Geotechnical and Geophysical Assessment of the 2021 Tamban Chimbo Landslide, Northern Andes of Ecuador
Abstract
:1. Introduction
2. Description of the Study Area
2.1. Physiography of the Study Area
2.2. Geological Formation of the Study Area
2.3. Rainfall Characteristics
3. The Tamban Landslide of 2021
3.1. Extent of the Occurred Disaster
3.2. Main Causes of the Landslides
4. Methods and Field Investigation
5. Results and Discussion
5.1. Data and Numerical Modeling
5.2. Geotechnical and Geophysical Characterization of the Subsoil
5.3. Assessing Landslide Susceptibility, Hazard, and Risk
5.4. Slope Stability Analysis
5.5. Remedial Measures for Landslide Prevention
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panzeri, L.; Mondani, M.; Taddia, G.; Papini, M.; Longoni, L. Analysis of Snowmelt as a Triggering Factor for Shallow Land-slide. Int. Multidiscip. Sci. Geoconf. SGEM 2022, 22, 77–83. [Google Scholar] [CrossRef]
- Cui, P.; Chen, X.Q.; Zhu, Y.Y.; Su, F.H.; Wei, F.Q.; Han, Y.S.; Liu, H.-J.; Zhuang, J.Q. The Wenchuan earthquake (May 12, 2008), Sichuan province, China, and resulting geohazards. Nat. Hazards 2011, 56, 19–36. [Google Scholar] [CrossRef]
- Béjar-Pizarro, M.; Álvarez Gómez, J.A.; Staller, A.; Luna, M.P.; Pérez-López, R.; Monserrat, O.; Chunga, K.; Lima, A.; Galve, J.P.; Martínez Díaz, J.J.; et al. InSAR-Based Mapping to Support Decision-Making after an Earthquake. Remote Sens. 2018, 10, 899. [Google Scholar] [CrossRef]
- Serey, A.; Piñero-Feliciangeli, L.; Sepúlveda, S.A.; Iveda, F.; Poblete, D.; Petley, I.; Murphy, W. Landslides induced by the 2010 Chile megathrust earthquake: A comprehensive inventory and correlations with geological and seismic factors. Landslides 2019, 16, 1153. [Google Scholar] [CrossRef]
- Islam, M.A.; Islam, M.S.; Jeet, A.A. A Geotechnical Investigation of 2017 Chattogram Landslides. Geosciences 2021, 11, 337. [Google Scholar] [CrossRef]
- Suriñach, E.; Flores-Márquez, E.L. A template to obtain information on gravitational mass movements from the spectrograms of the seismic signals generated. Earth Surf. Dyn. Discuss. 2022, 1–34. [Google Scholar] [CrossRef]
- Salcedo, D.; Padilla Almeida, O.; Morales, B.; Toulkeridis, T. Smart City Planning Based on Landslide Susceptibility Mapping Using Fuzzy Logic and Multi-criteria Evaluation Techniques in the City of Quito, Ecuador. In Doctoral Symposium on Information and Communication Technologies-DSICT; Springer International Publishing: Cham, Switzerland, 2022; pp. 89–103. [Google Scholar]
- Asadi, A.; Baise, L.G.; Koch, M.; Moaveni, B.; Chatterjee, S.; Aimaiti, Y. Pixel-based classification method for earthquake-induced landslide mapping using remotely sensed imagery, geospatial data and temporal change information. Nat. Hazards 2024, 1–38. [Google Scholar]
- Borja Bernal, C.; Laín, R.; Jordá, L.; Cano, M.; Riquelme, A.; Tomás, R. Stability Assessment of Rock Slopes Using the Q-Slope Classification System: A Reliability Analysis Employing Case Studies in Ecuador. Appl. Sci. 2023, 13, 7399. [Google Scholar] [CrossRef]
- Jordá-Bordehore, L.; Albán, L.G.; Valenzuela, R.C.; Bravo, G.; Menoscal-Menoscal, M.; Larreta, E.; Garces, D.; Mulas, M. An Analysis of Slope Stability in the Penipe–Baños Road by Applying Empirical Methods, Kinematic Analysis and Remote Photogrammetry Techniques. Geosciences 2023, 13, 366. [Google Scholar] [CrossRef]
