Asbestos Bodies in Human Lung: Localization of Iron and Carbon in the Coating
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Agency for Research on Cancer (IARC). Asbestos (chrysotile, amosite, crocidolite, tremolite, actinolite, and anthophyllite). In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2012; Volume 100C, pp. 219–309. ISBN 978-92-832-1320-8. [Google Scholar]
- Italian Government. Legislative Decree No. 277 of 15 August 1991, Implementing EU Directives No. 80/1107/EEC, No. 82/605/EEC, No. 83/477/EEC, No. 86/188/EEC, and No. 88/642/EEC, on the Protection of Workers from the Risks Related to Exposure to Chemical, Physical and Biological Agents at Work. In Gazzetta Ufficiale Supplemento Ordinario No. 200; Italian Government: Rome, Italy, 1991. [Google Scholar]
- Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. Nomenclature of the amphibole supergroup. Am. Mineral. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Leake, B.E.; Woolley, A.R.; Arps, C.E.S.; Birch, W.D.; Gilbert, M.C.; Grice, J.D.; Hawthorne, F.C.; Kato, A.; Kisch, H.J.; Krivovichev, V.G.; et al. Nomenclature of amphiboles: Report of the Subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can. Mineral. 1997, 35, 219–246. [Google Scholar]
- Whittaker, E.J.W.; Zussman, J. The characterization of serpentine minerals by X-ray diffraction. Mineral. Mag. 1956, 233, 107–126. [Google Scholar] [CrossRef]
- Bartrip, P.W.J. History of asbestos related disease. Postgrad. Med. J. 2004, 80, 72–76. [Google Scholar] [CrossRef]
- Donaldson, K.; Seaton, A. A short history of the toxicology of inhaled particles. Part. Fibre Toxicol. 2012, 9, 13. [Google Scholar] [CrossRef] [PubMed]
- Caraballo-Arias, Y.; Roccuzzo, F.; Graziosi, F.; Danilevskaia, N.; Rota, S.; Zunarelli, C.; Caffaro, P.; Boffetta, P.; Bonetti, M.; Violante, F.S. Quantitative assessment of asbestos fibers in abdominal organs: A scoping review. Med. Lav. 2023, 114, e2023048. [Google Scholar]
- Porzio, A.; Feola, A.; Parisi, G.; Lauro, A.; Campobasso, C.P. Colorectal cancer: 35 cases in asbestos-exposed workers. Healthcare 2023, 11, 3077. [Google Scholar] [CrossRef]
- Brandi, G.; Straif, K.; Mandrioli, D.; Curti, S.; Mattioli, S.; Tavolari, S. Exposure to asbestos and increased intrahepatic cholangiocarcinoma risk: Growing evidences of a putative causal link. Ann. Glob. Health 2022, 88, 41. [Google Scholar] [CrossRef]
- Grosso, F.; Croce, A.; Libener, R.; Mariani, N.; Pastormerlo, M.; Maconi, A.; Rinaudo, C. Asbestos fiber identification in liver from cholangiocarcinoma patients living in an asbestos polluted area: A preliminary study. Tumori J. 2019, 105, 404–410. [Google Scholar] [CrossRef]
- Gamble, J.F. Asbestos and colon cancer: A weight-of-the-evidence review. Environ. Health Perspect. 1994, 102, 1038–1050. [Google Scholar] [CrossRef]
- Ehrlich, A.; Rohl, A.N.; Holstein, E.C. Asbestos bodies in carcinoma of colon in an insulation worker with asbestosis. JAMA 1985, 254, 2932–2933. [Google Scholar] [CrossRef]
- Ehrlich, A.; Gordon, R.E.; Dikman, S.H. Carcinoma of the colon in asbestos-exposed workers: Analysis of asbestos content in colon tissue. Am. J. Ind. Med. 1991, 19, 629–636. [Google Scholar] [CrossRef]
