47. [Google Scholar] [CrossRef]
- Miles, P.R.; Schaming, M.; Lovera, R. Resurrecting vintage paper seismic records. Mar. Geophys. Res. 2007, 28, 319–329. [Google Scholar] [CrossRef]
- Conti, A.; Maffucci, R.; Bigi, S. The use of public vintage seismic reflection profiles: An example of data rescue from the eastern Tyrrhenian margin (Italy). In Interpreting Subsurface Seismic Data; Bell, R., Iacopini, D., Vardy, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 127–156. [Google Scholar] [CrossRef]
- Maiorana, M.; Sulli, A.; Marelli, M.; Agate, M. Geological characterization of a potential CO2 storage play in the Gela offshore (southern Sicily) and the role of a gravitational slide. Mar. Petrol. Geol. 2024, 170, 107127. [Google Scholar] [CrossRef]
- Minissale, A.; Donato, A.; Procesi, M.; Pizzino, L.; Giammanco, S. Systematic review of geochemical data from thermal springs, gas vents and fumaroles of Southern Italy for geothermal favourability mapping. Earth Sci. Rev. 2019, 188, 514–535. [Google Scholar]
- Civile, D.; Baradello, L.; Accaino, F.; Zecchin, M.; Lodolo, E.; Ferrante, G.M.; Markezic, N.; Volpi, V.; Burca, M. Fluid-Related Features in the Offshore Sector of the Sciacca Geothermal Field (SW Sicily): The Role of the Lithospheric Sciacca Fault System. Geosciences 2023, 13, 231. [Google Scholar] [CrossRef]
- Scarascia, S.; LOZEJ, A.T.; Cassinis, R. Crustal structures of the Ligurian, Tyrrhenian and Ionian seas and adjacent onshore areas interpreted from wide-angle seismic profiles. Boll. Geofis. Teor. Appl. 1994, 36, 5–19. [Google Scholar]
- Cassinis, R.; Scarascia, S.; Lozej, A. The deep crustal structure of Italy and surrounding areas from seismic refraction data; a new synthesis. Boll. Soc. Geol. Ital. 2003, 122, 365–376. [Google Scholar]
- Torelli, L.; Zitellini, N.; Argnani, A.; Brancolini, G.; Cillia, C.; Peis, D.; Tricart, P. Sezione geologica crostale dall’avampaese pelagiano al bacino di retroarco tirrenico (Mediterraneo centrale). Mem. Soc. Geol. Ital. 1991, 4, 385–399. [Google Scholar]
- Torelli, L.; Grasso, M.; Mazzoldi, G.; Peis, D.; Gori, D. Cretaceous to Neogene structural evolution of the Lampedusa Shelf (Pelagian Sea, Central Mediterranean). Terra Nova 1995, 7, 200–212. [Google Scholar] [CrossRef]
- Argnani, A.; Torelli, L. Pelagian Shelf and its graben system (Italy/Tunisia). Mem. Mus. Natn. Hist. Nat. 2001, 186, 529–544. [Google Scholar]
- Zarudzki, E.F.K. The Strait of Sicily. A Geophysical Study. Rev. Geograph. Phys. Geo. Dynam. 1972, 14, 11–28. [Google Scholar]
- Winnock, E. Structure du Bloc Pelagien. In Sedimentary Basins of Mediterranean Margins; Wezel, I.F.C., Ed.; Tecnoprint: Bologna, Italy, 1981; pp. 445–464. [Google Scholar]
- Finetti, I.R. Geophysical study of the Sicily Channel Rift Zone. Boll. Geofis. Teor. Appl. 1984, 26, 3–28. [Google Scholar]
- Jongsma, D.; Van Hinte, J.E.; Woodside, J.M. Geologic structure and neotectonics of the North African continental margin south of Sicily. Mar. Petrol. Geol. 1985, 2, 156–179. [Google Scholar]
- Reuther, C.D.; Eisbacher, G.H. Pantelleria rift-crustal extension in a convergent intraplate setting. Geol. Rundsch. 1985, 74, 585–597. [Google Scholar] [CrossRef]
- Calanchi, N.; Colantoni, P.; Rossi, P.L.; Saitta, M.; Serri, G. The Strait of Sicily continental rift system: Physiography and petrochemistry of the submarine volcanic centres. Mar. Geol. 1989, 87, 55–83. [Google Scholar] [CrossRef]
- Dart, C.J.; Bosence, W.J.; McClay, K.R. Stratigraphy and structure of the Maltese graben system. J. Geol. Soc. Lond. 1993, 150, 1153–1166. [Google Scholar] [CrossRef]
- Civile, D.; Lodolo, E.; Accettella, D.; Geletti, R.; Ben-Avraham, Z.; Deponte, M.; Facchin, L.; Ramella, R.; Romeo, R. The Pantelleria Graben (Sicily Channel, Central Mediterranean): An example of intraplate “passive” rift. Tectonophysics 2010, 490, 173–183. [Google Scholar] [CrossRef]
