Cenozoic Multiphasic Activity and Mesozoic Basin-Control Role of the Dingri–Gangba Fault, Southern Tibet: An Integrated Study of Structural Analysis, Stratigraphic Correlation, and ESR Geochronology
Abstract
1. Introduction
2. Geological Background
3. ESR Dating
3.1. Sample Collection
3.2. Methodology: Principles, Experimental Procedures, and Limitations
3.2.1. Rationale for Method Selection
3.2.2. Experimental Procedures and Closed-System Behavior
3.2.3. Assessment of Dating Uncertainties
3.3. Results and Interpretation
4. Field Geological Characteristics
4.1. Structural Deformation Characteristics
4.1.1. Geological Characteristics of the Kema Segment
4.1.2. Geological Characteristics of the Nanmujia Segment
4.1.3. Geological Characteristics of the Naigulin Segment
4.1.4. Geological Characteristics of the Maiduozha Segment
4.2. Deformation Characteristics of Different Stratigraphic Units
4.2.1. Structural Deformation of the Northern Sub-Belt
4.2.2. Structural Deformation of the Southern Sub-Belt
4.3. Multi-Phase Activity Analysis
4.3.1. Reverse Compressional Stage
4.3.2. Extensional Normal Fault Stage
4.3.3. Strike-Slip Shear Stage
5. Discussion
5.1. Cenozoic Deformation Phases of the Dingri–Gangba Fault
5.1.1. Reverse Compressional Stage (Paleocene–Middle Eocene)
5.1.2. Extension and Detachment Stage (Late Eocene–Middle Miocene)
5.1.3. Strike-Slip Shear Stage (Miocene)
5.2. Mesozoic Basin Control by the Dingri–Gangba Fault
5.2.1. Late Paleozoic Uniform Period (~P)
5.2.2. Triassic Differentiation Period (T)
5.2.3. Early Jurassic Uniform Period (J1)
5.2.4. Middle to Late Jurassic Differentiation Period (J2-3)
5.2.5. Early Cretaceous Uniform Period (K1)
5.2.6. Late Cretaceous Differentiation Period (K2)
5.3. Tectonic Evolution and Dynamic Background
5.3.1. Mesozoic Passive Margin Basin Control
5.3.2. Reactivation During Cenozoic Collisional Orogeny
5.3.3. Regional Dynamic Significance
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Stage | Lineation Characteristics | Fault Attitude | Lineation Attitude | Principal Stress (σ1) |
|---|---|---|---|---|
| Stage 1 | Left-lateral thrust fault | 121°/89° | 176°/37° | 209°/37° |
| Left-lateral thrust fault | 110°/78° | 185°/46° | 187°/46° | |
| Left-lateral thrust fault | 130°/79° | 200°/35° | 211°/38° | |
| Left-lateral thrust fault | 120°/83° | 190°/50° | 201°/50° | |
| Left-lateral thrust fault | 121°/81° | 196°/48° | 201°/49° | |
| Left-lateral thrust fault | 160°/44° | 195°/46° | 185°/41° | |
| Left-lateral thrust fault | 156°/74° | 189°/60° | 202°/68° | |
| Left-lateral thrust fault | 183°/73° | 185°/66° | 186°/73° | |
| Left-lateral thrust fault | 150°/60° | 178°/63° | 174°/58° | |
| Left-lateral thrust fault | 183°/35° | 192°/41° | 191°/35° | |
| Left-lateral thrust fault | 160°/62° | 202°/44° | 210°/50° | |
| Left-lateral thrust fault | 138°/56° | 135°/65° | 136°/56° | |
| Left-lateral thrust fault | 205°/58° | 247°/71° | 229°/56° | |
| Left-lateral thrust fault | 335°/60° | 356°/59° | 346°/29° | |
| Left-lateral thrust fault | 305°/41° | 218°/4° | 3°/25° | |
| Left-lateral thrust fault | 314°/41° | 2°/28° | 3°/30° | |
| Left-lateral thrust fault | 309°/70° | 8°/29° | 27°/29° | |
| Left-lateral thrust fault | 355°/76° | 0°/72° | 1°/76° | |
| Left-lateral thrust fault | 356°/67° | 25°/71° | 18°/65° | |
| Left-lateral thrust fault | 38°/31° | 32°/31° | 32°/31° | |
| Left-lateral thrust fault | 42°/48° | 12°/47° | 14°/44° | |
| Left-lateral thrust fault | 68°/33° | 50°/34° | 356°/59° | |
| Left-lateral thrust fault | 30°/77° | 357°/67° | 335°/67° | |
| Right-lateral thrust fault | 155°/58° | 154°/55° | 154°/58° | |
| Right-lateral thrust fault | 38°/89° | 130°/41° | 127°/41° | |
| Stage 2 | Left-lateral normal fault | 189°/52° | 176°/52° | 176°/52° |
| Left-lateral normal fault | 157°/72° | 136°/69° | 131°/70° | |