- Cando Jácome, M.; Martínez-Graña, A. Numerical Modeling of Flow Patterns Applied to Analysis of Susceptibility to Movements of the Ground. Geosciences 2018, 8, 340. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Macías, L.; Quiñonez-Macías, M.; Toulkeridis, T.; Pastor, J.L. Characterization and geophysical evaluation of the recent 2023 Alausí landslide in the northern Andes of Ecuador. Landslides 2024, 21, 529–540. [Google Scholar] [CrossRef]
- Soto, J.; Galve, J.P.; Palenzuela, J.A.; Azañón, J.M.; Tamay, J.; Irigaray, C. A multi-method approach for the characterization of landslides in an intramontane basin in the Andes (Loja, Ecuador). Landslides 2017, 14, 1929–1947. [Google Scholar] [CrossRef]
- Wilcke, W.; Valladarez, H.; Stoyan, R.; Yasin, S.; Valarezo, C.; Zech, W. Soil properties on a chronosequence of landslides in montane rain forest, Ecuador. Catena 2003, 53, 79–95. [Google Scholar] [CrossRef]
- Bravo-López, E.; Fernández Del Castillo, T.; Sellers, C.; Delgado-García, J. Landslide Susceptibility Mapping of Landslides with Artificial Neural Networks: Multi-Approach Analysis of Backpropagation Algorithm Applying the Neuralnet Package in Cuenca, Ecuador. Remote Sens. 2022, 14, 3495. [Google Scholar] [CrossRef]
- POWER Data Access Viewer. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 15 June 2023).
- Juang, C.H.; Jhi, Y.Y.; Lee, D.H. Stability analysis of existing slopes considering uncertainty. Eng. Geol. 1998, 49, 111–122. [Google Scholar] [CrossRef]
- Medinaceli Tórres, R.; Medinaceli Ortiz, R. Aplicación de la simulación de Montecarlo a la evaluación probabilistica de la estabilidad de taludes en roca. Rev. Medio Ambiente Min. Minería 2021, 6, 33–48. Available online: http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2519-53522021000100004&lang=es (accessed on 2 October 2023).
- Mora, R.; Granados, R. Análisis de estabilidad de taludes considerando la incertidumbre de los datos: Caso comunidad de Mansiones de Montes de Oca, San José, Costa Rica. Rev. Geológica América Cent. 2012, 47, 133–141. [Google Scholar] [CrossRef]
- Mora, R.; Rojas, E. The Effect of Saturation on the Slope Sliding in the San Juan de Grijalva Community, Chiapas. Ing. Investig. Tecnol. 2012, 13, 55–68. [Google Scholar]
- Morgenstern, N.R. Evaluation of slope stability—A 25 year perspective: Morgenstern, N R Proc Conference Stability and Performance of Slopes and Embankments II, Berkeley, 29 June–1 July 1992V1, P1–26. Publ New York: ASCE, 1992 (ASCE Special Geotechnical Publication No 31). Int. J. Rock Mech. Min. Sci. Geomech. 1993, 30, A195. [Google Scholar] [CrossRef]
- Sanhueza, C.; Rodríguez, L. Análisis comparativo de métodos de cálculo de estabilidad de taludes finitos aplicados a laderas naturales. Rev. Constr. 2013, 12, 17–29. [Google Scholar] [CrossRef]
- Carrara, A.; Guzzetti, F.; Cardinali, M.; Reichenbach, P. Use of GIS technology in the prediction and monitoring of landslide hazard. Nat. Hazards 1999, 20, 117–135. [Google Scholar] [CrossRef]
- Godio, A.; Strobbia, C.; De Bacco, G. Geophysical characterization of a rockslide in an alpine region. Eng. Geol. 2006, 83, 273–286. [Google Scholar] [CrossRef]
- NEC-11. Norma Ecuatoriana de la Construcción. Registro Oficial No. 413 del 10 de Enero, 2015. Available online: http://www.normaconstruccion.ec/ (accessed on 11 December 2022).
