Zircons from Eclogite-Associated Rocks of the Marun–Keu Complex, the Polar Urals: Trace Elements and U–Pb Dating
Abstract
:1. Introduction
2. Geological Setting and Sample Description
3. Methods
4. Results
4.1. Zircon Characterization
4.2. Zircon Trace Element Composition
4.2.1. Zircon from Granitic Gneiss (Sample 2218)
4.2.2. Zircon from the Selvage of a Pegmatite Vein (Sample 2209)
4.3. Zircon U–Pb Geochronology
4.3.1. Zircon from Granitic Gneisses (Sample 2218)
4.3.2. Zircon from the Selvage of a Pegmatite Vein (Sample 2209)
5. Discussion
5.1. Trace Elements Behavior in Zircon through the Geological Processes
5.1.1. Zircon from Granitic Gneiss
5.1.2. Zircon from the Selvage of a Pegmatite Vein
5.2. Metamorphic Rims of Zircon from Granitic Gneiss: A Result of Eclogite Metamorphism?
5.3. Discussion of Geochronological Data
5.3.1. Age of the Eclogite Protolith
5.3.2. Age of the Host Rock Protolith (Granitic Magmatism)
5.3.3. Age of Eclogite Metamorphism
5.3.4. Age of Pegmatites
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsujimori, T.; Mattinson, C. Eclogites in different tectonic settings. Encycl. Geol. 2021, 1–6, 561–568. [Google Scholar] [CrossRef]
- Godard, G. Eclogites and their geodynamic interpretation: A history. J. Geodyn. 2001, 32, 165–203. [Google Scholar] [CrossRef]
- Ivanov, K.S.; Puchkov, V.N. Structural-Formational Zoning of the Ural Fold Belt: An Overview and New Approach. Geotectonics 2022, 56, 747–780. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Sobolev, N.V. Eclogites from metamorphic complexes of the USSR. Phys. Earth Planet. Inter. 1970, 3, 462–470. [Google Scholar] [CrossRef]
- Udovkina, N.G. Eclogites of the Polar Urals (on the Example of the Southern Part of the Marun-Keu Region); Nauka: Moscow, Russia, 1971; 191p. (In Russian) [Google Scholar]
- Molina, J.F.; Austrheim, H.; Glodny, J.; Rusin, A. The eclogites of the Marun–Keu complex, Polar Urals (Russia): Fluid control on reaction kinetics and metasomatism during high P metamorphism. Lithos 2002, 61, 55–78. [Google Scholar] [CrossRef]
- Molina, J.F.; Poli, S.; Austrheim, H.; Glodny, J.; Rusin, A. Eclogite-facies vein systems in the Marun-Keu complex (Polar Urals, Russia): Textural, chemical and thermal constraints for patterns of fluid flow in the lower crust. Contrib. Mineral. Petrol. 2004, 147, 484–504. [Google Scholar] [CrossRef]
- Shmelev, V.R.; Meng, F.C. Evidence of Ultrahigh-Pressure Evolution of Garnet Peridotites in the Polar Urals. Dokl. Earth Sci. 2023, 513, 1167–1172. [Google Scholar] [CrossRef]
- Selyatitskii, A.Y.; Kulikova, K.V. The first evidence of UHP metamorphism in the Polar Urals (Russia). Dokl. Earth Sci. 2017, 476, 1222–1225. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Perchuk, A.L.; Ariskin, A.A. High pressure metamorphism in the peridotitic cumulate of the Marun-Keu Complex, Polar Urals. Petrology 2019, 27, 124–145. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Perchuk, A.L.; Philippot, P. Eclogites from the Marun-Keu Complex, Polar Urals, Russia: A record of hot subduction and sub-isothermal exhumation. Geol. Soc. Lond. Spec. Publ. 2019, 474, 255–274. [Google Scholar] [CrossRef]
- Andreichev, V.L.; Ronkin, Y.L.; Serov, P.A.; Lepikhina, O.P.; Litvinenko, A.F. New data on the Precambrian age of Marunkeu eclogites (Polar Urals). Dokl. Earth Sci. Springer Nat. BV 2007, 413, 347. [Google Scholar] [CrossRef]
- Udovkina, N.G. Eclogites of the USSR; Nauka: Moscow, Russia, 1985; 288p. (In Russian) [Google Scholar]
- Shatskii, V.S.; Simonov, V.A.; Jagoutz, E.; Kurenkov, S.A.; Koz’menko, O.A. New data on the age of eclogites from the Polar Urals. Dokl. Earth Sci. 2000, 371, 534–538. [Google Scholar]
- Glodny, J.; Austrheim, H.; Molina, J.F.; Rusin, A.I.; Seward, D. Rb/Sr record of fluid-rock interaction in eclogites: The Marun-Keu complex, Polar Urals, Russia. Geochim. Et Cosmochim. Acta 2003, 67, 4353–4371. [Google Scholar] [CrossRef]