| Left-lateral normal fault | 201°/85° | 190°/79° | 178°/85° | |
| Left-lateral normal fault | 9°/41° | 11°/40° | 11°/40° | |
| Left-lateral normal fault | 11°/81° | 7°/80° | 7°/80° | |
| Left-lateral normal fault | 68°/55° | 11°/40° | 12°/39° | |
| Left-lateral normal fault | 9°/57° | 13°/55° | 13°/57° | |
| Left-lateral normal fault | 47°/54° | 25°/56° | 27°/52° | |
| Left-lateral normal fault | 18°/57° | 11°/53° | 10°/57° | |
| Left-lateral normal fault | 43°/56° | 24°/44° | 355°/44° | |
| Left-lateral normal fault | 42°/50° | 24°/56° | 27°/49° | |
| Left-lateral normal fault | 12°/48° | 18°/46° | 18°/48° | |
| Left-lateral normal fault | 22°/45° | 0°/46° | 1°/43° | |
| Left-lateral normal fault | 310°/77° | 285°/73° | 281°/75° | |
| Left-lateral normal fault | 350°/47° | 352°/41° | 352°/47° | |
| Left-lateral normal fault | 342°/71° | 326°/72° | 327°/70° | |
| Left-lateral normal fault | 350°/74° | 3°/84° | 352°/74° | |
| Left-lateral normal fault | 339°/86° | 0°/77° | 29°/84° | |
| Left-lateral normal fault | 318°/80° | 281°/54° | 243°/54° | |
| Left-lateral normal fault | 349°/77° | 330°/68° | 320°/75° | |
| Left-lateral normal fault | 346°/87° | 306°/67° | 263°/67° | |
| Left-lateral normal fault | 326°/76° | 346°/73° | 349°/75° | |
| Left-lateral normal fault | 340°/78° | 336°/50° | 265°/50° | |
| Right-lateral normal fault | 32°/74° | 32°/50° | 323°/50° | |
| Right-lateral normal fault | 80°/82° | 120°/69° | 140°/74° | |
| Right-lateral normal fault | 184°/85° | 176°/67° | 106°/67° | |
| Right-lateral normal fault | 145°/55° | 186°/39° | 191°/45° | |
| Right-lateral normal fault | 345°/74° | 347°/72° | 347°/74° | |
| Right-lateral normal fault | 329°/80° | 331°/74° | 332°/80° | |
| Right-lateral normal fault | 340°/80° | 327°/80° | 327°/80° | |
| Left-lateral strike-slip | 110°/29° | 185°/13° | 183°/9° | |
| Left-lateral thrust fault | 69°/88° | 310°/71° | 346°/71° | |
| Left-lateral thrust fault | 72°/78° | 286°/84° | 69°/78° | |
| Left-lateral thrust fault | 24°/88° | 10°/85° | 321°/85° | |
| Left-lateral thrust fault | 24°/88° | 43°/87° | 87°/43° | |
| Left-lateral thrust fault | 165°/76° | 170°/79° | 169°/76° | |
| Left-lateral thrust fault | 158°/84° | 162°/89° | 159°/84° | |
| Right-lateral thrust fault | 30°/81° | 196°/53° | 107°/53° | |
| Stage 3 | Left-lateral normal fault | 357°/44° | 35°/45° | 31°/39° |
| Left-lateral normal fault | 355°/76° | 304°/42° | 279°/42° | |
| Left-lateral normal fault | 350°/69° | 312°/65° | 312°/65° | |
| Left-lateral normal fault | 344°/56° | 351°/59° | 351°/55° | |
| Left-lateral normal fault | 342°/66° | 325°/60° | 322°/65° | |
| Left-lateral normal fault | 339°/88° | 355°/55° | 252°/55° | |
| Left-lateral normal fault | 333°/72° | 304°/53° | 270°/53° | |
| Left-lateral normal fault | 330°/80° | 0°/75° | 7°/78° | |
| Left-lateral normal fault | 325°/60° | 278°/38° | 270°/45° | |
| Left-lateral thrust fault | 309°/70° | 305°/14° | 226°/19° | |
| Left-lateral normal fault | 302°/64° | 301°/55° | 301°/64° | |
| Left-lateral thrust fault | 300°/84° | 185°/51° | 218°/51° | |
| Left-lateral normal fault | 228°/57° | 270°/44° | 273°/47° | |
| Left-lateral normal fault | 223°/55° | 177°/53° | 183°/47° | |
| Left-lateral normal fault | 211°/65° | 146°/59° | 159°/53° | |
| Left-lateral normal fault | 209°/52° | 176°/50° | 178°/48° | |
| Left-lateral normal fault | 192°/66° | 175°/64° | 172°/65° | |
| Left-lateral normal fault | 177°/52° | 143°/51° | 146°/48° | |
| Left-lateral normal fault | 161°/59° | 150°/58° | 150°/58° | |
| Left-lateral normal fault | 156°/73° | 104°/49° | 91°/55° | |
| Left-lateral normal fault | 156°/59° | 145°/46° | 106°/46° | |
| Left-lateral normal fault | 155°/58° | 185°/52° | 146°/58° | |
| Left-lateral normal fault | 147°/30° | 111°/26° | 111°/26° | |