- INEC Base de Datos—Censo de Población y Vivienda del Ecuador, 2010. Available online: http://www.ecuadorencifras.gob.ec/base-de-datos-censo-de-poblacion-y-vivienda/ (accessed on 15 January 2024).
- Echeverría-Puertas, J.; Echeverría, M.; Cargua, F.; Toulkeridis, T. Spatial Dynamics of the Shore Coverage within the Zone of Influence of the Chambo River, Central Ecuador. Land 2023, 12, 180. [Google Scholar] [CrossRef]
- Gad Chimbo. Plan de Desarrollo y Ordenamiento Territorial del cantón Chimbo, Provincia de Bolívar. Secretaría Nacional de Planificación y Desarrollo, 2019. Available online: https://app.sni.gob.ec/ (accessed on 22 June 2023).
- SGR. Secretaría de Gestión de Riesgos de Ecuador: Base de Datos de Susceptibilidad por Movimientos en Masa, 2022. Available online: https://informacion.gestionderiesgos.gob.ec:8443/centrodedescarga/contenidos/contenidoMovimientosMasa.php (accessed on 11 October 2023).
- Avilés-Campoverde, D.; Chunga, K.; Ortiz-Hernández, E.; Vivas-Espinoza, E.; Toulkeridis, T.; Morales-Delgado, A.; Delgado-Toala, D. Seismically induced soil liquefaction and geological conditions in the city of Jama due to the M7. 8 Pedernales Earthquake in 2016, NW Ecuador. Geosciences 2020, 11, 20. [Google Scholar] [CrossRef]
- Chunga, K.; Livio, F.; Mulas, M.; Ochoa-Cornejo, F.; Besenzon, D.; Ferrario, M.F.; Michetti, A.M. Earthquake Ground Effects and Intensity of the 16 April 2016 Mw 7.8 Pedernales, Ecuador, Earthquake: Implications for the Source Characterization of Large Subduction EarthquakesEarthquake Ground Effects and Intensity of the 16 April 2016 Pedernales, Ecuador, Earthquake. Bull. Seismol. Soc. Am. 2018, 108, 3384–3397. [Google Scholar]
- Chunga, K.; Ochoa-Cornejo, F.; Mulas, M.; Toulkeridis, T.; Menéndez, E. Characterization of seismogenic crustal faults in the Gulf of Guayaquil, Ecuador. Andean Geol. 2019, 46, 66–81. [Google Scholar] [CrossRef]
- Chunga, K.; Livio, F.A.; Martillo, C.; Lara-Saavedra, H.; Ferrario, M.F.; Zevallos, I.; Michetti, A.M. Landslides Triggered by the 2016 Mw 7.8 Pedernales, Ecuador Earthquake: Correlations with ESI-07 Intensity, Lithology, Slope and PGA-h. Geosciences 2019, 9, 371. [Google Scholar] [CrossRef]
- Aguirre, L.; Atherton, M.P. Low-grade metamorphism and geotectonic setting of the Macuchi Formation, Western Cordillera of Ecuador. J. Metamorph. Geol. 1987, 5, 473–494. [Google Scholar] [CrossRef]
- Henderson, W.G. The volcanic Macuchi Formation, Andes of Northern Ecuador. Newsl. Stratigr. 1981, 9, 157–168. [Google Scholar] [CrossRef]
- Baldock, J.W. Mapa Geológico Nacional de la República del Ecuador; Dirección General de Geología y Minas: Instituto Geográfico Militar: Quito, Ecuador, 1982. [Google Scholar]
- IIGE. Mapa Geológico de Guaranda 1: 100.000; Dirección General de Geología y Minas, Ministerio de Energia y Minas: Instituto Geográfico Militar: Quito, Ecuador, 1977. [Google Scholar]
- IIGE. Mapa Geológico de San Miguel 1: 100.000; Dirección General de Geología y Minas, Ministerio de Energia y Minas: Instituto Geográfico Militar: Quito, Ecuador, 1976. [Google Scholar]
- Tibaldi, A.; Ferrari, L.; Pasquarè, G. Landslides triggered by earthquakes and their relations with faults and mountain slope geometry: An example from Ecuador. Geomorphology 1995, 11, 215–226. [Google Scholar] [CrossRef]