- Kobayashi, H.; Ming, Z.W.; Watanabe, H.; Ohnishi, Y. A quantitative study on the distribution of asbestos bodies in extrapulmonary organs. Acta Pathol. Jpn. 1987, 37, 375–383. [Google Scholar] [CrossRef]
- Barrett, J.C.; Lamb, P.W.; Wiseman, R.W. Multiple mechanisms for the carcinogenic effects of asbestos and other mineral fibers. Environ. Health Perspect. 1989, 81, 81–89. [Google Scholar] [CrossRef]
- Wachowski, L.; Domka, L. Sources and effects of asbestos and other mineral fibres present in ambient air. Pol. J. Environ. Stud. 2000, 9, 443–454. [Google Scholar]
- Andolfi, L.; Trevisan, E.; Zweyer, M.; Prato, S.; Troian, B.; Vita, F.; Borelli, V.; Soranzo, M.R.; Melato, M.; Zabucchi, G. The crocidolite fiber interaction with human mesothelial cells as investigated by combining electron microscopy, atomic force and scanning near-field optical microscopy. J. Microsc. 2013, 249, 173–183. [Google Scholar] [CrossRef]
- Aust, A.E.; Cook, P.M.; Dodson, R.F. Morphological and chemical mechanisms of elongated mineral particle toxicities. J. Toxicol. Environ. Health Part B 2011, 14, 40–75. [Google Scholar] [CrossRef]
- Carbone, M.; Ly, B.H.; Dodson, R.F.; Pagano, I.; Morris, P.T.; Dogan, U.A.; Gazdar, A.F.; Pass, H.I.; Yang, H. Malignant mesothelioma: Facts, myths, and hypotheses. J. Cell. Physiol. 2012, 227, 44–58. [Google Scholar] [CrossRef]
- Crawford, D. Electron microscopy applied to studies of the biological significance of defects in crocidolite asbestos. J. Microsc. 1980, 120, 181–192. [Google Scholar] [CrossRef]
- Fubini, B.; Mollo, L. Role of iron in the reactivity of mineral fibers. Toxicol. Lett. 1995, 82–83, 951–960. [Google Scholar] [CrossRef]
- Goodglick, L.A.; Kane, A.B. Cytotoxicity of long and short crocidolite asbestos fibers in vitro and in vivo. Cancer Res. 1990, 50, 5153–5163. [Google Scholar]
- Hearne, G.R.; Kolk, B.; Pollak, H.; van Wyk, J.A.; Gulumian, M. Bulk and surface modifications in detoxified crocidolite. J. Inorg. Biochem. 1993, 50, 145–156. [Google Scholar] [CrossRef]
- Martra, G.; Chiardola, E.; Coluccia, S.; Marchese, L.; Tomatis, M.; Fubini, B. Reactive sites at the surface of crocidolite asbestos. Langmuir 1999, 15, 5742–5752. [Google Scholar] [CrossRef]
- Mossman, B.; Light, W.; Wei, E. Asbestos: Mechanisms of toxicity and carcinogenicity in the respiratory tract. Annu. Rev. Pharmacol. 1983, 23, 595–615. [Google Scholar] [CrossRef] [PubMed]
- Pacella, A.; Fantauzzi, M.; Turci, F.; Cremisini, C.; Montereali, M.R.; Nardi, E.; Atzei, D.; Rossi, A.; Andreozzi, G.B. Dissolution reaction and surface iron speciation of UICC crocidolite in buffered solution at pH 7.4: A combined ICP-OES, XPS and TEM investigation. Geochim. Cosmochim. Acta 2014, 127, 221–232. [Google Scholar] [CrossRef]
- Rihn, B.; Coulais, C.; Kauffer, E.; Bottin, M.C.; Martin, P.; Yvon, F.; Vigneron, J.C.; Binet, S.; Monhoven, N.; Steiblen, G.; et al. Inhaled crocidolite mutagenicity in lung DNA. Environ. Health Perspect. 2000, 108, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.C.; Berry, G.; Timbrell, V. Mesotheliomata in rats after inoculation with asbestos and other materials. Br. J. Cancer 1973, 28, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.C.; Griffiths, D.M.; Hill, R.J. The effect of fiber size on the in vivo activity of UICC crocidolite. Br. J. Cancer 1984, 49, 453–458. [Google Scholar] [CrossRef]
