Variscan Plutonism in the Geodynamic Evolution of the Central Iberian Zone of Portugal: Castelo Branco Pluton as Another Piece of the Puzzle
Abstract
:1. Introduction
2. Geological Setting
2.1. General Framework
2.2. Castelo Branco Granite Pluton
3. Sampling and Analytical Methods
3.1. Sampling
3.2. Petrography and Microstructural Observations
3.3. Petrophysical Studies
3.3.1. Anisotropy of Magnetic Susceptibility
3.3.2. Isothermal Remanent Magnetization Analysis
3.4. Microfracturing
3.5. Radiometric Imaging
3.6. Gravimetry Architecture and Model of Pluton Emplacement
4. Results
4.1. Petrography, Textures, and Microstructural Features
4.2. Anisotropy of Magnetic Susceptibility Results
4.2.1. Bulk Susceptibility, Anisotropy Degree, and Shape Parameter
- (i)
- Biotite-rich granites, comprising the Rio de Moinhos, and S. Miguel da Acha (biotite > muscovite granites), with 38.2 µSI < Km < 186.0 µSI (mean value: 89.2 µSI);
- (ii)
- Two-mica granites, Alcains and Soalheira (muscovite > biotite) granites, and Castelo Novo (muscovite = biotite) granite, with 7.3 µSI < Km < 89.7 µSI (mean value: 51.1 µSI) (Figure 5).
4.2.2. Magnetic Fabric Patterns
4.3. Isothermal Remanent Magnetization Results
4.4. Fluid Inclusion Planes Studies
4.5. Radiometry Data
4.6. Gravimetric Data
5. Discussion
5.1. Integration of Magnetic Parameters with Geophysical Characteristics
5.2. Pluton Geometry Modeling
5.3. Emplacement Model and Structural Control
6. Conclusions
- The values of magnetic susceptibility of the CB pluton are typical of ilmenite-type granites.
- The P% mean value higher than 4%, and the evidence of solid-state deformation at high temperatures, suggest that the CB pluton was emplaced during deformation.
- The magnetic fabric and gravimetric data analyzed together yield the following insights into the emplacement model:
- (i)
- The 2D model allows us to infer that CB pluton is a flat-shaped pluton and seems to extend to ca. 2–3 km in depth.
- (ii)
- The feeding zone of the CB pluton exhibits a predominant NE-SW alignment, which aligns with the NE-SW-trending regional faults and thrust faults. Additionally, there is evidence of a NW-SE trend, consistent with the orientation of the main regional foliation of the host rocks.
- (iii)
- The concentric magnetic foliation with outward steep dips observed in the Alcains granite suggests that the ascent and emplacement of this granite probably predates that of the Rio de Moinhos and S. Miguel da Acha granites. The magnetic fabric indicates that Alcains had more room to spread, and its laccolithic shape suggests that this granite was pushed to the top of the CB pluton.
- (iv)
- The ascent of Alcains, Rio de Moinhos, and S. Miguel da Acha granites most likely took place along a pre-existing NE-SW-trending fault; the Soalheira, and Castelo Novo granites probably took advantage of other pre-existing NE-SW faults, situated further northwest.
- (v)
- CB is a nested pluton.
- FIPs have two main trends, both related to a maximum stress (σ1) oriented NE-SW:
- (i)
- NNE-SSW to NE-SW-trending visible in all CB granites.
- (ii)
- ENE-WSW trend in biotite-rich granites, and ESE-WNW trend in two-mica granites.
- Two main directions of structures/ alignments are clearly noticeable in the study area: NE-SW and NW-SE.
- (i)
- The NE-SW trend characterizes the primary direction of the faults and thrust faults within the study area. Moreover, the residual anomaly suggests a feeding zone extending along the NE-SW to NNE-SSW direction.
- (ii)
- The NW-SE alignments are also evident both within CB pluton and also in the surrounding area. The magnetic fabric exhibits a predominant NW-SE trend, aligning parallel to regional structures such as the kilometer-scale D3 regional folds.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clemens, J.D.; Mawer, C.K. Granitic magma transport by fracture propagation. Tectonophysics 1992, 204, 339–360. [Google Scholar] [CrossRef]
- Hutton, D.H.W. Granite emplacement mechanisms and tectonic controls: Inferences from deformation studies. Trans. R. Soc. Edinb. Earth Sci. 1988, 79, 245–255. [Google Scholar] [CrossRef]
- Castro, A. On granitoid emplacement and related structures. A review. Geol. Rundsch. 1987, 76, 101–124. [Google Scholar] [CrossRef]
- Saint-Blanquat, M.; Law, R.D.; Bouchez, J.L.; Morgan, S. Internal structure and emplacement of the Papoose Flat pluton: An integrated structural, petrographic and magnetic susceptibility study. Geol. Soc. Am. Bull. 2001, 113, 976–995. [Google Scholar] [CrossRef]
- Vigneresse, J.L. Use and misuse of geophysical data to determine the shape at depth of granitic intrusions. Geol. J. 1990, 25, 249–260. [Google Scholar] [CrossRef]
- Vigneresse, J.L. Control of granite emplacement by regional deformation. Tectonophysics 1995, 249, 173–186. [Google Scholar] [CrossRef]
- D’Lemos, R.S.; Brown, M.; Strachan, R.A. Granite magma generation, ascent, and emplacement within a transpressional orogen. J. Geol. Soc. Lond. 1992, 149, 487–490. [Google Scholar] [CrossRef]
- Aranguren, A.; Tubia, J.; Bouchez, J.L.; Vigneresse, J.L. The Guitiriz granite, Variscan belt of northern Spain: Extension-controlled emplacement of magma during tectonic escape. Earth Planet. Sci. Lett. 1996, 139, 165–176. [Google Scholar] [CrossRef]