- Glodny, J.; Pease, V.; Montero, P.; Austrheim, H.; Rusin, A.I. Protolith ages of eclogites, Marun-Keu Complex, Polar Urals, Russia: Implications for the pre- and early Uralian evolution of the northeastern European continental margin. Geol. Soc. Lond. Mem. 2004, 30, 87–105. [Google Scholar] [CrossRef]
- Meng, F.; Fan, Y.; Shmelev, V.R.; Kulikova, K.V. Constraints of eclogites from the Marun-Keu metamorphic complex on the tectonic history of the Polar Urals (Russia). J. Asian Earth Sci. 2020, 187, 104087. [Google Scholar] [CrossRef]
- Bosse, V.; Villa, I.M. Petrochronology and hygrochronology of tectono-metamorphic events. Gondwana Res. 2019, 71, 76–90. [Google Scholar] [CrossRef]
- Chen, R.X.; Zheng, Y.F. Metamorphic zirconology of continental subduction zones. J. Asian Earth Sci. 2017, 145, 149–176. [Google Scholar] [CrossRef]
- Kohn, M.J.; Corrie, S.L.; Markley, C. The fall and rise of metamorphic zircon. Am. Mineral. 2015, 100, 897–908. [Google Scholar] [CrossRef]
- Skublov, S.G.; Levashova, E.V.; Mamykina, M.E.; Gusev, N.I.; Gusev, A.I. The polyphase Belokurikhinsky granite massif, Gorny Altai: Isotope-geochemical study of zircon. J. Min. Inst. 2024. EDN RGKCIJ. Available online: https://pmi.spmi.ru/pmi/article/view/16338?setLocale=en_US (accessed on 27 May 2024).
- Skublov, S.G.; Petrov, D.A.; Galankina, O.L.; Levashova, E.V.; Rogova, I.V. Th-Rich Zircon from a Pegmatite Vein Hosted in the Wiborg Rapakivi Granite Massif. Geosciences 2023, 13, 362. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinikoff, J.N.; Valley, J.W.; Mundil, R.; Campbell, I.H.; Korsch, R.J.; Williams, I.S.; et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Geosci. J. 2004, 13, 245–256. [Google Scholar] [CrossRef]
- Wiedenbeck, M.A.P.C.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.V.; Quadt, A.V.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Warr, L.N. IMA–CNMNC approved mineral symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Williams, I.S. U-Th-Pb geochronology by ion microprobe. Rev. Econ. Geol. 1998, 7, 1–35. [Google Scholar] [CrossRef]
- Schuth, S.; Gornyy, V.I.; Berndt, J.; Shevchenko, S.S.; Karpuzov, A.F.; Mansfeldt, T. Early proterozoic U-Pb zircon ages from basement gneiss at the Solovetsky archipelago, White Sea, Russia. Int. J. Geosci. 2012, 3, 289. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s manual for Isoplot/Ex rev. 2.49. Berkeley Geochronol. Cent. Spec. Publ. 2001, 1, 1–55. [Google Scholar]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsch, R.J.; Foudoulis, C. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol. 2003, 200, 155–170. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s manual for IsoPlot 3.0. A geochronological toolkit for Microsoft Excel. Berkeley Geochronl. Cent. Spec. Publ. 2003, 71, 36. [Google Scholar]
- Dokukina, K.A.; Kaulina, T.V.; Konilov, A.N.; Mints, M.V.; Van, K.V.; Natapov, L.; Belousova, E.; Simakin, S.G.; Lepekhina, E.N. Archaean to Palaeoproterozoic high-grade evolution of the Belomorianeclogite province in the Gridino area, Fennoscandian Shield: Geochronological evidence. Gondwana Res. 2014, 25, 585–613. [Google Scholar] [CrossRef]
- Fedotova, A.A.; Bibikova, E.V.; Simakin, S.G. Ion-microprobe zircon geochemistry as an indicator of mine ral genesis during geochronological studies. Geochem. Int. 2008, 46, 912–927. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 2006, 151, 413–433. [Google Scholar] [CrossRef]
- Grimes, C.B.; John, B.E.; Kelemen, P.B.; Mazdab, F.K.; Wooden, J.L.; Cheadle, M.J.; Hanghøj, K.; Schwartz, J.J. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 2007, 35, 643–646. [Google Scholar] [CrossRef]