- Werner, A.J.; Hochella, M.F., Jr.; Guthrie, G.D.; Hardy, J.A.; Aust, A.E.; Rimstidt, J.D. Asbestiform riebeckite (crocidolite) dissolution in presence of Fe chelators: Implications for mineral-induced disease. Am. Mineral. 1995, 80, 1093–1103. [Google Scholar] [CrossRef]
- Croce, A.; Musa, M.; Allegrina, M.; Trivero, P.; Rinaudo, C. Environmental scanning electron microscopy technique to identify asbestos phases inside ferruginous bodies. Microsc. Microanal. 2013, 19, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Musa, M.; Croce, A.; Allegrina, M.; Rinaudo, C.; Belluso, E.; Bellis, D.; Toffalorio, F.; Veronesi, G. The use of Raman spectroscopy to identify inorganic phases in iatrogenic pathological lesions of patients with malignant pleural mesothelioma. Vib. Spectrosc. 2012, 61, 66–71. [Google Scholar] [CrossRef]
- Croce, A.; Arrais, A.; Rinaudo, C. Raman micro-spectroscopy identifies carbonaceous particles lying on the surface of crocidolite, amosite, and chrysotile fibers. Minerals 2018, 8, 249. [Google Scholar] [CrossRef]
- Rinaudo, C.; Croce, A. Micro-Raman spectroscopy, a powerful technique allowing sure identification and complete characterization of asbestiform minerals. Appl. Sci. 2019, 9, 3092. [Google Scholar] [CrossRef]
- Avramescu, M.L.; Potiszil, C.; Kunihiro, T.; Okabe, K.; Nakamura, E. An investigation of the internal morphology of asbestos ferruginous bodies: Constraining their role in the onset of malignant mesothelioma. Part. Fibre Toxicol. 2023, 20, 19. [Google Scholar] [CrossRef] [PubMed]
- Bardelli, F.; Giacobbe, C.; Ballirano, P.; Borelli, V.; Di Benedetto, F.; Montegrassi, G.; Bellis, D.; Pacella, A. Closing the knowledge gap on the composition of the asbestos bodies. Environ. Geochem. Health 2023, 45, 5039–5051. [Google Scholar] [CrossRef] [PubMed]
- Vigliaturo, R.; Jannik, M.; Dražić, G.; Podobnik, M.; Tušek Žnidarič, M.; Della Ventura, G.; Redhammer, G.J.; Žnidarič, N.; Caserman, S.; Gieré, R. Nanoscale transformations of amphiboles within human alveolar epithelial cells. Sci. Rep. 2022, 12, 1782. [Google Scholar] [CrossRef]
- Croce, A.; Allegrina, M.; Rinaudo, C.; Gaudino, G.; Yang, H.; Carbone, M. Numerous iron-rich particles lie on the surface of erionite fibers from Rome (Oregon, USA) and Karlik (Cappadocia, Turkey). Microsc. Microanal. 2015, 21, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Bowes, D.R.; Farrow, C.M. Major and trace element compositions of the UICC standard asbestos samples. Am. J. Ind. Med. 1997, 32, 592–594. [Google Scholar] [CrossRef]
- Burns, R.G.; Prentice, F.J. Distribution of iron cations in the crocidolite structure. Am. Mineral. 1968, 53, 770–776. [Google Scholar]
- Galumian, M.; Pollak, H. Effect of microwave radiation on surface charge, surface sites and ionic state of iron, and the activity of crocidolite asbestos fibres. Hyperfine Interact. 1998, 111, 291–298. [Google Scholar] [CrossRef]
- Graham, A.; Higinbotham, J.; Doug, A.; Donaldson, K.; Beswick, P.H. Chemical differences between long and short amosite asbestos: Differences in oxidation state and coordination sites of iron, detected by infrared spectroscopy. Occup. Environ. Med. 1999, 56, 606–611. [Google Scholar] [CrossRef]