- Civile, D.; Brancolini, G.; Lodolo, E.; Forlin, E.; Accaino, F.; Zecchin, M.; Brancatelli, G. Morphostructural Setting and Tectonic Evolution of the Central Part of the Sicilian Channel (Central Mediterranean). Lithosphere 2021, 2021, 7866771. [Google Scholar] [CrossRef]
- Maiorana, M.; Artoni, L.; Le Breton, E.; Sulli, A.; Chizzini, N.; Torelli, L. Is the Sicily Channel a simple Rifting Zone? New evidence from seismic analysis with geodynamic implications. Tectonophysics 2023, 864, 230019. [Google Scholar] [CrossRef]
- Uyeda, S. Subduction zones: An introduction to comparative subductology. Tectonophysics 1982, 81, 3–4. [Google Scholar] [CrossRef]
- Gueguen, E.; Doglioni, C.; Fernandez, M. On the post-25 Ma geodynamic evolution of the western Mediterranean. Tectonophysics 1998, 298, 259–269. [Google Scholar] [CrossRef]
- Faccenna, C.; Funiciello, F.; Giardini, D.; Lucente, P. Episodic back-arc extension during restricted mantle convection in the central Mediterranean. Earth Planet. Sci. Lett. 2001, 187, 105–116. [Google Scholar] [CrossRef]
- Faccenna, C.; Becker, T.W.; Lucente, F.P.; Jolivet, L.; Rossetti, F. History of subduction and back-arc extension in the central Mediterranean. Geophys. J. Int. 2001, 145, 809–820. [Google Scholar] [CrossRef]
- Carminati, E.; Lustrino, M.; Doglioni, C. Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints. Tectonophysics 2012, 579, 173–192. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.J.; Wissers, R.L.M.; Spakman, W. Origin and consequences of western Mediterranean subduction, rollback and slab segmentation. Tectonics 2014, 33, 347–595. [Google Scholar] [CrossRef]
- Grasso, M.; Torelli, L. Cretaceous-Paleogene sedimentation patterns and structural evolution of the Tunisian shelf, offshore the Pelagian Islands (Central Mediterranean). Tectonophysics 1999, 315, 235–250. [Google Scholar] [CrossRef]
- Argnani, A. The Strait of Sicily rift zone: Foreland deformation related to the evolution of a back-arc basin. J. Geodyn. 1990, 12, 311–331. [Google Scholar] [CrossRef]
- Finetti, I.R.; Morelli, C. Geophysical exploration of the Mediterranean Sea. Bull. Theor. Appl. Geophys. 1973, 15, 263–340. [Google Scholar]
- Finetti, I.R.; Del Ben, A. Crustal tectono-stratigraphic setting of the Pelagian foreland from new CROP seismic data. In CROP PROJECT: Deep Seismic Exploration of the Central Mediterranean and Italy; Finetti, I.R., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2005; pp. 581–595. [Google Scholar]
- Colantoni, P. Note di geologia marina sul Canale di Sicilia. Giorn. Geol. 1975, 40, 181–207. [Google Scholar]
- Rotolo, S.G.; Castorina, F.; Cellula, D.; Pompilio, M. Petrology and geochemistry of submarine volcanism in the Sicily Channel. J. Geol. 2006, 114, 355–365. [Google Scholar] [CrossRef]
- Argnani, A.; Cornini, S.; Torelli, L.; Zitellini, N. Diachronous foredeep-system in the Neogene-Quaternary of the Strait of Sicily. Mem. Soc. Geol. Ital. 1988, 38, 407–417. [Google Scholar]
- Civile, D.; Lodolo, E.; Alp, H.; Ben-Avraham, Z.; Cova, A.; Baradello, L.; Accettella, D.; Burca, M.; Centonze, J. Seismic stratigraphy and structural setting of the Adventure Plateau (Sicily Channel). Mar. Geophys. Res. 2014, 35, 37–53. [Google Scholar] [CrossRef]
- Calò, M.; Parisi, L. Evidences of a lithospheric fault zone in the Sicily Channel continental rift (southern Italy) from instrumental seismicity data. Geophys. J. Int. 2014, 199, 219–225. [Google Scholar] [CrossRef]
- Ghisetti, F.C.; Gorman, A.R.; Grasso, M.; Vezzani, L. Imprint of foreland structure on the deformation of a thrust sheet: The Plio-Pleistocene Gela Nappe (southern Sicily, Italy). Tectonics 2009, 28, TC4015. [Google Scholar] [CrossRef]