- Hoskin, P.W.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Yakymchuk, C.; Holder, R.M.; Kendrick, J.; Moyen, J.F. Europium anomalies in zircon: A signal of crustal depth? Earth Planet. Sci. Lett. 2023, 622, 118405. [Google Scholar] [CrossRef]
- Skublov, S.G.; Berezin, A.V.; Berezhnaya, N.G. General relations in the trace-element composition of zircons from eclogites with implications for the age of eclogites in the Belomorian Mobile Belt. Petrology 2012, 20, 427–449. [Google Scholar] [CrossRef]
- Kirkland, C.L.; Smithies, R.H.; Taylor, R.J.M.; Evans, N.; McDonald, B. Zircon Th/U ratios in magmatic environs. Lithos 2015, 212, 397–414. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.L. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Ushikubo, T.; Kita, N.T.; Cavosie, A.J.; Wilde, S.A.; Rudnick, R.L.; Valley, J.W. Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth’s earliest crust. Earth Planet. Sci. Lett. 2008, 272, 666–676. [Google Scholar] [CrossRef]
- Whitney, J.A. The origin of granite: The role and source of water in the evolution of granitic magmas. Geol. Soc. Am. Bull. 1988, 100, 1886–1897. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon: The metamorphic mineral. Rev. Mineral. Geochem. 2017, 83, 261–295. [Google Scholar] [CrossRef]
- Chen, R.X.; Zheng, Y.F.; Xie, L. Metamorphic growth and recrystallization of zircon: Distinction by simultaneous in-situ analyses of trace elements, U–Th–Pb and Lu–Hf isotopes in zircons from eclogite-facies rocks in the Sulu orogen. Lithos 2010, 114, 132–154. [Google Scholar] [CrossRef]
- Chen, Y.X.; Zheng, Y.F.; Chen, R.X.; Zhang, S.B.; Li, Q.; Dai, M.; Chen, L. Metamorphic growth and recrystallization of zircons in extremely 18O-depleted rocks during eclogite-facies metamorphism: Evidence from U–Pb ages, trace elements, and O–Hf isotopes. Geochim. Et Cosmochim. Acta 2011, 75, 4877–4898. [Google Scholar] [CrossRef]
- Geisler, T.; Schaltegger, U.; Tomaschek, F. Re-equilibration of zircon in aqueous fluids and melts. Elements 2007, 3, 43–50. [Google Scholar] [CrossRef]
- Harley, S.L.; Kelly, N.M. Zircon tiny but timely. Elements 2007, 3, 13–18. [Google Scholar] [CrossRef]
- Yakymchuk, C.; Kirkland, C.L.; Clark, C. Th/U ratios in metamorphic zircon. J. Metamorph. Geol. 2018, 36, 715–737. [Google Scholar] [CrossRef]
- Liu, F.; Robinson, P.T.; Gerdes, A.; Xue, H.; Liu, P.; Liou, J.G. Zircon U–Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the north Sulu UHP terrane in China: Constraints on the timing and nature of partial melting. Lithos 2010, 117, 247–268. [Google Scholar] [CrossRef]
- Skublov, S.G.; Berezin, A.V.; Li, X.H.; Li, Q.L.; Salimgaraeva, L.I.; Travin, V.V.; Rezvukhin, D.I. Zircons from a pegmatite cutting eclogite (Gridino, Belomorian Mobile Belt): U-Pb-O and trace element constraints on eclogite metamorphism and fluid activity. Geosciences 2020, 10, 197. [Google Scholar] [CrossRef]
- Soman, A.; Geisler, T.; Tomaschek, F.; Grange, M.; Berndt, J. Alteration of crystalline zircon solid solutions: A case study on zircon from an alkaline pegmatite from Zomba–Malosa, Malawi. Contrib. Mineral. Petrol. 2010, 160, 909–930. [Google Scholar] [CrossRef]
- Černý, P.T.; Ercit, S. The classification of granitic pegmatites revisited. Can. Mineral. 2005, 43, 2005–2026. [Google Scholar] [CrossRef]
- Young, D.J.; Kylander-Clark, A.R.C. Does continental crust transform during eclogite facies metamorphism? J. Metamorph. Geol. 2015, 33, 331–357. [Google Scholar] [CrossRef]
- Berezin, A.V.; Skublov, S.G.; Marin, Y.B.; Mel’nik, A.E.; Bogomolov, E.S. New occurrence of eclogite in the Belomorian Mobile Belt: Geology, metamorphic conditions, and isotope age. Dokl. Earth Sci. 2013, 448, 43. [Google Scholar] [CrossRef]
- Shatsky, V.S.; Sitnikova, E.S.; Tomilenko, A.A.; Ragozin, A.L.; Koz’menko, O.A.; Jagoutz, E. Eclogite–gneiss complex of the Muya block (East Siberia): Age, mineralogy, geochemistry, and petrology. Russ. Geol. Geophys. 2012, 53, 501–521. [Google Scholar] [CrossRef]