| Left-lateral normal fault | 132°/60° | 109°/53° | 106°/57° | |
| Left-lateral normal fault | 130°/75° | 186°/46° | 203°/46° | |
| Left-lateral normal fault | 47°/58° | 344°/49° | 353°/43° | |
| Left-lateral normal fault | 45°/62° | 346°/41° | 344°/42° | |
| Left-lateral normal fault | 43°/56° | 53°/57° | 53°/56° | |
| Left-lateral normal fault | 30°/71° | 55°/55° | 55°/89° | |
| Left-lateral normal fault | 22°/65° | 331°/44° | 320°/44° | |
| Left-lateral normal fault | 20°/61° | 15°/61° | 15°/61° | |
| Left-lateral normal fault | 20°/53° | 339°/49° | 342°/46° | |
| Left-lateral normal fault | 19°/54° | 349°/47° | 347°/50° | |
| Left-lateral normal fault | 13°/55° | 342°/51° | 342°/51° | |
| Left-lateral normal fault | 9°/84° | 312°/49° | 286°/49° | |
| Left-lateral normal fault | 8°/69° | 320°/35° | 293°/35° | |
| Left-lateral normal fault | 5°/62° | 1°/59° | 1°/62° | |
| Left-lateral normal fault | 2°/74° | 299°/46° | 291°/49° | |
| Left-lateral normal fault | 0°/54° | 330°/50° | 330°/50° | |
| Right-lateral normal fault | 356°/56° | 333°/47° | 330°/53° | |
| Right-lateral normal fault | 349°/62° | 331°/66° | 334°/61° | |
| Right-lateral normal fault | 339°/68° | 335°/62° | 338°/68° | |
| Right-lateral normal fault | 215°/61° | 226°/55° | 228°/60° | |
| Right-lateral normal fault | 170°/61° | 220°/30° | 240°/30° | |
| Right-lateral normal fault | 166°/61° | 160°/74° | 165°/61° | |
| Right-lateral normal fault | 152°/87° | 218°/66° | 235°/66° | |
| Right-lateral normal fault | 150°/71° | 199°/68° | 192°/65° | |
| Right-lateral normal fault | 144°/69° | 200°/65° | 190°/61° | |
| Right-lateral normal fault | 141°/89° | 200°/61° | 229°/61° | |
| Right-lateral normal fault | 310°/88° | 144°/89° | 227°/71° |
References
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef]
- Pan, G.T.; Wang, L.Q.; Li, R.S.; Yuan, S.; Ji, W.; Yin, F.; Wang, B. Tectonic evolution of the Qinghai-Tibet Plateau. J. Asian Earth Sci. 2012, 53, 3–14. [Google Scholar] [CrossRef]
- Metcalfe, I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J. Asian Earth Sci. 2013, 66, 1–33. [Google Scholar] [CrossRef]
- Bhargava, O.N.; Singh, B.P. Geological evolution of the Tethys Himalaya. Episodes 2020, 43, 404–420. [Google Scholar] [CrossRef]
- Huang, J.Q.; Ren, J.S. The Geotectonic Evolution of China: Explanatory Notes to the 1:4,000,000 Geotectonic Map of China; Science Press: Beijing, China, 1980; 59p. [Google Scholar]
- Sheng, Y.; Jin, S.; Comeau, M.J.; Hou, Z.; Zhang, L.; Wei, W.; Ye, G. Relationship between the migration of crustal material, normal faulting, and gneiss domes in the vicinity of the Dinggye region, Central part of the Tethys-Himalaya terrane: Insights from the 3-D electrical structure. Tectonophysics 2023, 869, 230100. [Google Scholar] [CrossRef]
- Yan, S.T.; Ding, A.L.; Dai, X.J.; Li, H.; Liu, T.; Zhu, L.D.; Wu, Q.S. Material Composition of the Newly Discovered Zongzhuo Formation Sedimentary Mélange in the Dingri Area, Southern Tibet, and its Constraints on the Basin Controlling Dingri–Gangba fault. Acta Geol. Sin.-Engl. Ed. 2024, 98, 1171–1186. [Google Scholar] [CrossRef]
- LeLoup, P.H.; Mahéo, G.; Arnaud, N.; Kali, E.; Boutonnet, E.; Liu, D.Y.; Liu, X.H.; Li, H.B. The South Tibet detachment shear zone in the Dinggye area: Time constraints on extrusion models of the Himalayas. Earth Planet. Sci. Lett. 2010, 292, 1–16. [Google Scholar] [CrossRef]
- Zhu, T.X.; Zhou, M.K.; Feng, X.T. Phanerozoic Stratigraphy and Basin Evolution of the Northern Himalaya Slope, Tibet; Geological Publishing House: Beijing, China, 2005; pp. 11–12. [Google Scholar]
- Li, D.; Yin, A. Orogen-parallel, active left-slip faults in the Eastern Himalaya: Implications for the growth mechanism of the Himalayan Arc. Earth Planet. Sci. Lett. 2008, 274, 258–267. [Google Scholar] [CrossRef]