- Lodolo, E.; Civile, D.; Zanolla, C. Magnetic signature of the Sicily Channel volcanism. Mar. Geophys. Res. 2012, 33, 33–44. [Google Scholar] [CrossRef]
- Micallef, A.; Geldmacher, J.; Watt, S.F.; Ferrante, G.M.; Ford, J.; Lodolo, E.; Civile, D.; Hodgetts, A.G.; Felgendreher, M.; Licari, J.G.; et al. Submarine volcanism in the Sicilian Channel revisited. Mar. Geol. 2024, 474, 107342. [Google Scholar]
- Tesauro, M.; Kaban, M.K.; Cloetingh, S.A.P.L. EuCRUST-07: A new reference model for the European crust. Geophys. Res. Lett. 2008, 35, L05313. [Google Scholar] [CrossRef]
- Milia, A.; Iannace, P.; Tesauro, M.; Torrente, M.M. Marsili and Cefalù basins: The evolution of a rift system in the southern Tyrrhenian Sea (Central Mediterranean). Glob. Planet. Change 2018, 171, 225–237. [Google Scholar] [CrossRef]
- Grasso, M.; Pezzino, A.; Reuther, C.D.; Lanza, R.; Miletto, M. Late Cretaceous and Recent tectonic stress orientations recorded by basalt dykes at Capo Passer (south-eastern Sicily). Tectonophysics 1991, 185, 247–259. [Google Scholar] [CrossRef]
- Grasso, M.; Lanzafame, G.; Rossi, P.L.; Schmincke, H.U.; Tranne, C.A.; Lajoie, J.; Lanti, E. Volcanic evolution of the island of Linosa, Strait of Sicily. Mem. Soc. Geol. Ital. 1991, 47, 509–525. [Google Scholar]
- Biju-Duval, B.; Borsetti, A.M.; Colantoni, P. Geology of the troughs in the Strait of Messina-Tunisia, Pelagian Sea. Geologie des fosses du detroit siculo-tunisien (Mer Pelagienne). Rev.-Inst. Fr. Du Pet. 1985, 40, 691–722. [Google Scholar]
- Jones, I.F. Estimating subsurface parameter fields for seismic migration: Velocity model building. In Encyclopedia of Exploration Geophysics; Society of Exploration Geophysicists: Houston, TX, USA, 2015; p. U1-1. [Google Scholar]
- Dix, C.H. Seismic velocities from surface measurements. Geophysics 1955, 20, 68–86. [Google Scholar] [CrossRef]
- Franke, R. Smooth interpolation of scattered data by local thin plate splines. Comput. Math. Appl. 1982, 8, 273–281. [Google Scholar]
- Nwaila, G.T.; Zhang, S.E.; Bourdeau, J.E.; Frimmel, H.E.; Ghorbani, Y. Spatial interpolation using machine learning: From patterns and regularities to block models. Nat. Resour. Res. 2024, 33, 129–161. [Google Scholar]
- Costa, J.C.; Schleicher, J. Double path-integral migration velocity analysis: A real data example. J. Geophy. Eng. 2011, 8, 154–161. [Google Scholar] [CrossRef]
- Santos, H.B.; Schleicher, J.; Novais, A. Initial-model construction for MVA techniques. In Proceedings of the 75th European Association of Geoscientists and Engineers Conference and Exhibition 2013 Incorporating SPE EUROPEC 2013: Changing Frontiers, London, UK, 10–13 June 2013; pp. 2149–2153. [Google Scholar] [CrossRef]
- Azubuike, I.M.; Akpan, B.N. Spline function as an alternative method to seismic data analysis. Int. J. Stat. Appl. 2017, 7, 36–42. [Google Scholar]
- Cuevas, E.; Luque, A.; Escobar, H. Spline interpolation. In Computational Methods with MATLAB®; Synthesis Lectures on Engineering, Science, and Technology; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Guan, S.; Biswal, B. Spline adaptive filtering algorithm based on different iterative gradients: Performance analysis and comparison. J. Autom. Intell. 2023, 2, 1–13. [Google Scholar]
- Shekar, B.; Sethi, H. Full waveform inversion for microseismic events using sparsity constraints. Geophysics 2018, 84, KS1–KS12. [Google Scholar] [CrossRef]
- Jiang, X.J.; Scott, P.J. Free-form surface filtering using wavelets and multiscale decomposition. In Advanced Metrology 2; Elsevier: Amsterdam, The Netherlands, 2020; pp. 195–246. [Google Scholar] [CrossRef]
- Rointan, A.; Soleimani, M.M.; Aghajani, H. Improvement of seismic velocity model by selective removal of irrelevant velocity variations. Acta Geod. Geophys. 2021, 56, 145–176. [Google Scholar] [CrossRef]