- Aranguren, A.; Cuevas, J.; Tubia, J.M.; Román-Berdiel, T.; Casas-Sainz, A.; Casas-Ponsati, A. Granite laccolith emplacement in the Iberian arc: AMS and gravity study of the La Tojiza pluton (NW Spain). J. Geol. Soc. 2003, 160, 435–445. [Google Scholar] [CrossRef]
- Améglio, L.; Vigneresse, J.L.; Bouchez, J.L. Granite pluton geometry and emplacement mode inferred from combined fabric and gravity data. In Granite: From Segregation of Melt to Emplacement Fabrics; Bouchez, J.L., Hutton, D.H.W., Stephens, W.E., Eds.; Kluwer Academic Publishers: Dordrecht, Holland, 1997; Volume 8, pp. 199–214. [Google Scholar] [CrossRef]
- Sant’Ovaia, H.; Bouchez, J.L.; Noronha, F.; Leblanc, D.; Vigneresse, J.L. Composite-laccolith emplacement of the post-tectonic Vila Pouca de Aguiar granite pluton (northern Portugal): A combined AMS and gravity study. Trans. R. Soc. Edinb. Earth Sci. 2000, 9, 123–137. [Google Scholar] [CrossRef]
- Sant’Ovaia, H.; Nogueira, P.; Carrilho Lopes, J.; Gomes, C.; Ribeiro, M.A.; Martins, H.C.B.; Dória, A.; Cruz, C.; Lopes, L.; Sardinha, R.; et al. Building up of a nested granite intrusion: Magnetic fabric, gravity modelling and fluid inclusion planes studies in Santa Eulália Plutonic Complex (Ossa Morena Zone, Portugal). Geol. Mag. 2014, 152, 1–20. [Google Scholar] [CrossRef]
- Glazner, A.F.; Bartley, J.M.; Coleman, D.S.; Gray, W.; Taylor, R.Z. Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 2004, 14, 4–11. [Google Scholar] [CrossRef]
- Gébelin, A.; Martelet, G.; Chen, Y.; Brunel, M.; Faure, M. Structure of late Variscan Millevaches leucogranite massif in the French Massif Central: AMS and gravity modelling results. J. Struct. Geol. 2006, 28, 148–169. [Google Scholar] [CrossRef]
- Joly, A.; Martelet, G.; Chen, Y.; Faure, M. A multidisciplinary study of a syntectonic pluton close to a major lithosphere-scale fault—Relationships between the Montmarault granitic massif and the Silfon Houiller Fault in the Variscan French Massif Central: Gravity, aeromagnetic investigations, and 3D geologic modeling. J. Geophys. Res. 2008, 113, 1–13. [Google Scholar] [CrossRef]
- Cruz, C.; Sant’Ovaia, H.; Raposo, M.I.B.; Lourenço, J.M.; Almeida, F.; Noronha, F. Unraveling the emplacement history of a Portuguese post tectonic Variscan pluton using magnetic fabric and gravimetry. J. Struct. Geol. 2021, 153, 104470. [Google Scholar] [CrossRef]
- Cruz, C.; Nogueira, P.; Máximo, J.; Noronha, F.; Sant’Ovaia, H. New insights from an emplacement model for the Santa Eulália Plutonic Complex (SW Iberian Peninsula). J. Geol. Soc. 2023, 180, 13. [Google Scholar] [CrossRef]
- Phillips, G.N.; Kisters, A.F.M.; Clemens, J.D. The tabular Strathbogie batholith in central Victoria. Aust. J. Earth Sci. 2022, 22, 776–800. [Google Scholar] [CrossRef]
- Sant’Ovaia, H.; Cruz, C.; Gonçalves, A.; Nogueira, P.; Noronha, F. Deciphering Iberian Variscan Orogen Magmatism Using the Anisotropy of Magnetic Susceptibility from Granites. Minerals 2024, 14, 309. [Google Scholar] [CrossRef]
- Paterson, S.R.; Vernon, R.H.; Tobisch, O.T. A review criteria for the identification of magmatic and tectonic foliations in granitoids. J. Struct. Geol. 1989, 11, 349–363. [Google Scholar] [CrossRef]
- Paterson, S.R.; Fowler, T.K., Jr.; Schmidt, K.L.; Yoshinobu, A.S.; Yuan, E.S.; Miller, R.B. Interpreting magmatic fabric patterns in plutons. Lithos 1998, 44, 53–82. [Google Scholar] [CrossRef]
- Pereira, M.F.; Díez Fernández, R.; Gama, C.; Hofmann, M.; Gärtner, A.; Linnemann, U. S-type granite generation and emplacement during a regional switch from extensional to contractional deformation (Central Iberian Zone, Iberian autochthonous domain, Variscan Orogeny). Int. J. Earth Sci. 2018, 107, 251–267. [Google Scholar] [CrossRef]
- Neiva, J.M.C. Jazigos portugueses de volframite e cassiterite. Comun. Serviços Geológicos Port. 1944, 25, 1–251. [Google Scholar]
- Thadeu, D. Carta Mineira de Portugal. Notícia Explicative; Serviços Geológicos de Portugal: Lisboa, Portugal, 1965; 46p. [Google Scholar]
- Schermerhorn, L.J.G. Framework and evolution of Hercynian mineralization in the Iberian Meseta. Leidse Geol. Meded. 1981, 52, 23–56. [Google Scholar]
- Noronha, F.; Ferreira, N.; Marques de Sá, C. Rochas granitóides: Caracterização petrológica e geoquímica. In Notícia Explicativa da Folha 2—Carta Geológica de Portugal à escala 1:200 000. (Coord. Pereira, E.); IGM/INETI: Lisboa, Portugal, 2006; pp. 49–68. [Google Scholar]
- Noronha, F.; Ribeiro, M.A.; Almeida, A.; Dória, A.; Guedes, A.; Lima, A.; Martins, H.C.B.; Sant’Ovaia, H.; Nogueira, P.; Martins, T.; et al. Jazigos filonianos hidrotermais e aplitopegmatíticos espacialmente associados a granitos (norte de Portugal). In Geologia de Portugal; Dias, R., Araújo, A., Terrinha, P., Kullberg, J.C., Eds.; Escolar Editora: Lisboa, Portugal, 2013; Volume I, pp. 403–438. [Google Scholar]
- Ishihara, S. The Magnetite-series and Ilmenite-series Granitic Rocks. Min. Geol. 1977, 27, 292–305. [Google Scholar]
- Ishihara, S.; Matsuhisa, Y. Oxygen isotope constraints on the genesis of the Miocene Outer Zone Granitoids in Japan. Lithos 1999, 46, 523–534. [Google Scholar] [CrossRef]
- SIORMINP-Sistema de Informação de Ocorrências e Recursos Minerais Portugueses. Available online: https://geoportal.lneg.pt/pt/bds/siorminp/#!/1664 (accessed on 15 March 2023).