- Hodges, K.V. Tectonics of the Himalaya and southern Tibet from two perspectives. Geol. Soc. Am. Bull. 2000, 112, 324–350. [Google Scholar] [CrossRef]
- Greenwood, L.V.; Argles, T.W.; Parrish, R.R.; Harris, B.W.; Warren, C. The geology and tectonics of central Bhutan. J. Geol. Soc. 2016, 173, 352–369. [Google Scholar] [CrossRef]
- Liu, S.; Xia, T.; Wu, M.Q.; Zhou, J.; Wang, Y.; Wei, M.H. Structural features and geological significance of Lhozhag Fault in Lhozhag area, southern Tibet. Geoscience 2019, 33, 1–12. [Google Scholar] [CrossRef]
- Zhu, D.C.; Pan, G.T.; Mo, X.X.; Liao, Z.L.; Jiang, X.S.; Wang, L.Q.; Zhao, Z.D. Petrogenesis of volcanic rocks in the Sangxiu Formation, central segment of Tethyan Himalaya: A probable example of plume-lithosphere interaction. J. Asian Earth Sci. 2007, 29, 320–335. [Google Scholar] [CrossRef]
- Hu, X.M.; Garzanti, E.; Wang, J.G.; Huang, W.T.; An, W.; Webb, A. The timing of India-Asia collision onset: Facts, theories, controversies. Earth-Sci. Rev. 2016, 160, 264–299. [Google Scholar] [CrossRef]
- Kellett, D.A.; Cottle, J.M.; Larson, K.P. The South Tibetan Detachment System: History, advances, definition and future directions. Geol. Soc. Lond. Spec. Publ. 2019, 483, 377–400. [Google Scholar] [CrossRef]
- Langille, J.; Lee, J.; Hacker, B.; Seward, G. Middle Crustal Ductile Deformation Patterns in Southern Tibet: Insights from Vorticity Studies in Mabja Dome. J. Struct. Geol. 2010, 32, 70–85. [Google Scholar] [CrossRef]
- Tong, Y.B.; Pei, J.L.; Qian, T.; Sun, S.S.; Hou, L.F.; Sun, X.X.; Zhang, Z.J.; Yang, B. Three-stage India-Asia collision proposed by the thrice remagnetizations of the Tethyan Himalaya Terrane. Geophys. Res. Lett. 2024, 51, e2024GL110286. [Google Scholar] [CrossRef]
- Hu, X.M.; Jansa, L.; Chen, L.; Griffin, W.L.; O’Reilly, S.Y.; Wang, J.G. Provenance of Lower Cretaceous Wölong volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of eastern Gondwana. Sediment. Geol. 2010, 223, 193–205. [Google Scholar] [CrossRef]
- Zhou, T.; Kang, Z.Q.; Xu, J.F.; Yang, F.; Wang, R.; Shan, C.X. Late Paleozoic to Early Mesozoic Evolution of Neo-Tethys: Geochemical Evidence from Early Triassic Mafic Intrusive Rocks in the Tethyan Himalaya. J. Geol. 2022, 130, 297–310. [Google Scholar] [CrossRef]
- Sciunnach, D.; Garzanti, E. Subsidence history of the Tethys Himalaya. Earth-Sci. Rev. 2012, 111, 179–198. [Google Scholar] [CrossRef]
- Hu, X.M.; Garzanti, E.; Moore, T.; Raffi, I. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology 2015, 43, 859–862. [Google Scholar] [CrossRef]
- DeCelles, P.G.; Gehrels, G.E.; Quade, J.; Lareau, B.; Spurlin, M. Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science 2000, 288, 497–499. [Google Scholar] [CrossRef] [PubMed]
- Gehrels, G.E.; DeCelles, P.G.; Ojha, T.P.; Upreti, B.N. Geologic and U-Pb geochronologic evidence for early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya. J. Asian Earth Sci. 2006, 28, 385–408. [Google Scholar] [CrossRef]
- Gehrels, G.E.; DeCelles, P.G.; Ojha, T.P.; Upreti, B.N. Geologic and U-Th-Pb geochronologic evidence for early Paleozoic tectonism in the Kathmandu thrust sheet, central Nepal Himalaya. Geol. Soc. Am. Bull. 2006, 118, 185–198. [Google Scholar] [CrossRef]
- McQuarrie, N.; Robinson, D.; Long, S.; Tobgay, T.; Grujic, D.; Gehrels, G.; Ducea, M. Preliminary stratigraphic and structural architecture of Bhutan: Implications for the along strike architecture of the Himalayan system. Earth Planet. Sci. Lett. 2008, 272, 105–117. [Google Scholar] [CrossRef]
- McQuarrie, N.; Long, S.P.; Tobgay, T.; Nesbit, J.N. Documenting basin scale, geometry and provenance through detrital geochemical data: Lessons from the Neoproterozoic to Ordovician Lesser, Greater, and Tethyan Himalayan strata of Bhutan. Gondwana Res. 2013, 23, 1491–1510. [Google Scholar] [CrossRef]
