Numerical Modeling for Costa Rica of Tsunamis Originating from Tonga–Kermadec and Colombia–Ecuador Subduction Zones
Abstract
1. Introduction
2. Materials and Methods
2.1. Numerical Model Setup
2.2. Tsunami Sources
3. Results
3.1. Nearshore Tsunami Wave Heights and Arrival Times
3.2. Tsunami Inundation
4. Discussion
4.1. Wave Evolution
4.2. Arrival Times
4.3. Maximum Heights and Inundation
4.4. Implications for Coastal Communities
4.5. Implications for Costa Rica Tsunami Warning
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UNA | Universidad Nacional Costa Rica–National University Costa Rica |
CNE | National Commission on Risk Prevention and Emergency Response |
TKSZ | Tonga–Kermadec Subduction Zone |
CESZ | Colombia–Ecuador Subduction Zone |
ComMIT | Community Model Interface for Tsunami |
MOST | Method of Splitting Tsunami model |
ETK | Experts Meeting Tonga Kermadec Scenario |
ECE | Experts Meeting Colombia Ecuador Scenario |
MS | Model Site |
References
- Chacón-Barrantes, S.; Arozarena-Llopis, I. A First Estimation of Tsunami Hazard of the Pacific Coast of Costa Rica from Local and Distant Seismogenic Sources. Ocean. Dyn. 2021, 71, 793–810. [Google Scholar] [CrossRef]
- UNESCO-IOC Research. Development and Implementation Plan for the Ocean Decade Tsunami Programme; UNESCO-IOC: Paris, France, 2023. [Google Scholar]
- UNESCO-IOC Preparing for Community Tsunami Evacuations. Intergovernmental Oceanographic Commission; Manuals and Guides 82; UNESCO-IOC: Paris, France, 2020; 298p. [Google Scholar]
- Pujara, N.; Liu, P.L.F.; Yeh, H. The Swash of Solitary Waves on a Plane Beach: Flow Evolution, Bed Shear Stress and Run-Up. J. Fluid. Mech. 2015, 779, 556–597. [Google Scholar] [CrossRef]
- Synolakis, C.E. Green’s Law and the Evolution of Solitary Wave. Phys. Fluids A 1991, 3, 490–491. [Google Scholar] [CrossRef]
- Synolakis, C.E.; Skjelbreia, J.E. Evolution of Maximum Amplitude of Solitary Waves on Plane Beaches. J. Waterw. Port. Coast. Ocean. Engng 1993, 119, 323–342. [Google Scholar] [CrossRef]
- UNESCO/IOC. Standard Guidelines for the Tsunami Ready Recognition; Manual and Guides 74; UNESCO-IOC: Paris, France, 2022; 62p. [Google Scholar]
- Chacón-Barrantes, S.E.; Murillo-Gutiérrez, A.; Rivera-Cerdas, F. Catálogo de Tsunamis Históricos de Costa Rica Hasta El 2021, 1st ed.; EDUNA: Heredia, Costa Rica, 2021. [Google Scholar]
- Porras, H.; Chacón-Barrantes, S.E.; Murillo-Gutiérrez, A.; Rivera-Cerdas, F. Tsunami de Las Islas Kermadec Del 4 de Marzo Del 2021: Registros, Modelado Numérico y Atención del Evento Para Costa Rica. Rev. Cienc. Mar. Costeras 2022, 14, 31–49. [Google Scholar] [CrossRef]
- Chacón-Barrantes, S.E.; Rivera-Cerdas, F.; Murillo-Gutiérrez, A. Impact of the Tsunami Caused by the Hunga Tonga–Hunga Ha’apai Eruption in Costa Rica on 15 January 2022. Bull. Volcanol. 2023, 85, 36. [Google Scholar] [CrossRef]
- Fernández-Arce, M.; Havskov, J.; Atakan, K. Destructive Tsunamis and Tsunami Warning in Central America. Sci. Tsunami 1999, 17, 173–185. [Google Scholar]
- Fernández-Arce, M.; Molina, E.; Havskov, J. Tsunamis and Tsunami Hazards in Central America. Nat. Hazards 2000, 22, 91–116. [Google Scholar] [CrossRef]