- Antunes, I.M.H.R. Mineralogia, Geoquímica e Petrologia de Rochas Granitóides da área de Castelo Branco-Idanha-a-Nova. Ph.D. Thesis, University of Coimbra, Coimbra, Portugal, 2006; 453p. [Google Scholar]
- Antunes, I.M.H.R.; Neiva, A.M.R.; Silva, M.M.V.G.; Corfu, F. Geochemistry of S-type granitic rocks from the reversely zoned Castelo Branco pluton (central Portugal). Lithos 2008, 103, 445–465. [Google Scholar] [CrossRef]
- Hrouda, F. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys. Surv. 1982, 5, 37–82. [Google Scholar] [CrossRef]
- Borradaile, G.J. Magnetic susceptibility, petrofabrics and strain. Tectonophysics 1988, 156, 1–20. [Google Scholar] [CrossRef]
- Borradaile, G.J.; Henry, B. Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci. Rev. 1997, 42, 49–93. [Google Scholar] [CrossRef]
- Bouchez, J.L. Granite is never isotropic: An introduction to AMS studies of granitic rocks. In Granite: From Melt to Emplacement Fabrics; Bouchez, J.L., Hutton, D.H.W., Stephens, W.E., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; pp. 95–112. [Google Scholar]
- Butler, R.F. Paleomagnetism: Magnetic Domains to Geologic Terranes; Electronic ed.; Blackwell Scientific Publications: Boston, MA, USA, 2004; 158p. [Google Scholar]
- Roedder, E. Fluid inclusions. In Reviews in Mineralogy; Ribbe, P.E., Ed.; Mineralogical Society of America: Chantilly, VA, USA, 1984; Volume 12, 644p. [Google Scholar]
- Lespinasse, M.; Pecher, A. Microfracturing and regional stress field: A study of preferred orientations of fluid inclusion planes in a granite from the Massif Central, France. J. Struct. Geol. 1986, 8, 169–180. [Google Scholar] [CrossRef]
- Lespinasse, M. Are fluid inclusion planes useful in structural geology? J. Struct. Geol. 1999, 21, 1237–1243. [Google Scholar] [CrossRef]
- Paradella, W.R.; Santos, A.R.; Dall’Agnol, R.; Pietsch, R.W.; Sant’Anna, M.V. A geological investigation based on airborne (SAREX) and spaceborne (RADARSAT-1) SAR integrated products in the Central Serra dos Carajás granite area, Brazil. Can. J. Remote Sens. 1998, 24, 376–392. [Google Scholar] [CrossRef]
- Tartèse, R.; Boulvais, P.; Poujol, M.; Vigneresse, J. Granite petrogenesis revealed by combined gravimetric and radiometric imaging. Tectonophysics 2011, 501, 98–103. [Google Scholar] [CrossRef]
- Améglio, L.; Vigneresse, J.L. Geophysical imaging of the shape of granitic intrusions at depth: A review. Geol. Soc. Lond. Spec. Publ. 1999, 168, 39–54. [Google Scholar] [CrossRef]
- Machadinho, A.T.G. Modelação da Geometria de Rochas Granitóides Recorrendo a Métodos Geofísicos Gravimétricos e Magnéticos: Uma Contribuição Para a Avaliação do Potencial Geotérmico na Região Centro de Portugal. Ph.D. Thesis, Universidade de Coimbra, Coimbra, Portugal, 2014. [Google Scholar]
- Machadinho, A.; Figueiredo, F.; Pereira, A. Geometria de rochas granitóides através da inversão de dados de campo-potencial na região centro de Portugal. Comun. Geológicas 2020, 107, 83–87. [Google Scholar] [CrossRef]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics; John Wiley & Sons: Chichester, UK, 1997; 796p. [Google Scholar]
- Kearey, P.; Brooks, M.; Hill, I. An Introduction to Geophysical Exploration; Blackwell Science Ltd.: Oxford, UK, 2002; 281p. [Google Scholar]
- Lowrie, W. Fundamentals of Geophysics; Cambridge University Press: Cambridge, UK, 2007; 381p. [Google Scholar]
- Franke, W. Variscan plate tectonics in Central Europe—Current ideas and open questions. Tectonophysics 1989, 169, 221–228. [Google Scholar] [CrossRef]
- Ribeiro, A.; Pereira, E.; Dias, R. Structure of the Northwest of the Iberian Peninsula. In Pre-Mesozoic Geology of Iberia; Dallmeyer, D., Martinez Garcia, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 220–236. [Google Scholar]
- Kroner, U.; Romer, R.L. Two plates—Many subduction zones: The Variscan orogeny reconsidered. Gondwana Res. 2013, 24, 298–329. [Google Scholar] [CrossRef]
- Lotze, F. Zur Gliederung der Varisziden der Iberischen Meseta. Geotecktonische Forschungen 1945, 6, 78–92. [Google Scholar]
- Julivert, M.; Fontboté, J.M.; Ribeiro, A.; Conde, L. Mapa Tectónico de la Península Ibérica y Baleares a Escala 1:1.000.000 y Memoria Explicativa; Instituto Geologico y Mineiro de España: Madrid, Spain, 1974; 113p. [Google Scholar]