- Myrow, P.M.; Hughes, N.C.; Searle, M.P.; Fanning, C.M.; Peng, S.C.; Parcha, S.K. Stratigraphic correlation of Cambrian-Ordovician deposits along the Himalaya: Implications for the age and nature of rocks in the Mount Everest region. Geol. Soc. Am. Bull. 2009, 121, 323–332. [Google Scholar] [CrossRef]
- Myrow, P.M.; Hughes, N.C.; Goodge, J.W. Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian-Ordovician. Geol. Soc. Am. Bull. 2010, 122, 1660–1670. [Google Scholar] [CrossRef]
- Gehrels, G.; Kapp, P.; DeCelles, P.; Pullen, A.; Blakey, R.; Weislogel, A.; Ding, L.; Guynn, J.; Martin, A.; McQuarrie, N.; et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics 2011, 30, TC5016. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Dilek, Y.; Mo, X.X. Lhasa terrane in southern Tibet came from Australia. Geology 2011, 39, 727–730. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Dilek, Y.; Hou, Z.Q.; Mo, X.X. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res. 2013, 23, 1429–1454. [Google Scholar] [CrossRef]
- Ding, L.; Kapp, P.; Zhong, D.L.; Deng, W.M. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. J. Petrol. 2003, 44, 1833–1865. [Google Scholar] [CrossRef]
- Li, G.B.; Wan, X.Q.; Ding, L.; Liu, W.C.; Gao, L.F. The Paleogene Foreland Basin and Sedimentary Responses in the Southern Tibet: Analysis on Sequence Stratigraphy. Acta Sedimentol. Sin. 2004, 22, 455–464. [Google Scholar]
- Wan, X.Q.; Lamolda, M.A.; Si, J.L.; Li, G.B. Foraminiferal stratigraphy of Late Cretaceous red beds in southern Tibet. Cretac. Res. 2005, 26, 43–48. [Google Scholar] [CrossRef]
- Wu, F.Y.; Ji, W.Q.; Wang, J.G.; Liu, C.Z.; Chung, S.L. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision. Am. J. Sci. 2014, 314, 548–579. [Google Scholar] [CrossRef]
- Liu, X.C.; Wu, F.Y.; Kohn, M.J.; Liu, Z.C.; Ji, W.Q.; Wang, J.M.; Yang, L.; He, S.X. Plutonic-subvolcanic connection of the Himalayan leucogranites: Insights from the Eocene Lhunze complex, southern Tibet. Lithos 2022, 434, 106939. [Google Scholar] [CrossRef]
- Fan, J.J.; Wang, Q.; Wei, G.J.; Li, J.; Ma, L.; Zhang, X.Z.; Jiang, Z.Q.; Ma, J.L.; Zhou, J.S.; Li, Q.W.; et al. Boron and Molybdenum Isotope Evidence for Source-Controlled Compositional Diversity of Cenozoic Granites in the Eastern Tethyan Himalaya. Geochem. Geophys. Geosystems 2023, 24, e2022GC010629. [Google Scholar] [CrossRef]
- Zhang, S.H. Review of the Himalayan leucogranites: Comparison between the North and South belts, from geochemistry, petrogenesis, and rare-metal mineralization. Int. Geol. Rev. 2024, 66, 1560–1589. [Google Scholar] [CrossRef]
- Fukuchi, T.; Imai, N.; Shimokawa, K. ESR dating of fault movement using various defect centres in quartz; the case in the western South Fossa Magna, Japan. Earth Planet. Sci. Lett. 1986, 78, 121–128. [Google Scholar] [CrossRef]
- Yang, K.G.; Liang, X.Z.; Xie, J.L.; Yang, K.F. ESR dating, the principle and application of a method to determine active ages of brittle faults. Adv. Earth Sci. 2006, 21, 430–435. [Google Scholar] [CrossRef]
- Caine, J.S.; Evans, J.P.; Forster, C.B. Fault zone architecture and permeability structure. Geology 1996, 24, 1025–1028. [Google Scholar] [CrossRef]
- Childs, C.; Manzocchi, T.; Walsh, J.J.; Bonson, C.G.; Nicol, A.; Schöpfer, M.P.J. A geometric model of fault zone and fault rock thickness variations. J. Struct. Geol. 2009, 31, 117–127. [Google Scholar] [CrossRef]
- Woodcock, N.H.; Mort, K. Classification of fault breccias and related fault rocks. Geol. Mag. 2008, 145, 435–440. [Google Scholar] [CrossRef]
- Grasemann, B.; Martel, S.; Passchier, C. Reverse and normal drag along a fault. J. Struct. Geol. 2005, 27, 999–1010. [Google Scholar] [CrossRef]
- Delvaux, D.; Sperner, B. New aspects of tectonic stress inversion with reference to the TENSOR program. Geol. Soc. Lond. Spec. Publ. 2003, 212, 75–100. [Google Scholar] [CrossRef]