- Fernández-Arce, M.; Alvarado-Delgado, G.E. Tsunamis and Tsunami Prepardness in Costa Rica, Central America. ISET J. Earthq. Technol. 2005, 42, 203–212. [Google Scholar] [CrossRef]
- Fernández-Arce, M.; Peraldo-Huertas, G.; Flores-Fallas, R.; Rojas, W. Tsunamis En Centroamerica. Tecnol. Marcha 1993, 12, 17–30. [Google Scholar]
- Yamanaka, Y.; Tanioka, Y. Study on the 1906 Colombia-Ecuador Megathrust Earthquake Based on Tsunami Waveforms Observed at Tide Gauges: Release Variation of Accumulated Slip Deficits in the Source Area. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021375. [Google Scholar] [CrossRef]
- Rojas, W.; Alvarado, G.E. Marco Geológico y Tectónico de La Isla del Coco y La Región Marítima Circunvecina, Costa Rica. Rev. Biol. Trop. 2012, 60, 15–32. [Google Scholar] [CrossRef]
- Chacón-Barrantes, S.; Gutiérrez-Echeverría, A. Tsunamis Recorded in Tide Gauges at Costa Rica Pacific Coast and Their Numerical Modeling. Nat. Hazards 2017, 89, 295–311. [Google Scholar] [CrossRef]
- UNESCO-IOC. Experts Meeting on Tsunami Sources, Hazards, Risk and Uncertainties Associated with the Tonga-Kermadec Subduction Zone; Workshop Report No.289; UNESCO-IOC: Paris, France, 2020; 49p. [Google Scholar]
- UNESCO-IOC. Tsunami Sources, Hazards, Risk and Uncertainties Associated with the Colombia-Ecuador Subduction Zone; Workshop Report No.295; UNESCO-IOC: Paris, France, 2021; 37p. [Google Scholar]
- Wallace, L.M.; McCaffrey, R.; Beavan, J.; Ellis, S. Rapid Microplate Rotations and Backarc Rifting at the Transition between Collision and Subduction. Geology 2005, 33, 857. [Google Scholar] [CrossRef]
- Power, W.; Wallace, L.; Wang, X.; Reyners, M. Tsunami Hazard Posed to New Zealand by the Kermadec and Southern New Hebrides Subduction Margins: An Assessment Based on Plate Boundary Kinematics, Interseismic Coupling, and Historical Seismicity. Pure Appl. Geophys. 2012, 169, 1–36. [Google Scholar] [CrossRef]
- Titov, V.V.; Moore, C.; Greenslade, D.J.M.; Pattiaratchi, C.; Badal, R.; Synolakis, C.E.; Kanoglu, U. A New Tool for Inundation Modeling: Community Modeling Interface for Tsunamis (ComMIT). Pure Appl. Geophys. 2011, 168, 2121–2131. [Google Scholar] [CrossRef]
- Okada, Y. Surface Deformation Due to Shear and Tensile Faults in a Half-Space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Titov, V.V.; González, F.I. Implementation and Testing of the Method of Splitting Tsunami (MOST) Model; No. 1927; Pacific Marine Environmental Laboratory: Seattle, WA, USA, 1997.
- NTHMP. Proceedings and Results of the 2011 Nthmp Model Benchmarking Workshop; NOAA Special Rep: Silver Spring, ML, USA, 2012.
- Synolakis, C.E.; Bernard, E.N.; Titov, V.V.; Kânoğlu, U.; González, F.I. Validation and Verification of Tsunami Numerical Models. Pure Appl. Geophys. 2008, 165, 2197–2228. [Google Scholar] [CrossRef]
- IOC; IHO; BODC. Centenary Edition of the GEBCO Digital Atlas, Published on CD-ROM on Behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans. World Data Center for Climate (WDCC) at DKRZ. 2003. Available online: https://hdl.handle.net/21.14106/0c6b3dbdcf0b228e372d4b716b6574d495f5887a (accessed on 1 October 2025).