- Farias, P.; Gallastegui, G.; González Lodeiro, L.; Marquínez, J.; Martín Parra, L.M.; Martínez Catalán, J.R.; Pablo Maciá, J.G.; Rodríguez Fernández, L.R. Aportaciones al Conocimiento de la Litoestratigrafia y Estructura de Galicia Central, Memórias nº1, IX Reunião Sobre a Geologia do Oeste Peninsular; Museu Laboratório Mineralogia e Geologia-Faculdade de Ciências da Universidade do Porto: Porto, Portugal, 1987; Volume 1, pp. 411–431. [Google Scholar]
- Ferreira, N.; Iglésias, M.; Noronha, F.; Pereira, E.; Ribeiro, A.; Ribeiro, M.L. Granitóides da Zona Centro Ibérica e seu enquadramento geodinâmico. In Geología de los Granitoides y Rocas Asociadas del Macizo Hesperico—Libro Homenaje a L. C. García de Figuerola; Bea, F., Carnicero, A., Gonzalo, J., Lopez Plaza, M., Rodriguez Alonso, M., Eds.; Editorial Rueda: Madrid, Spain, 1987; pp. 37–51. [Google Scholar]
- Dallmeyer, R.D.; Martínez Catalán, J.R.; Arenas, R.; Gil Ibarguchi, J.I.; Gutiérrez-Alonso, G.; Farias, P.; Bastida, F.; Aller, J. Diachronous Variscan tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 1997, 277, 307–337. [Google Scholar] [CrossRef]
- Castiñeiras, P.; Villaseca, C.; Barbero, L.; Martín Romera, C. SHRIMP U-Pb zircon dating of anatexis in high-grade migmatite complexes of Central Spain: Implications in the Hercynian evolution of Central Iberia. Int. J. Earth Sci. 2008, 97, 35–50. [Google Scholar] [CrossRef]
- Martínez Catalán, J.R.; Rubio Pascual, F.J.; Díez Montes, A.; Díez Fernández, R.; Gómez Barreiro, J.; Dias da Silva, Í.; González Clavijo, E.; Ayarza, P.; Alcock, J.E. The late Variscan HT/LP metamorphic event in NW and Central Iberia: Relationships to crustal thickening, extension, orocline development and crustal evolution. Geol. Soc. Lond. 2014, 405, 225–247. [Google Scholar] [CrossRef]
- Díez Fernández, R.; Arenas, R.; Pereira, M.F.; Sánchez Martínez, S.; Albert, R.; Martín Parra, L.M.; Rubio Pascual, F.J.; Matas, J. Tectonic evolution of Variscan Iberia: Gondwana–Laurussia collision revisited. Earth-Sci. Rev. 2016, 162, 269–292. [Google Scholar] [CrossRef]
- Ribeiro, A.; Antunes, M.T.; Ferreira, M.P.; Rocha, R.B.; Soares, A.F.; Zbyszewski, G.; Almeida, F.M.; Carvalho, D.; Monteiro, J.H. Introduction à la Géologie Générale du Portugal; Serviços Geológicos de Portugal: Lisboa, Portugal, 1979; pp. 1–114. [Google Scholar]
- Arthaud, F.; Matte, P. Les décrochements Tardi-Hercyniens du Sud-ouest de l’Europe. Géometrie et essai de reconstitution des conditions de la déformation. Tectonophysics 1975, 25, 139–171. [Google Scholar] [CrossRef]
- Marques, F.O.; Mateus, A.; Tassinari, C. The Late-Variscan fault network in central–northern Portugal (NW Iberia): A re-evaluation. Tectonophysics 2002, 359, 255–270. [Google Scholar] [CrossRef]
- Dias, G.; Leterrier, J.; Mendes, A.; Simões, P.; Bertrand, J.M. U-Pb zircon and monazite geochronology of syn- to post-tectonic Hercynian granitoids from the Central Iberian Zone (Northern Portugal). Lithos 1998, 45, 349–369. [Google Scholar] [CrossRef]
- Dias, G.; Noronha, F.; Ferreira, N. Variscan plutonism in the Central Iberian zone (Northern Portugal). In Eurogranites 2000, Field Meeting, Guidebook; Universidade do Minho: Guimarães, Portugal, 2000. [Google Scholar]
- Azevedo, M.; Aguado, B. Origem e Instalação de Granitóides Variscos na Zona Centro-Ibérica. In Geologia de Portugal; Dias, R., Araújo, A., Terrinha, P., Kullberg, J.C., Eds.; Livraria Escolar Editora: Lisboa, Portugal, 2013; Volume 1, pp. 377–401. [Google Scholar]
- Romão, J.; Metodiev, D.; Dias, R.; Ribeiro, A. Evolução geodinâmica dos sectores meridionais da Zona Centro-Ibérica. In Geologia de Portugal; Dias, R., Araújo, A., Terrinha, P., Kullberg, J.C., Eds.; Livraria Escolar Editora: Lisboa, Portugal, 2013; Volume 1, pp. 205–257. [Google Scholar]
- Meireles, C.A.P. Folha 4 da Carta Geológica de Portugal, à Escala 1/200,000, 1st ed.; Laboratório Nacional de Energía e Geologia: Lisboa, Portugal, 2020; ISSN 978-989-675-080-0. [Google Scholar]