- Searle, M.P.; Simpson, R.L.; Law, R.D.; Parrish, R.R.; Waters, D.J. The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet. J. Geol. Soc. 2003, 160, 345–366. [Google Scholar] [CrossRef]
- Zhang, J.J.; Santosh, M.; Wang, X.X.; Guo, L.; Yang, X.Y.; Zhang, B. Tectonics of the northern Himalaya since the India-Asia collision. Gondwana Res. 2012, 21, 939–960. [Google Scholar] [CrossRef]
- Zhang, J.J.; Guo, L. Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the south Tibetan detachment system. J. Asian Earth Sci. 2007, 29, 722–736. [Google Scholar] [CrossRef]
- Zeng, L.S.; Liu, J.; Gao, L.; Wen, L. Early Oligocene anatexis in the Yardoi gneiss dome, southern Tibet and geological implications. Chin. Sci. Bull. 2009, 54, 104–112. [Google Scholar] [CrossRef]
- Wang, Q.; Wyman, D.A.; Li, Z.X.; Sun, W.; Chung, S.L.; Vasconcelos, P.M.; Feng, X. Eocene north-south trending dikes in central Tibet: New constraints on the timing of east-west extension with implications for early plateau uplift? Earth Planet. Sci. Lett. 2010, 298, 205–216. [Google Scholar] [CrossRef]
- Lee, J.; Whitehouse, M.J. Onset of mid-crustal extensional flow in southern Tibet: Evidence from U/Pb zircon ages. Geology 2007, 35, 45–48. [Google Scholar] [CrossRef]
- Schultz, M.H.; Hodges, K.V.; Ehlers, T.A.; Soest, M.V.; Wartho, J.A. Thermochronologic constraints on the slip history of the South Tibetan detachment system in the Everest region, southern Tibet. Earth Planet. Sci. Lett. 2017, 459, 105–117. [Google Scholar] [CrossRef]
- Zhang, L.K.; Zhang, Z.; Li, G.M.; Dong, S.L.; Xia, X.B.; Liang, W.; Fu, J.G.; Gao, H.W. Rock Assemblage, Structural Characteristies and Genesis Mechanism of the Cuonadong Dome, Tethys Himalaya. Earth Sci. 2018, 43, 2664–2683. [Google Scholar] [CrossRef]
- Fu, J.G.; Li, G.M.; Wang, G.H.; Zhang, L.K.; Liang, W.; Zhang, X.Q.; Jiao, Y.J.; Dong, S.L.; Huang, Y. Structural analysis of sheath folds and geochronology in the Cuonadong Dome, southern Tibet, China: New constraints on the timing of the South Tibetan detachment system and its relationship to North Himalayan Gneiss Domes. Terra Nova 2020, 3, 300–323. [Google Scholar] [CrossRef]
- Fu, J.G.; Li, G.M.; Wang, G.H.; Zhang, L.K.; Liang, W.; Zhang, Z.; Zhang, X.Q.; Huang, Y. Synchronous granite intrusion and E-W extension in the Cuonadong dome, southern Tibet, China: Evidence from field observations and thermochronologic results. Int. J. Earth Sci. 2018, 107, 2023–2041. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Wang, Z.D.; Liu, R.C.; Peng, L.Y.; Zhang, C.H.; Guo, Z.J. Evolution of kinematic transformation from the Altyn Tagh fault to the Qilian Shan in the northern Tibetan Plateau: From early Cenozoic initiation to mid-Miocene extrusion. Front. Earth Sci. 2023, 11, 1250640. [Google Scholar] [CrossRef]
- Chen, Y.T.; Zhang, G.W.; Lu, R.K.; Luo, T.T.; Li, Y.; Yu, W.X. Formation and evolution of Xianshuihe Fault Belt in the eastern margin of the Tibetan Plateau: Constraints from structural deformation and geochronology. Geol. J. 2020, 55, 7953–7976. [Google Scholar] [CrossRef]
- Catuneanu, O. Sequence stratigraphy: Guidelines for a standard methodology. In Stratigraphy & Timescales; Academic Press: Cambridge, MA, USA, 2017; Volume 2, pp. 1–57. [Google Scholar]
- Hu, X.M.; Jansa, L.; Wang, C.S. Upper Jurassic–Lower Cretaceous stratigraphy in south-eastern Tibet: A comparison with the western Himalayas. Cretac. Res. 2008, 29, 301–315. [Google Scholar] [CrossRef]
- Wang, J.G.; Wu, F.Y.; Garzanti, E.; Hu, X.; Ji, W.Q.; Liu, Z.C.; Liu, X.C. Upper Triassic turbidites of the northern Tethyan Himalaya (Langjiexue Group): The terminal of a sediment-routing system sourced in the Gondwanide Orogen. Gondwana Res. 2016, 34, 84–98. [Google Scholar] [CrossRef]