- Pourrut, P. Los Climas del Ecuador: Fundamentos Explicativos. In Los Climas del Ecuador; CEDIG: Quito, Ecuador; Institut de Recherche pour le Développement: Marseille, France, 1983; pp. 7–41. [Google Scholar]
- Pourrut, P.; Róvere, O.; Romo, I.; Villacrés, H. Clima del Ecuador. In El Agua en el Ecuador: Clima, Precipitaciones, Escorrentía; Institut de Recherche pour le Développement: Marseille, France, 1995; pp. 13–26. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Varnes, D.J. Slope movement types and processes. In Landslides—Analysis and Control, 1st ed.; Special Report, 176, Schuster, R.L., Krizek, R.J., Eds.; National Research Council, Transportation Research Board: Washington, DC, USA, 1978; pp. 11–33. [Google Scholar]
- Huayllazo, Y.; Infa, R.; Soto, J.; Lazarte, K.; Huanca, J.; Alvarez, Y.; Teixidó, T. Using Electrical Resistivity Tomography Method to Determine the Inner 3D Geometry and the Main Runoff Directions of the Large Active Landslide of Pie de Cuesta in the Vítor Valley (Peru). Geosciences 2023, 13, 342. [Google Scholar] [CrossRef]
- Pazzi, V.; Morelli, S.; Fanti, R.A. Review of the Advantages and Limitations of Geophysical Investigations in Landslide Studies. Int. J. Geophys. 2019, 2019, 2983087. [Google Scholar] [CrossRef]
- Perrone, A.; Lapena, V.; Piscitelli, S. Electrical resistivity tomography technique for landslide investigation: A review. Earth-Sci. Rev. 2014, 135, 65–82. [Google Scholar] [CrossRef]
- Lesmes, D.; Friedman, S. Relationships between the Electrical and Hydrogeological Properties of Rocks and Soils. In Hydrogeo Physics; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- McCann, D.M.; Forster, A. Reconnaissance geophysical methods in landslide investigations. Eng. Geol. 1990, 29, 59–78. [Google Scholar] [CrossRef]
- Bruno, F.; Marillier, F. Test of high-resolution seismic reflection and other geophysical techniques on the Boup landslide in the Swiss Alps. Surv. Geophys. 2000, 21, 333–348. [Google Scholar] [CrossRef]
- Bichler, A.; Bobrowsky, P.; Best, M.; Douma, M.; Hunter, J.; Calvert, T.; Burns, R. Three-dimensional mapping of a landslide using a multi-geophysical approach: The Quesnel Forks landslide. Landslides 2004, 1, 29–40. [Google Scholar] [CrossRef]
- Chambers, J.E.; Gunn, D.A.; Wilkinson, P.B.; Meldrum, P.I.; Haslam, E.; Holyoake, S.; Wragg, J. 4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment. Near Surf. Geophys. 2014, 12, 61–72. [Google Scholar] [CrossRef]
- Orejuela, I.P.; Toulkeridis, T. Evaluation of the susceptibility to landslides through diffuse logic and analytical hierarchy process (AHP) between Macas and Riobamba in Central Ecuador. In Proceedings of the 2020 Seventh International Conference on eDemocracy & eGovernment (ICEDEG), Buenos Aires, Argentina, 22–24 April 2020. [Google Scholar] [CrossRef]
- Pasierb, B.; Grodecki, M.; Gwó´zd´z, R. Geophysical and Geotechnical Approach to a Landslide Stability Assessment: A Case Study. Acta Geophys. 2019, 67, 1823–1834. [Google Scholar] [CrossRef]
- Vásconez, F. Análisis de la Peligrosidad de Grandes Deslizamientos en la República del Ecuador Con el Caso-Ejemplo Guarumales; Johannes Gutenberg University of Mainz: Mainz, Germany, 2000. [Google Scholar]
- GeoStudio, Tutorial Manual. GEO-SLOPE International Ltd., 2004. Available online: www.geo-slope.com (accessed on 28 October 2023).