- Antunes, I.M.H.R.; Neiva, A.M.R.; Silva, M.M.V.G.; Corfu, F. The genesis of I- and S-type granitoid rocks of the Early Ordovician Oledo pluton, Central Iberian Zone (central Portugal). Lithos 2009, 111, 168–185. [Google Scholar] [CrossRef]
- Antunes, I.M.H.R.; Neiva, A.M.R.; Corfu, F. U-Pb Early Ordovician emplacement ages and K-Ar Variscan recrystallization ages of the Fundão granitic pluton, central Portugal. In Proceedings of the European Mineralogical Conference Abstract Book, Frankfurt, Germany, 2–6 September 2012; pp. 1–2. [Google Scholar]
- Metodiev, D.; Romão, J.; Dias, R.; Ribeiro, A. Sinclinal de Vila Velha de Ródão (Zona Centro-Ibérica, Portugal): Litostratigrafia, estrutura e modelo de evolução da tectónica Varisca. Comun. Geológicas LNEG 2009, 96, 5–18. [Google Scholar]
- Dias, R.P.; Cabral, J. Neogene and Quaternary reactivation of the Ponsul river fault in Portugal. Comun. Serviços Geológicos Port. 1989, 75, 3–28. [Google Scholar]
- Inverno, C.; Ribeiro, M. Fracturação e cortejo filonenano nas Minas da Argemela (Fundão). Comun. Serviço Geológico Port. 1980, 66, 185–193. [Google Scholar]
- Graham, J.W. Magnetic susceptibility anisotropy, an unexploited petrofabric element. Geol. Soc. Am. Bull. 1954, 65, 1257–1258. [Google Scholar]
- Collinson, D.W. Methods in Rock Magnetism and Paleomagnetism: Techniques and Instrumentation; Chapman and Hall: London, UK, 1983. [Google Scholar]
- Tarling, D.H.; Hrouda, F. The Magnetic Anisotropy of Rocks; Chapman and Hall: London, UK, 1993; 217p. [Google Scholar]
- Jelinek, V. Characterization of the magnetic fabric of rocks. Tectonophysics 1981, 79, 63–67. [Google Scholar] [CrossRef]
- Chadima, M.; Jelinek, V. Anisoft 5.1.03: Advanced Treatment of Magnetic Anisotropy Data (For Windows); AGICO. Inc.: Brno, Czech Republic, 2019. [Google Scholar]
- Lespinasse, M.; Cathelineau, M. Paleostress magnitudes determination by using fault slip and fluid inclusions planes data. J. Geophys. Res. 1995, 100, 3895–3904. [Google Scholar] [CrossRef]
- Hennings, S.; Vollbrecht, A.; Van den Kerkhof, A.M.; Alfons, M.; Hein, U.F. Healed microcracks in late Variscan granites-comparison between the NE Bavarian Basement and the Harz Mountains (Germany). In Proceedings of the ECROFI XIX, Bern, Switzerland, 17–20 July 2007. [Google Scholar]
- Van den Kerkhof, A.M.; Hein, U.F. Fluid inclusion petrography. Lithos 2001, 55, 27–47. [Google Scholar] [CrossRef]
- Geoimagin v.3 Geological Image Software Created by Pedro Nogueira. Available online: https://home.uevora.pt/~pmn/geoimagin/ (accessed on 10 April 2014).
- Smith, D.L.; Evans, B. Diffusional crack healing in quartz. J. Geophys. Res. 1984, 89, 4125–4135. [Google Scholar] [CrossRef]
- Brantley, S.L. The effect of fluid chemistry on microcracks life-times. Earth Planet. Sci. Lett. 1992, 113, 145–156. [Google Scholar] [CrossRef]
- Batista, M.J.; Torres, L.; Leote, J.; Prazeres, C.; Saraiva, J.; Carvalho, J. Carta Radiométrica de Portugal (1:500,000); Laboratório de Energia e Geologia: Lisbon, Portugal, 2013; ISBN 978-989-675-027-5. [Google Scholar]
- Duval, J. Composite color images of aerial gamma-ray spectrometric data. Geophysics 1983, 48, 722–735. [Google Scholar] [CrossRef]
- Minty, B. Fundamentals of airborne gamma-ray spectrometry. AGSO J. Aust. Geol. Geophys. 1997, 17, 39–50. [Google Scholar]
- Erdi-Krausz, G.; Matolin, M.; Minty, B.; Nicolet, J.P.; Reford, W.S.; Schetselaar, E. Guidelines for Radioelement Mapping Using Gamma-ray Spectrometry Data. In Proceedings of the International Atomic Energy Agency Publication IAEA-TECDOC-1363, Vienna, Austria, July 2003. [Google Scholar]
- Abdelsalam, M.G.; Katumwehe, A.B.; Atekwana, E.A.; Le Pera, A.K.; Achang, M. The Paleoproterozoic Singo granite in south-central Uganda revealed as a nested igneous ring complex using geophysical data. J. Afr. Earth Sci. 2016, 116, 198–212. [Google Scholar] [CrossRef]
- Vigneresse, J.L.; Tikoff, B.; Améglio, L. Modification of the regional stress field by magma intrusion and formation of tabular granitic plutons. Tectonophysics 1999, 302, 203–224. [Google Scholar] [CrossRef]
- Direção-Geral do Território: Rede Nacional de Gravimetria. Available online: https://snig.dgterritorio.gov.pt/rndg/srv/por/catalog.search#/search?anysnig=gravimetria&fast=index (accessed on 18 October 2022).