- Cai, F.; Ding, L.; Laskowski, A.K.; Kapp, P.; Wang, H.; Xu, Q.; Zhang, L. Late Triassic paleogeographic reconstruction along the Neo–Tethyan Ocean margins, southern Tibet. Earth Planet. Sci. Lett. 2016, 435, 105–114. [Google Scholar] [CrossRef]
- Garzanti, E. The Himalayan Foreland Basin from collision onset to the present: A sedimentary–petrology perspective. In Geological Society, London, Special Publications, Himalayan Tectonics: A Modern Synthesis; The Geological Society of London: London, UK, 2019; Volume 483, pp. 65–122. [Google Scholar]
- Zhu, D.C.; Pan, G.T.; MO, X.X.; Zhao, Z.D.; Liao, Z.L.; Wang, L.Q.; Jiang, X.S. Geochemistry and petrogenesis of the Triassic volcanic rocks in the east-central segment of Tethyan Himalaya. Acta Petrol. Sin. 2006, 22, 804–816. [Google Scholar]
- Zhu, D.C.; Pan, G.T.; MO, X.X.; Liao, Z.L.; Jiang, X.S.; Wang, L.Q. Permian to Cretaceous Volcanic Activities in the Central Segment of the Tethyan Himalayas (I): Distribution Characteristics and Significance. Geol. Bull. China 2004, 23, 645–654. [Google Scholar] [CrossRef]
- Yan, S.T.; Ding, A.L.; Zhu, L.D.; Liu, T.; Wang, J.; Huang, H.; Chen, S.; Li, H.; Qin, M. Cretaceous intraplate volcanism in the central Tethyan Himalaya, Southern Tibet: 132 Ma basaltic volcanic rocks linked to the Kerguelen mantle plume. Episodes 2025. [Online First]. [Google Scholar] [CrossRef]
- Liu, T.; Liu, C.Z.; Wu, F.Y.; Ji, W.B.; Zhang, C.; Zhang, W.Q.; Zhang, Z.Y. Timing and mechanism of opening the Neo-Tethys Ocean: Constraints from mélanges in the Yarlung Zangbo suture zone. Sci. China Earth Sci. 2023, 66, 2807–2826. [Google Scholar] [CrossRef]
- Ding, L. New advances in the study of Tethyan Geodynamic System. Sci. China Earth Sci. 2024, 67, 874. [Google Scholar] [CrossRef]










| Sample ID | Sampling Location | Characteristics | Relative Position | Paramagnetic Center Concentration (1015 Sp/g) | U Content (μg/g) | Age |
|---|---|---|---|---|---|---|
| NGL1-3 | Naigulin | Left-lateral strike-slip fault | Secondary fault, quartz striation mirror | 0.227 | 0.359 | 18 ± 2 Ma |
| NGL1-5 | Naigulin | North-dipping normal fault | Secondary fault, quartz tectonic breccia | 0.486 | 1.059 | 29 ± 5 Ma |
| KMX1-1 | Kema | North-dipping normal fault | North boundary of fault, quartz vein within the fractured zone | 0.248 | 0.559 | 32 ± 5 Ma |
| NGL2-2 | Naigulin | North-dipping normal fault | South boundary of fault, quartz breccia in brittle fractured zone | 0.261 | 0.919 | 33 ± 6 Ma |
| KMX3-1 | Kema | North-dipping normal fault | South boundary of fault, quartz vein within the tectonic fold | 0.196 | 0.779 | 35 ± 5 Ma |
| NGL1-4 | Naigulin | NNE-dipping reverse fault | Secondary fault, shear-induced quartz clasts | 0.154 | 0.954 | 45 ± 6 Ma |
| NGL1-2 | Naigulin | North-dipping reverse fault | North boundary of fault, shear-induced quartz lens | 0.105 | 1.059 | 46 ± 8 Ma |
| Tectonic Phase | Number (N) | σ1 Orientation (Mean ± Std Dev) | Stress Ratio (Φ) | Average Misfit Angle | Tensor Stability Index | Displacement (m) | Representative Kinematic Indicator | Dominant Stress Field |
|---|---|---|---|---|---|---|---|---|
| Stage 1 | 24 | 355° ± 10° | 0.45 | 8.5° | 0.92 | 0.9–5.8 | Left-lateral thrust fault | N–S compression |
| Stage 2 | 29 | 82° ± 15° | 0.60 | 11.2° | 0.85 | 1.2–3.9 | Left-lateral normal fault | N–S extension |
| Stage 3 | 15 | 93° ± 5° | 0.35 | 9.8° | 0.89 | 0.5–1.3 | Left-lateral strike-slip fault | E–W shearing |
| Sample ID | Sampling Location | Sample Composition | Characteristics | Relative Position | Age (Ma) | Period | Genesis Explanation |
|---|---|---|---|---|---|---|---|
| D011-1 | South Gongzhu, Lhozhag | Quartz vein | Thrust fault | North wall | 59 ± 5 | Early Paleogene | Plate convergence-collision stage, North wall fold belt fill |