- Palin, R.M.; Reuber, G.S.; White, R.W.; Kaus, B.J.; Weller, O.M. Subduction metamorphism in the Himalayan ultrahigh-pressure Tso Morari massif: An integrated geodynamic and petrological modelling approach. Earth Planet. Sci. Lett. 2017, 467, 108–119. [Google Scholar] [CrossRef]
- Schorn, S. Self-induced incipient ‘eclogitization’ of metagranitoids at closed-system conditions. J. Metamorph. Geol. 2022, 40, 1271–1290. [Google Scholar] [CrossRef] [PubMed]
- Proyer, A. The preservation of high-pressure rocks during exhumation: Metagranites and metapelites. Lithos 2003, 70, 183–194. [Google Scholar] [CrossRef]
- Udoratina, O.V.; Kulikova, K.V.; Shuyskiy, A.S.; Soboleva, A.A.; Andreichev, V.L.; Golubeva, I.I.; Kapitanova, V.A. Granitoid magmatism in the north of the Urals: U–Pb age, evolution, sources. Geodyn. Tectonophys. 2021, 12, 287–309. [Google Scholar] [CrossRef]
Type of Rock | Targeted Object | Dating Method | Age | References |
---|---|---|---|---|
Age of metamorphism | ||||
Granitic gneisses | Whole rock, muscovite, biotite, amphiboles | K–Ar | 250–417 Ma | [5,13] |
Eclogites | Whole rock, mica, amphiboles, clinopyroxenes, garnets | Sm–Nd | 338–366 Ma | [14] |
Kyanite eclogites | Zircon | U–Pb | 351–385 Ma | [17] |
Eclogites | Whole rock, amphiboles, kyanite, garnets, omphacite | Rb–Sr/Sm–Nd | 1.54–1.69 Ga | [12] |
Eclogites, metagranitoids, garnet amphibolites, etc. | White mica, apatite, amphiboles, whole rock, omphacite | Rb–Sr | 352–360 Ma | [15] |
Metagranites, metamorphic rim in eclogite facies vein | Zircon | U–Pb | 353–375 Ma | [16] |
Eclogites (after gabbro and peridotites); formation of garnet peridotites | Amphiboles, micas | K–Ar | 439–650 Ma | [5,13] |
Rutile eclogite | Zircon | U–Pb | 750–1700 Ma | [13] |
Eclogite protoliths | ||||
Olivine gabbro, gabbro-norites, peridotites | Phlogopite, amphiboles | K–Ar | 600–800 Ma | [5,13] |
Gabbro, troctolites | Zircon | U–Pb | 420–508 Ma | [17] |
Gabbro | Amphibole, clinopyroxene, plagioclase, whole rock | Rb–Sr | 467 Ma | [15] |
Basic rocks | Zircon | U–Pb | 481–542 Ma | [16] |
Metagranitoid’s protoliths (granitic gneiss) | ||||
Granitoids | Zircon | U–Pb | 470–670 Ma | [16] |
Granitoids | Zircon | U–Pb | 481–527 Ma | [59] |
Granitoids | Whole rock, muscovite, biotite, amphiboles/zircon | K–Ar/U–Pb | 525–780 Ma | [5,13] |
Pegmatites cutting eclogite bodies | ||||
Pegmatites and quarz-muscovite veins | Muscovite, feldspar | K–Ar | 271–500 Ma | [5,13] |
Quarz-plagioclase-muscovite veins | Plagioclase, white mica, apatite, epidote, whole rock, titanite | Rb–Sr | 356–358 Ma | [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salimgaraeva, L.; Berezin, A.; Sergeev, S.; Gubanov, N.; Stetskaya, E.; Skublov, S. Zircons from Eclogite-Associated Rocks of the Marun–Keu Complex, the Polar Urals: Trace Elements and U–Pb Dating. Geosciences 2024, 14, 206. https://doi.org/10.3390/geosciences14080206
Salimgaraeva L, Berezin A, Sergeev S, Gubanov N, Stetskaya E, Skublov S. Zircons from Eclogite-Associated Rocks of the Marun–Keu Complex, the Polar Urals: Trace Elements and U–Pb Dating. Geosciences. 2024; 14(8):206. https://doi.org/10.3390/geosciences14080206
Chicago/Turabian StyleSalimgaraeva, Laysan, Aleksey Berezin, Sergey Sergeev, Nikolai Gubanov, Ekaterina Stetskaya, and Sergey Skublov. 2024. "Zircons from Eclogite-Associated Rocks of the Marun–Keu Complex, the Polar Urals: Trace Elements and U–Pb Dating" Geosciences 14, no. 8: 206. https://doi.org/10.3390/geosciences14080206
APA StyleSalimgaraeva, L., Berezin, A., Sergeev, S., Gubanov, N., Stetskaya, E., & Skublov, S. (2024). Zircons from Eclogite-Associated Rocks of the Marun–Keu Complex, the Polar Urals: Trace Elements and U–Pb Dating. Geosciences, 14(8), 206. https://doi.org/10.3390/geosciences14080206