- Chacón-Barrantes, S. The 2017 México Tsunami Record, Numerical Modeling and Threat Assessment in Costa Rica. Pure Appl. Geophys. 2018, 175, 1939–1950. [Google Scholar] [CrossRef]
- Borrero, J.C.; Greer, S.D. Comparison of the 2010 Chile and 2011 Japan Tsunamis in the Far Field. Pure Appl. Geophys. 2013, 170, 1249–1274. [Google Scholar] [CrossRef]
- Kim, G.H.; Jin, S.; Hyun, S.G.; Yoon, S.B. Resonance of 2011 East Japan Tsunami over Continental Shelf along Ibaraki Coast of Japan. J. Coast. Res. 2016, 75, 1137–1141. [Google Scholar] [CrossRef]
- Melgar, D.; Ruiz-Angulo, A. Long-Lived Tsunami Edge Waves and Shelf Resonance From the M8.2 Tehuantepec Earthquake. Geophys. Res. Lett. 2018, 45, 12414–12421. [Google Scholar] [CrossRef]
- Yeh, H.; Liu, P.; Briggs, M.; Synolakis, C. Propagation and Amplification of Tsunamis at Coastal Boundaries. Nature 1994, 372, 353–355. [Google Scholar] [CrossRef]
Grid Resolution (Arcsec) | ||||||
---|---|---|---|---|---|---|
Number | Name | Grid A | Grid B | Grid C | Verification | Bathymetric Data Source |
MS1 | Pac LR | 60 | 12 | 4 | - | CIMAR-UCR |
MS2 | Culebra Bay | 30 | 5 | 1 | - | SINAMOT |
MS3 | Potrero | 24 | 3 | ½ | * | IMARES-UCR, MOPT and SINAMOT |
MS4 | Tamarindo | 30 | 5 | 1 | - | SINAMOT |
MS5 | Samara | 30 | 5 | 1 | - | SINAMOT |
MS6 | Tambor | 30 | 5 | 1 | - | IMARES-UCR and MOPT |
MS7 | Puntarenas | 30 | 5 | 1 | [17] | IMARES-UCR, MOPT and SINAMOT |
MS8 | Jaco | 30 | 5 | 1 | - | SINAMOT |
MS9 | Quepos | 24 | 3 | 1/3 | [9,17,27] | IMARES-UCR |
MS10 | Manuel Antonio | 24 | 3 | ½ | - | IMARES-UCR |
MS11 | Drake | 24 | 4 | ½ | - | IMARES-UCR, MOPT and SINAMOT |
MS12 | Golfito | 24 | 3 | ½ | * | IMARES-UCR, MOPT and SINAMOT |
MS13 | Puerto Jiménez | 24 | 3 | 1/3 | - | IMARES-UCR, MOPT and SINAMOT |
MS14 | Cocos Island | 24 | 3 | ½ | [9] | IMARES-UCR and MOPT |
SZ | # | Scenario Name | Mw | Length (km) | Max. Nearshore Tsunami Wave Height (NTH) (m) | Probability † |
---|---|---|---|---|---|---|
Tonga–Kermadec Subduction Zone | ETK1 | G | 8.4 | 300 | 0.93 | High |
ETK2 | F | 8.3 | 200 | 2.66 | ||
ETK3 | E | 8.4 | 300 | 4.97 | ||
ETK4 | D | 9.3 | 800 | 5.27 * | ||
ETK5 | C | 8.9 | 700 | 0.34 | ||
ETK6 | B | 8.9 | 500 | 0.18 | ||
ETK7 | A | 8.7 | 300 | 0.11 | ||
ETK8 | H | 9.1 | 500 | 2.71 | ||
ETK9 | A + B | 9.0 | 800 | 1.96 | Intermediate | |
ETK10 | A + B + C | 9.3 | 1500 | 9.18 | ||
ETK11 | A + B + C + D | 9.5 | 2300 | 18.34 * | ||
ETK12 | A + B + C + D + E | 9.6 | 2600 | 24.39 * | ||
ETK13 | B + C | 9.1 | 1200 | 5.24 | ||
ETK14 | B + C + D | 9.4 | 2000 | 14.55 * | ||
ETK15 | C + D | 9.2 | 1500 | 8.36 | ||
ETK16 | C + D+E | 9.3 | 1800 | 1.94 | ||
ETK17 | D + E | 9.1 | 1100 | 2.42 | ||
ETK18 | D + E+F | 9.2 | 1300 | 2.42 | ||
ETK19 | E + F | 8.6 | 500 | 0.57 | ||
ETK20 | E + F+G | 8.8 | 800 | 0.69 | ||
ETK21 | H + A+B + C+D | 9.7 | 2800 | 26.11 * | ||
Colombia–Ecuador Subduction Zone | ECE22 | Norte | 7.9 | 170 | 0.20 | More likely |
ECE23 | Buenaventura | 8.1 | 160 | 0.20 | ||
ECE24 | Galera II/Esmeraldas | 8.7 | 450 | 4.01 * | ||
ECE25 | Galera I/Pedernales | 8.0 | 110 | 0.97 | ||
ECE26 | Isla Plata | 8.0 | 130 | 0.65 | ||
ECE27 | Salinas | 8.2 | 200 | 0.10 | ||
ECE28 | Galera I and II | 8.9 | 560 | 4.38 * | Less likely |