- Passchier, C.W.; Trouw, R.A. Microtectonics; Springer: Berlin/Heidelberg, Germany, 1996; 372p. [Google Scholar] [CrossRef]
- Hinze, W.J.; Von Frese, R.R.B.; Saad, A.H. Gravity and Magnetic Exploration—Principals, Practices and Applications; Cambridge University Press: Cambridge, UK, 2013; p. 325. [Google Scholar]
- Heller, F. Magnetic anisotropy of granitic rocks of the Bergell Massif (Switzerland). Earth Planet. Sci. Lett. 1973, 20, 180–188. [Google Scholar] [CrossRef]
- Bloemendal, J.; Lamb, J.B.; King, J. Paleoenvironmental implications of rock-magnetic properties of late quaternary sediment cores from the eastern equatorial Atlantic. Paleoceanography 1988, 3, 61–87. [Google Scholar] [CrossRef]
- Mezcua, J.; Gil, A.; Benarroch, R. Anomalías gravimétricas bouguer de la Península Ibérica y Baleares, Escala 1:1,000,000; Instituto Geográfico Nacional: Madrid, Spain, 1996. [Google Scholar]
- Paterson, S.R.; Vernon, R.H. Bursting the bubble of ballooning plutons: A return to nested diapirs emplaced by multiple processes. GSA Bull. 1995, 107, 1356–1380. [Google Scholar] [CrossRef]
- Hines, R.; Paterson, S.R.; Memeti, V.; Chambers, J.A. Nested Incremental Growth of Zoned Upper Crustal Plutons in the Southern Uplands Terrane, UK: Fractionating, Mixing, and Contaminated Magma Fingers. J. Petrol. 2018, 59, 483–516. [Google Scholar] [CrossRef]
- Sant’Ovaia, H.; Olivier, P.; Ferreira, N.; Noronha, F.; Leblanc, D. Magmatic structures and kinematics emplacement of the Variscan granites from Central Portugal (Serra da Estrela and Castro Daire areas). J. Struct. Geol. 2010, 32, 1450–1465. [Google Scholar] [CrossRef]
Sites | Lithology | Km (μSI) | P (%) | T | K1 | K3 | Foliation | N | ||
---|---|---|---|---|---|---|---|---|---|---|
Tr. | Pl. | Tr. | Pl. | |||||||
CB1 | Biotite-rich granite | 64.8 | 6.4 | 0.466 | 133 | 72 | 259 | 12 | N169°, 78° NE | 13 |
CB2 | Two-mica granite | 35.0 | 5.5 | 0.386 | 24 | 38 | 283 | 13 | N13°, 77° SE | 11 |
CB3 | Biotite-rich granite | 69.3 | 4.8 | 0.316 | 68 | 46 | 244 | 46 | N154°, 44° NE | 14 |
CB4 | Biotite-rich granite | 71.8 | 4.7 | 0.391 | 341 | 77 | 204 | 5 | N114°, 85° NE | 9 |
CB5 | Biotite-rich granite | 87.9 | 3.4 | 0.069 | 341 | 50 | 234 | 21 | N144°, 69° NE | 8 |
CB6 | Biotite-rich granite | 125.1 | 5.6 | 0.569 | 51 | 81 | 250 | 11 | N160°, 79° NE | 11 |
CB7 | Two-mica granite | 56.4 | 8.3 | 0.595 | 163 | 54 | 254 | 1 | N164°, 89° NE | 8 |
CB8 | Biotite-rich granite | 65.8 | 3.2 | −0.194 | 64 | 7 | 181 | 71 | N91°, 19° N | 9 |
CB9 | Biotite-rich granite | 85.6 | 1.9 | 0.191 | 317 | 57 | 96 | 16 | N6°, 74° W | 8 |
CB10 | Two-mica granite | 53.3 | 13.2 | 0.382 | 278 | 15 | 159 | 62 | N69°, 38° NW | 10 |
CB11 | Two-mica granite | 52.6 | 5.6 | 0.097 | 188 | 31 | 15 | 54 | N105°, 36° SW | 6 |
CB12 | Two-mica granite | 48.7 | 9.8 | 0.277 | 245 | 56 | 41 | 39 | N131°, 51° SW | 7 |
CB13 | Biotite-rich granite | 121.7 | 6.2 | 0.264 | 148 | 76 | 43 | 8 | N133°, 82° SW | 9 |
CB14 | Biotite-rich granite | 77.1 | 5.2 | −0.026 | 154 | 48 | 287 | 26 | N17°, 64° SE | 8 |
CB15 | Biotite-rich granite | 97.6 | 4.8 | 0.336 | 132 | 19 | 225 | 12 | N135°, 78° NE | 2 |
CB16 | Biotite-rich granite | 93.4 | 8.7 | 0.482 | 295 | 82 | 113 | 8 | N23°, 72° NW | 8 |
CB17 | Biotite-rich granite | 86.9 | 2.2 | −0.084 | 191 | 58 | 67 | 20 | N157°, 70° SW | 3 |
CB18 | Biotite-rich granite | 79.3 | 5.6 | 0.575 | 117 | 78 | 292 | 13 | N22°, 77° SE | 6 |
CB19 | Two-mica granite | 56.1 | 2.3 | 0.550 | 319 | 54 | 95 | 27 | N185°, 63° W | 10 |
CB20 | Two-mica granite | 54.8 | 2.2 | 0.110 | 338 | 68 | 106 | 20 | N16°, 70° NW | 8 |
CB21 | Two-mica granite | 7.3 | 7.4 | −0.152 | 70 | 17 | 175 | 41 | N85°, 49° N | 8 |