- Cabello, F.C.; León, J.; Iano, Y.; Arthur, R. Implementation of a fixed-point 2D Gaussian filter for image processing based on FPGA. In Proceedings of the 2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 23–25 September 2015; pp. 28–33. [Google Scholar]
- Agustina, I.; Nasir, F.; Setiawan, A. The implementation of image smoothing to reduce noise using Gaussian filter. Int. J. Comput. Appl. 2017, 177, 15–19. [Google Scholar] [CrossRef]
- Rosie, A.M. Information and Communication Theory; Blackie: London, UK, 1966. [Google Scholar]
- Rosin, P. Fitting superellipses. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 726–732. [Google Scholar]
- Gries, D.; Schneider, F.B. Boolean expressions. In A Logical Approach to Discrete Math; Texts and Monographs in Computer Science; Springer: New York, NY, USA, 1993. [Google Scholar] [CrossRef]
- Orsi, G.; Gallo, G.; Zanchi, A. Simple-shearing block resurgence in caldera depressions: A model from Pantelleria and Ischia. J. Volcanol. Geotherm. Res. 1991, 47, 2342931. [Google Scholar]
- Sulli, A.; Calarco, M.; Agate, M.; Albano, L.; Bosman, A.; Di Grigoli, G.; Gargano, F.; Lo Presti, V.; Martorelli, E.; Pennino, V.; et al. Geohazard features of the north-western Sicily and Pantelleria. J. Maps 2024, 20, 2342931. [Google Scholar]
- Rossi, P.L.; Tranne, C.A.; Calanchi, N.; Lanti, E. Geology, stratigraphy and volcanological evolution of the island of Linosa (Sicily Channel). Acta Vulcanol. 1996, 8, 73–90. [Google Scholar]
- Distefano, S.; Gamberi, F.; Baldassini, N.; Di Stefano, A. Neogene stratigraphic evolution of a tectonically controlled continental shelf: The example of the Lampedusa Island. Ital. J. Geosci. 2019, 138, 418–431. [Google Scholar]
Acquisition Parameters | Acquisition Geometry | Processing | |||
---|---|---|---|---|---|
Shot by | OGS* | Energy source | Air gun | Bination* | 50/62 Hz |
Vessel | OGS Explora | Source depth | 6 m | Trace sum | Trace sum of two adjacent traces |
Recorder | SERCEL SN-358 | Streamer | 2975 m | Velocity analysis | Stacking velocity |
Sample rate | 4 ms | Streamer depth | 12 m | NMO correction | Application of NMO correction and mute |
Field filters | Low 8 Hz High 77 Hz | Shot interval | 50 m | Stack | 3000% |
Coverage | 3000% | Groups interval | 25 m | Filter | 200ms zero-phase bandpass filter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qadir, A.; Chizzini, N.; Maiorana, M.; Artoni, A.; Torelli, L.; Sulli, A. Velocity Model Construction and Time-to-Depth Conversion of a Vintage Seismic Reflection Profile for Improving the Constraints on a Subsurface Geological Model: An Example from the Sicily Channel (Central Mediterranean Sea). Geosciences 2025, 15, 114. https://doi.org/10.3390/geosciences15040114
Qadir A, Chizzini N, Maiorana M, Artoni A, Torelli L, Sulli A. Velocity Model Construction and Time-to-Depth Conversion of a Vintage Seismic Reflection Profile for Improving the Constraints on a Subsurface Geological Model: An Example from the Sicily Channel (Central Mediterranean Sea). Geosciences. 2025; 15(4):114. https://doi.org/10.3390/geosciences15040114
Chicago/Turabian StyleQadir, Aasiya, Nicolò Chizzini, Mariagiada Maiorana, Andrea Artoni, Luigi Torelli, and Attilio Sulli. 2025. "Velocity Model Construction and Time-to-Depth Conversion of a Vintage Seismic Reflection Profile for Improving the Constraints on a Subsurface Geological Model: An Example from the Sicily Channel (Central Mediterranean Sea)" Geosciences 15, no. 4: 114. https://doi.org/10.3390/geosciences15040114
APA StyleQadir, A., Chizzini, N., Maiorana, M., Artoni, A., Torelli, L., & Sulli, A. (2025). Velocity Model Construction and Time-to-Depth Conversion of a Vintage Seismic Reflection Profile for Improving the Constraints on a Subsurface Geological Model: An Example from the Sicily Channel (Central Mediterranean Sea). Geosciences, 15(4), 114. https://doi.org/10.3390/geosciences15040114