- Gunter, M.E.; Sanchez, M.S.; Williams, T.J. Characterization of chrysotile samples for the presence of amphiboles: The Carey Canadian deposit, Southeastern Quebec, Canada. Can. Mineral. 2007, 45, 263–280. [Google Scholar] [CrossRef]
- Hilborn, J.J.; Thomas, R.S.; Lao, R.C. The organic content of the international reference samples of asbestos. Sci. Total Environ. 1974, 3, 129–140. [Google Scholar] [CrossRef]
- Harington, J.S. Chemical studies of asbestos. Ann. N. Y. Acad. Sci. 1965, 132, 31–47. [Google Scholar] [CrossRef]
- Steel, E.B.; Small, J.A. Accuracy of transmission electron microscopy for the analysis of asbestos in ambient environments. Anal. Chem. 1985, 57, 209–213. [Google Scholar] [CrossRef]
- Platek, S.F.; Riley, R.D.; Simon, S.D. The classification of asbestos fibers by scanning electron microscopy and computer-digitizing tablet. Ann. Occup. Hyg. 1992, 36, 155–171. [Google Scholar] [PubMed]
- Rinaudo, C.; Croce, A.; Musa, M.; Fornero, E.; Allegrina, M.; Trivero, P.; Bellis, D.; Sferch, D.; Toffalorio, F.; Veronesi, G.; et al. Study of inorganic particles, fibers, and asbestos bodies by variable pressure scanning electron microscopy with annexed energy dispersive spectroscopy and micro-Raman spectroscopy in thin sections of lung and pleural plaque. Appl. Spectrosc. 2010, 64, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Prashanth, M.; Verma, O. Medical geology: An interdisciplinary approach intended to unfold the issues of natural environment on public health. J. Geosci. Res. 2022, 7, 139–144. [Google Scholar] [CrossRef]
- Croce, A.; Re, G.; Bisio, C.; Gatti, G.; Coluccia, S.; Marchese, L. On the correlation between Raman spectra and structural properties of activated carbons derived by hyper-crosslinked polymers. Res. Chem. Intermed. 2021, 47, 419–431. [Google Scholar] [CrossRef]
- Chasteen, N.D.; Harrison, P.M. Mineralization in ferritin: An efficient means of iron storage. J. Struct. Biol. 1999, 126, 182–194. [Google Scholar] [CrossRef]
- Harrison, P.M.; Fischbach, F.A.; Hoy, T.G.; Haggis, G.H. Ferric oxyhydroxide core of ferritin. Nature 1967, 216, 1188–1190. [Google Scholar] [CrossRef] [PubMed]
- St. Pierre, T.G.; Kim, K.S.; Webb, J.; Mann, S.; Dickson, D.P.E. Biomineralization of iron: Mossbauer spectroscopy and electron microscopy of ferritin cores from the chiton Acanthopleura hirtosa and the limpet Patella laticostata. Inorg. Chem. 1990, 29, 1870–1874. [Google Scholar] [CrossRef]
- Wade, V.J.; Treffry, A.; Laulhere, J.P.; Bauminger, E.R.; Cleton, M.I.; Mann, S.; Briat, J.F.; Harrison, P.M. Structure and composition of ferritin cores from pea seed (Pisum sativum). Biophys. Biochim. Acta 1993, 1161, 91–96. [Google Scholar] [CrossRef]
- Mian, S.A.; Colley, H.E.; Thornhill, M.H.; Rehman, I.U. Development of a dewaxing protocol for tissue-engineered models of the oral mucosa used for Raman spectroscopic analysis. Appl. Spectrosc. Rev. 2014, 49, 614–617. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Carbon black, titanium dioxide, and talc. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2010; Volume 93, pp. 43–192. ISBN 978-92-832-1293-5. [Google Scholar]