| NGL1-2 | Naigulin, Dingri | Quartz breccia | North-dipping thrust fault | Northern boundary of fault | 46 ± 8 | Eocene | Plate collision stage |
| NGL1-4 | Naigulin, Dingri | Quartz breccia | Nne-dipping thrust fault | Secondary fault | 45 ± 6 | Eocene | Plate collision stage |
| S1949-1 | Mendang Gully, Lhozhag | Quartz vein | Thrust fault | North wall | 40 ± 4 | Paleogene | Plate collision stage, North wall fold belt fill |
| KMX3-1 | Kema, Dingri | Quartz vein | North-dipping normal fault | Southern boundary of fault | 35 ± 5 | Late Eocene | Associated with N-S extension |
| NGL2-2 | Naigulin, Dingri | Quartz breccia | North-dipping normal fault | Southern boundary of fault | 33 ± 6 | Oligocene | Associated with N-S extension |
| KMX1-1 | Kema, Dingri | Quartz vein | North-dipping normal fault | Northern boundary of fault | 32 ± 5 | Oligocene | Associated with N-S extension |
| NGL1-5 | Naigulin, Dingri | Quartz breccia | North-dipping normal fault | Secondary fault | 29 ± 5 | Oligocene | Associated with N-S extension |
| S420-1 | North Naixi, Lhozhag | Quartz vein | Thrust fault | North wall | 23 ± 2 | Late Paleogene | Plate collision stage, North wall fold belt fill |
| NGL1-3 | Naigulin, Dingri | Quartz vein | Left-lateral strike-slip fault | Secondary fault | 18 ± 2 | Miocene | Associated with E-W extension |
| S402-1 | North Zhongjue, Lhozhag | Quartz vein | Normal fault | North wall | 17 ± 1 | Miocene | Associated with detachment-related layer-parallel sliding fill |
| S337-1 | North Qumei, Lhozhag | Quartz vein | Normal fault | North wall | 14 ± 1 | Miocene | Associated with detachment-related layer-parallel sliding fill |
| S344-1 | North Qumei, Lhozhag | Quartz vein | Normal fault | North wall | 13 ± 1 | Miocene | Associated with detachment-related layer-parallel sliding fill |
| S467-2 | South Taiba, Lhozhag | Quartz vein | Normal fault | North wall | 11 ± 1 | Miocene | Associated with detachment-related layer-parallel sliding fill |
| S1788-2 | South Zhamai, Lhozhag | Quartz vein | Normal fault | South wall | 11 ± 1 | Miocene | Associated with detachment-related layer-parallel sliding fill |
| S265-1 | Dejiangguo, Lhozhag | Quartz vein | Thrust fault | North wall | 9 ± 1 | Late Miocene | Fill in compressional deformation |
| S432-1 | East Cuomei, Lhozhag | Quartz vein | Right-lateral thrust fault | North wall | 6.8 ± 0.6 | Late Miocene | Fill in compressional deformation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, C.; Yan, S.; Li, H.; Dai, X.; Liu, T.; Wang, J. Cenozoic Multiphasic Activity and Mesozoic Basin-Control Role of the Dingri–Gangba Fault, Southern Tibet: An Integrated Study of Structural Analysis, Stratigraphic Correlation, and ESR Geochronology. Geosciences 2025, 15, 440. https://doi.org/10.3390/geosciences15110440
Xin C, Yan S, Li H, Dai X, Liu T, Wang J. Cenozoic Multiphasic Activity and Mesozoic Basin-Control Role of the Dingri–Gangba Fault, Southern Tibet: An Integrated Study of Structural Analysis, Stratigraphic Correlation, and ESR Geochronology. Geosciences. 2025; 15(11):440. https://doi.org/10.3390/geosciences15110440
Chicago/Turabian StyleXin, Chongyang, Songtao Yan, Hu Li, Xuejian Dai, Tao Liu, and Jie Wang. 2025. "Cenozoic Multiphasic Activity and Mesozoic Basin-Control Role of the Dingri–Gangba Fault, Southern Tibet: An Integrated Study of Structural Analysis, Stratigraphic Correlation, and ESR Geochronology" Geosciences 15, no. 11: 440. https://doi.org/10.3390/geosciences15110440
APA StyleXin, C., Yan, S., Li, H., Dai, X., Liu, T., & Wang, J. (2025). Cenozoic Multiphasic Activity and Mesozoic Basin-Control Role of the Dingri–Gangba Fault, Southern Tibet: An Integrated Study of Structural Analysis, Stratigraphic Correlation, and ESR Geochronology. Geosciences, 15(11), 440. https://doi.org/10.3390/geosciences15110440