CB22 | Two-mica granite | 30.6 | 4.2 | 0.244 | 288 | 66 | 62 | 17 | N152°, 73° SW | 11 |
CB23 | Two-mica granite | 36.6 | 6.7 | 0.259 | 202 | 54 | 94 | 12 | N4°, 78° W | 7 |
CB24 | Two-mica granite | 63.8 | 6.5 | 0.282 | 323 | 61 | 102 | 21 | N12°, 69° NW | 9 |
CB25 | Two-mica granite | 48.2 | 3.9 | 0.249 | 13 | 17 | 265 | 61 | N175°, 29° NE | 2 |
CB26 | Two-mica granite | 48.9 | 2.8 | 0.342 | 23 | 76 | 148 | 7 | N58°, 83° NW | 6 |
CB27 | Two-mica granite | 59.8 | 3.9 | 0.280 | 328 | 77 | 212 | 12 | N122°, 78° NE | 10 |
CB28 | Two-mica granite | 55.4 | 2.9 | 0.500 | 103 | 20 | 219 | 46 | N129°, 44° NE | 8 |
CB29 | Two-mica granite | 56.0 | 3.2 | −0.045 | 153 | 39 | 356 | 40 | N86°, 50° S | 8 |
CB30 | Biotite-rich granite | 88.0 | 3.7 | 0.153 | 314 | 12 | 212 | 54 | N122°, 36° NE | 7 |
CB31 | Two-mica granite | 56.0 | 5.7 | 0.087 | 95 | 22 | 196 | 27 | N106°, 63° NE | 8 |
CB32 | Two-mica granite | 48.9 | 3.6 | 0.073 | 303 | 20 | 210 | 9 | N120°, 81° NE | 11 |
CB33 | Two-mica granite | 63.4 | 4.0 | −0.176 | 308 | 26 | 130 | 63 | N40°, 27° NW | 10 |
CB34 | Biotite-rich granite | 131.2 | 6.0 | 0.375 | 312 | 26 | 50 | 25 | N140°, 65° SW | 7 |
CB35 | Biotite-rich granite | 85.0 | 5.3 | 0.324 | 135 | 49 | 241 | 11 | N151°, 79° NE | 6 |
CB36 | Biotite-rich granite | 107.1 | 7.8 | 0.187 | 251 | 57 | 68 | 27 | N158°, 63° SW | 8 |
CB37 | Biotite-rich granite | 41.5 | 4.6 | 0.388 | 280 | 63 | 73 | 25 | N163°, 65° SW | 7 |
CB38 | Biotite-rich granite | 127.4 | 2.8 | 0.373 | 147 | 50 | 239 | 3 | N149°, 87° NE | 4 |
CB39 | Biotite-rich granite | 119.3 | 4.7 | 0.003 | 118 | 58 | 246 | 24 | N156°, 66° NE | 8 |
CB40 | Biotite-rich granite | 91.3 | 2.7 | 0.308 | 137 | 20 | 235 | 4 | N145°, 86° NE | 10 |
CB41 | Biotite-rich granite | 67.5 | 2.7 | −0.064 | 322 | 8 | 220 | 37 | N130°, 53° NE | 8 |
CB42 | Two-mica granite | 24.6 | 4.0 | −0.166 | 313 | 12 | 220 | 22 | N130°, 68° NE | 8 |
CB43 | Two-mica granite | 65.0 | 12.5 | 0.338 | 185 | 41 | 90 | 6 | NS, 84° W | 7 |
CB44 | Two-mica granite | 40.5 | 8.3 | 0.437 | 107 | 49 | 19 | 4 | N109°, 86° SW | 9 |
CB45 | Two-mica granite | 50.4 | 5.7 | 0.077 | 168 | 34 | 267 | 10 | N177°, 80° NE | 5 |
CB46 | Two-mica granite | 52.5 | 4.4 | 0.395 | 147 | 2 | 231 | 1 | N141°, 89° NE | 6 |
CB47 | Biotite-rich granite | 38.2 | 2.5 | −0.096 | 299 | 33 | 160 | 47 | N70°, 43° NW | 7 |
CB48 | Biotite-rich granite | 84.2 | 7.6 | 0.400 | 156 | 44 | 258 | 2 | N168°, 88° NE | 6 |
CB49 | Biotite-rich granite | 99.1 | 3.0 | 0.562 | 191 | 48 | 302 | 15 | N32°, 75° SE | 7 |
CB50 | Biotite-rich granite | 53.9 | 3.0 | 0.067 | 119 | 0 | 61 | 77 | N151°, 13° SW | 7 |
CB51 | Two-mica granite | 50.0 | 2.7 | −0.020 | 55 | 59 | 183 | 24 | N93°, 66° N | 5 |
CB52 | Two-mica granite | 40.9 | 5.4 | 0.345 | 285 | 2 | 199 | 4 | N109°, 86° NE | 8 |
CB53 | Biotite-rich granite | 100.6 | 4.0 | 0.694 | 324 | 37 | 236 | 4 | N146°, 86° NE | 4 |
CB54 | Biotite-rich granite | 114.0 | 2.3 | −0.270 | 187 | 27 | 21 | 62 | N111°, 28° SW | 4 |
CB55 | Biotite-rich granite | 104.7 | 2.4 | 0.081 | 65 | 20 | 168 | 67 | N78°, 31° NW | 3 |
CB56 | Biotite-rich granite | 71.5 | 3.4 | 0.445 | 145 | 26 | 31 | 29 | N121°, 61° SW | 7 |
CB57 | Two-mica granite | 56.0 | 3.2 | 0.558 | 159 | 70 | 30 | 13 | N120°, 77° SW | 8 |
CB58 | Two-mica granite | 45.3 | 2.9 | 0.345 | 145 | 28 | 20 | 46 | N110°, 44° SW | 5 |
CB59 | Two-mica granite | 42.7 | 2.1 | 0.200 | 25 | 61 | 221 | 28 | N131°, 62° NE | 6 |
CB60 | Two-mica granite | 65.4 | 5.1 | 0.380 | 325 | 12 | 58 | 19 | N148°, 71° SW | 11 |
CB61 | Two-mica granite | 56.9 | 1.9 | 0.247 | 328 | 27 | 58 | 0 | N146°, 90° | 8 |
CB62 | Biotite-rich granite | 84.3 | 3.4 | 0.051 | 316 | 2 | 50 | 6 | N140°, 84° SW | 7 |