- Córdova, J.; Choez, D. Estudio y Diseño para Estabilizar los Deslizamientos en el Barrio Tambán, Cantón Chimbo. Escuela Superior Politécnica del Litoral. Thesis of engineer degree, 2021; pp. 1–266. Available online: https://www.dspace.espol.edu.ec/handle/123456789/52186 (accessed on 30 March 2023).
- NEC-15. Norma Ecuatoriana de la Construcción. Registro Oficial No. 413 del 10 de Enero, 2015. Available online: https://www.habitatyvivienda.gob.ec/documentos-normativos-nec-norma-ecuatoriana-de-la-construccion/ (accessed on 11 December 2022).
Year | 2020 | 2021 | 2022 | Average (2020–2022) | 2023 |
---|---|---|---|---|---|
December | 136.83 | 175.12 | 95.41 | 135.79 | 814.69 |
January | 114.26 | 315.39 | 106.5 | 178.72 | 139.72 |
February | 107.25 | 156.91 | 126.24 | 130.13 | 114.59 |
March | 77.87 | 180.7 | 250.6 | 169.72 | 219.86 |
April | 187.93 | 186.7 | 165.6 | 179.85 | 259.90 |
Sum | 624.14 | 1014.13 | 744.35 | 794.21 | 1548.76 |
Layer | Description | γ (kN/m3) | Vs (m/s) | Post Landslide | Collapse (Retro-Analysis) | ||
---|---|---|---|---|---|---|---|
c (kPa) | ϕ (°) | c (kPa) | ϕ (°) | ||||
U1 | Volcanic lahar, high-plasticity silts | 14.19 | 291–267 | 89.27 | 12.9 | 18.15 | 0.13 |
U2 | Clast-supported lapilli tuff | 17.11 | 268–360 | 85.35 | 18.26 | 33.68 | 7.42 |
U3 | Fine-bedded massive lapilli tuff | 16.9 | 366–550 | 34 | 19 | 34 | 19 |
U4 | Granodiorite | 20 | >560 | 1200 | 31 | 1200 | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinas, I.; Paucar, A.; Quiñónez-Macías, M.; Grau, F.; Barragán-Taco, M.; Toulkeridis, T.; Chunga, K. Geotechnical and Geophysical Assessment of the 2021 Tamban Chimbo Landslide, Northern Andes of Ecuador. Geosciences 2024, 14, 104. https://doi.org/10.3390/geosciences14040104
Salinas I, Paucar A, Quiñónez-Macías M, Grau F, Barragán-Taco M, Toulkeridis T, Chunga K. Geotechnical and Geophysical Assessment of the 2021 Tamban Chimbo Landslide, Northern Andes of Ecuador. Geosciences. 2024; 14(4):104. https://doi.org/10.3390/geosciences14040104
Chicago/Turabian StyleSalinas, Isela, Abelardo Paucar, María Quiñónez-Macías, Francisco Grau, Marysabel Barragán-Taco, Theofilos Toulkeridis, and Kervin Chunga. 2024. "Geotechnical and Geophysical Assessment of the 2021 Tamban Chimbo Landslide, Northern Andes of Ecuador" Geosciences 14, no. 4: 104. https://doi.org/10.3390/geosciences14040104
APA StyleSalinas, I., Paucar, A., Quiñónez-Macías, M., Grau, F., Barragán-Taco, M., Toulkeridis, T., & Chunga, K. (2024). Geotechnical and Geophysical Assessment of the 2021 Tamban Chimbo Landslide, Northern Andes of Ecuador. Geosciences, 14(4), 104. https://doi.org/10.3390/geosciences14040104