Site # | Site Name | Total Coastline Length in the Model (km) | Max. Inundation Distance (km) | Inundated Area (km2) | Max. Flow Depth (m) | |||
---|---|---|---|---|---|---|---|---|
ETK21 | ECE28 | ETK21 | ECE28 | ETK21 | ECE28 | |||
MS2 | Culebra Bay | 14.5 | 1.0 | 1.0 | 3.2 | 1.0 | 7.0 | 1.6 |
MS3 | Potrero | 4.7 | 1.6 | 1.0 | 5.2 | 3.1 | 13.3 * | 4.9 |
MS4 | Tamarindo | 12.5 | 1.8 | 1.3 | 7.4 * | 3.6 * | 7.9 | 4.5 |
MS5 | Samara | 6.8 | 1.2 | 0.5 | 2.9 | 0.9 | 11.1 | 3.5 |
MS6 | Tambor | 20.3 | 2.4 * | 1.4 | 5.7 | 1.9 | 8.0 | 4.2 |
MS8 | Jaco | 8.7 | 2.2 | 0.6 | 4.8 | 0.4 | 7.4 | 7.3 * |
MS9 | Quepos | 4.5 | 1.1 | 0.4 | 0.9 | 0.04 † | 8.0 | 0.1 † |
MS10 | Manuel Antonio | 5.5 | 0.8 | 0.53 | 0.78 | 0.28 | 8.39 | 2.97 |
MS11 | Drake | 8.05 | 2.3 | 2.1 * | 2.06 | 0.93 | 9.6 | 3.75 |
MS12 | Puerto Jimenez | 2.5 | 0.25 † | 0.1 † | 0.27 | 0.5 | 1.84 † | 0.33 |
MS13 | Golfito | 6.9 | 0.97 | 0.85 | 2.85 | 1.8 | 6.77 | 4.87 |
MS14 | Cocos Island | 0.4 | 0.32 | 0.25 | 0.15 † | 0.07 | 3.08 | 1.46 |
Location/Scenario | Cabo Velas (CV) | Cabo Blanco (CB) | Punta Llorona (PL) | Punta Chancha (Ch) | Diff. CV-CB | Diff. CB-PL | Diff. CB-Ch |
---|---|---|---|---|---|---|---|
ETK21 | 13:54 | 13:56 | 14:17 | 14:14 | 00:02 | 00:21 | 00:18 |
ECE28 | 02:10 | 01:46 | 01:33 | 01:18 | 00:24 | 00:13 | 00:28 |
SA2 | - | 01:49 | 01:36 | 01:21 | - | 00:13 | 00:28 |
Site # | Site Name | Diff. Max. Inundation Distance (km) | Diff. Inundation Area (km2) | Diff. Max. Flow Depth (m) | |||
---|---|---|---|---|---|---|---|
Tonga | Colombia | Tonga | Colombia | Tonga | Colombia | ||
MS2 | Culebra Bay | 0.2 | 0.1 † | 1.2 | −1.4 | 1.6 | −2.6 |
MS3 | Potrero | 0.5 | −0.1 † | 2.0 | −0.9 † | 8.1 * | −7.2 |
MS4 | Tamarindo | 0.1 † | −0.3 | 2.4 * | −4.9 * | −0.7 | −6.7 |
MS5 | Samara | 0.3 | −0.9 | 0.9 | −2.1 | 3.4 | −10.3 * |
MS6 | Tambor | 1.6 * | −0.7 | 4.5 | −4.0 | 2.6 | −4.1 |
MS8 | Jaco | 0.3 | −0.3 | 1.4 | −1.1 | 0.0 † | 0.0 † |
MS9 | Quepos | −0.4 | −1.2 * | −0.4 † | −1.4 | −0.1 | −4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chacón-Barrantes, S.; Rivera-Cerdas, F.; Espinoza-Hernández, K.; Murillo-Gutiérrez, A. Numerical Modeling for Costa Rica of Tsunamis Originating from Tonga–Kermadec and Colombia–Ecuador Subduction Zones. Geosciences 2025, 15, 396. https://doi.org/10.3390/geosciences15100396
Chacón-Barrantes S, Rivera-Cerdas F, Espinoza-Hernández K, Murillo-Gutiérrez A. Numerical Modeling for Costa Rica of Tsunamis Originating from Tonga–Kermadec and Colombia–Ecuador Subduction Zones. Geosciences. 2025; 15(10):396. https://doi.org/10.3390/geosciences15100396
Chicago/Turabian StyleChacón-Barrantes, Silvia, Fabio Rivera-Cerdas, Kristel Espinoza-Hernández, and Anthony Murillo-Gutiérrez. 2025. "Numerical Modeling for Costa Rica of Tsunamis Originating from Tonga–Kermadec and Colombia–Ecuador Subduction Zones" Geosciences 15, no. 10: 396. https://doi.org/10.3390/geosciences15100396
APA StyleChacón-Barrantes, S., Rivera-Cerdas, F., Espinoza-Hernández, K., & Murillo-Gutiérrez, A. (2025). Numerical Modeling for Costa Rica of Tsunamis Originating from Tonga–Kermadec and Colombia–Ecuador Subduction Zones. Geosciences, 15(10), 396. https://doi.org/10.3390/geosciences15100396