CB63 | Biotite-rich granite | 95.2 | 4.7 | 0.228 | 327 | 16 | 230 | 19 | N140°, 71° NE | 4 |
CB64 | Biotite-rich granite | 81.2 | 4.3 | 0.340 | 284 | 24 | 21 | 6 | N111°, 84° SW | 4 |
CB65 | Biotite-rich granite | 73.7 | 4.9 | 0.496 | 136 | 33 | 33 | 20 | N123°, 70° SW | 7 |
CB66 | Biotite-rich granite | 116.0 | 3.1 | 0.593 | 158 | 64 | 267 | 11 | N177°, 79° NE | 3 |
CB67 | Biotite-rich granite | 76.8 | 4.5 | 0.435 | 146 | 20 | 48 | 19 | N138°, 71° SW | 4 |
CB68 | Biotite-rich granite | 97.7 | 3.2 | 0.422 | 263 | 26 | 25 | 51 | N115°, 39° SW | 6 |
CB69 | Biotite-rich granite | 66.5 | 4.7 | 0.318 | 132 | 66 | 337 | 26 | N67°, 64° SE | 9 |
CB70 | Biotite-rich granite | 71.4 | 5.8 | 0.301 | 139 | 74 | 337 | 14 | N67°, 76° SE | 7 |
CB71 | Biotite-rich granite | 186.0 | 3.6 | −0.510 | 256 | 56 | 160 | 12 | N70°, 78° NW | 5 |
CB72 | Biotite-rich granite | 68.2 | 7.0 | 0.221 | 110 | 51 | 13 | 4 | N103°, 86° SW | 2 |
CB73 | Biotite-rich granite | 93.4 | 2.7 | 0.620 | 264 | 9 | 360 | 4 | N90°, 86° S | 2 |
CB74 | Two-mica granite | 70.5 | 5.7 | 0.141 | 145 | 1 | 53 | 50 | N143°, 40° SW | 11 |
CB75 | Two-mica granite | 54.2 | 4.7 | 0.271 | 275 | 53 | 99 | 37 | N189°, 53° W | 7 |
CB76 | Biotite-rich granite | 92.1 | 3.3 | 0.220 | 299 | 11 | 87 | 77 | N177°, 13° W | 8 |
CB77 | Biotite-rich granite | 87.2 | 2.0 | 0.089 | 303 | 59 | 201 | 7 | N111°, 83° NE | 5 |
CB78 | Biotite-rich granite | 74.8 | 3.4 | 0.285 | 316 | 52 | 56 | 8 | N146°, 81° SW | 10 |
CB79 | Two-mica granite | 60.7 | 3.0 | 0.039 | 263 | 32 | 6 | 21 | N96°, 69° S | 8 |
CB80 | Two-mica granite | 44.3 | 4.9 | 0.231 | 126 | 34 | 280 | 53 | N10°, 37° E | 6 |
CB81 | Two-mica granite | 58.7 | 3.2 | 0.115 | 118 | 22 | 28 | 1 | N118°, 89° SW | 8 |
CB82 | Two-mica granite | 29.8 | 4.6 | 0.039 | 64 | 45 | 158 | 4 | N68°, 86° NW | 7 |
CB83 | Two-mica granite | 89.7 | 4.4 | −0.020 | 305 | 5 | 57 | 77 | N147°, 13° SW | 5 |
CB84 | Two-mica granite | 64.5 | 7.5 | 0.731 | 141 | 52 | 44 | 5 | N134°, 85° SW | 10 |
Statistical Parameters | In the Studied Area | Within the CB Pluton | CB—Two Mica Granites | CB—Biotite-Rich Granites |
---|---|---|---|---|
Mean value | 86.48 | 133.87 | 126.74 | 135.98 |
Standard deviation | 52.60 | 71.93 | 51.83 | 76.77 |
Range | 4994.43 | 4944.67 | 1352.28 | 4944.67 |
Minimum | 12.22 | 61.98 | 78.57 | 61.98 |
Maximum | 5006.66 | 5006.66 | 1430.85 | 5006.66 |
Count | 24753 | 6280 | 1435 | 4845 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz, C.; Sant’Ovaia, H.; Martins, H.C.B.; Antunes, I.M.H.R.; Rocha, A.; Noronha, F. Variscan Plutonism in the Geodynamic Evolution of the Central Iberian Zone of Portugal: Castelo Branco Pluton as Another Piece of the Puzzle. Geosciences 2025, 15, 72. https://doi.org/10.3390/geosciences15020072
Cruz C, Sant’Ovaia H, Martins HCB, Antunes IMHR, Rocha A, Noronha F. Variscan Plutonism in the Geodynamic Evolution of the Central Iberian Zone of Portugal: Castelo Branco Pluton as Another Piece of the Puzzle. Geosciences. 2025; 15(2):72. https://doi.org/10.3390/geosciences15020072
Chicago/Turabian StyleCruz, Cláudia, Helena Sant’Ovaia, Helena C. B. Martins, Isabel M. H. R. Antunes, Armando Rocha, and Fernando Noronha. 2025. "Variscan Plutonism in the Geodynamic Evolution of the Central Iberian Zone of Portugal: Castelo Branco Pluton as Another Piece of the Puzzle" Geosciences 15, no. 2: 72. https://doi.org/10.3390/geosciences15020072
APA StyleCruz, C., Sant’Ovaia, H., Martins, H. C. B., Antunes, I. M. H. R., Rocha, A., & Noronha, F. (2025). Variscan Plutonism in the Geodynamic Evolution of the Central Iberian Zone of Portugal: Castelo Branco Pluton as Another Piece of the Puzzle. Geosciences, 15(2), 72. https://doi.org/10.3390/geosciences15020072