- Zhang, J.; Li, X.; Cheng, W.; Li, Y.; Shi, T.; Jiang, Y.; Wang, T.; Wang, H.; Ren, D.; Zhang, R.; et al. Chronic carbon black nanoparticle exposure increases lung cancer risk by affecting the cell cycle via circulatory inflammation. Environ. Pollut. 2022, 305, 119293. [Google Scholar] [CrossRef] [PubMed]
- Lequy, E.; Siemiatycki, J.; de Hoogh, K.; Vienneau, D.; Dupuy, J.F.; Garès, V.; Hertel, O.; Christensen, J.H.; Goldberg, M.; Zins, M.; et al. Contribution of long-term exposure to outdoor black carbon to the carcinogenicity of air pollution: Evidence regarding risk of cancer in the Gazel Cohort. Environ. Health Perspect. 2021, 129, 37005. [Google Scholar] [CrossRef]
- Grahame, T.J.; Klemm, R.; Schlesinger, S.B. Public health and components of particulate matter: The changing assessment of black carbon. J. Air Waste Manag. 2014, 64, 620–660. [Google Scholar] [CrossRef]
Atoms % | P/Fe Ratio | |||||||
---|---|---|---|---|---|---|---|---|
Si | Mg | Fe | Na | Ca | S | P | ||
Line 1 | ||||||||
#1 | 0.31 | 0.10 | 0.21 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 |
#2 | 0.34 | 0.12 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
#3 | 0.31 | 0.15 | 0.44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
#4 | 0.27 | 0.09 | 0.65 | 0.06 | 0.05 | 0.03 | 0.07 | 0.11 |
#5 | 0.27 | 0.12 | 0.59 | 0.06 | 0.03 | 0.02 | 0.07 | 0.10 |
#6 | 0.29 | 0.12 | 0.47 | 0.06 | 0.03 | 0.03 | 0.06 | 0.13 |
#7 | 0.29 | 0.12 | 0.50 | 0.06 | 0.03 | 0.02 | 0.07 | 0.10 |
#8 | 0.29 | 0.12 | 0.50 | 0.06 | 0.03 | 0.03 | 0.06 | 0.12 |
#9 | 0.27 | 0.09 | 0.47 | 0.07 | 0.04 | 0.04 | 0.06 | 0.13 |
#10 | 0.28 | 0.13 | 0.53 | 0.09 | 0.04 | 0.04 | 0.08 | 0.15 |
#11 | 0.26 | 0.10 | 0.63 | 0.06 | 0.04 | 0.03 | 0.09 | 0.14 |
#12 | 0.25 | 0.11 | 0.71 | 0.03 | 0.04 | 0.04 | 0.04 | 0.13 |
#13 | 0.22 | 0.10 | 0.70 | 0.04 | 0.04 | 0.03 | 0.08 | 0.11 |
#14 | 0.20 | 0.12 | 0.74 | 0.08 | 0.05 | 0.03 | 0.11 | 0.15 |
#15 | 0.20 | 0.10 | 0.66 | 0.07 | 0.03 | 0.02 | 0.09 | 0.14 |
#16 | 0.21 | 0.08 | 0.48 | 0.07 | 0.03 | 0.02 | 0.04 | 0.08 |
#17 | 0.26 | 0.11 | 0.25 | 0.04 | 0.02 | 0.01 | 0.03 | 0.12 |
#18 | 0.25 | 0.11 | 0.29 | 0.06 | 0.02 | 0.02 | 0.04 | 0.14 |
Line 2 | ||||||||
#1 | 0.04 | 0.05 | 0.31 | 0.03 | 0.05 | 0.01 | 0.05 | 0.16 |
#2 | 0.04 | 0.06 | 0.55 | 0.05 | 0.04 | 0.04 | 0.10 | 0.18 |
#3 | 0.02 | 0.08 | 0.78 | 0.07 | 0.06 | 0.03 | 0.10 | 0.13 |
#4 | 0.04 | 0.06 | 0.59 | 0.07 | 0.05 | 0.05 | 0.10 | 0.17 |
#5 | 0.06 | 0.05 | 0.21 | 0.07 | 0.04 | 0.04 | 0.04 | 0.19 |
#6 | 0.05 | 0.04 | 0.24 | 0.02 | 0.02 | 0.03 | 0.05 | 0.21 |
#7 | 0.06 | 0.10 | 0.74 | 0.07 | 0.05 | 0.04 | 0.13 | 0.18 |
#8 | 0.06 | 0.06 | 0.86 | 0.05 | 0.05 | 0.03 | 0.13 | 0.15 |
#9 | 0.05 | 0.04 | 0.83 | 0.07 | 0.05 | 0.04 | 0.13 | 0.16 |
#10 | 0.04 | 0.04 | 0.50 | 0.06 | 0.04 | 0.03 | 0.09 | 0.18 |
Line 3 | ||||||||
#1 | 0.03 | 0.05 | 0.34 | 0.07 | 0.03 | 0.03 | 0.07 | 0.21 |
#2 | 0.06 | 0.05 | 0.52 | 0.07 | 0.03 | 0.03 | 0.09 | 0.17 |
#3 | 0.20 | 0.11 | 0.60 | 0.05 | 0.04 | 0.03 | 0.06 | 0.10 |
#4 | 0.06 | 0.05 | 0.68 | 0.06 | 0.05 | 0.03 | 0.10 | 0.15 |
#5 | 0.06 | 0.05 | 0.68 | 0.05 | 0.05 | 0.05 | 0.11 | 0.16 |
#6 | 0.04 | 0.04 | 0.69 | 0.03 | 0.04 | 0.03 | 0.10 | 0.15 |
#7 | 0.04 | 0.05 | 0.62 | 0.08 | 0.06 | 0.04 | 0.09 | 0.15 |
D1 Band Intensity | G Band Intensity | R1 Ratio | |
---|---|---|---|
Spectrum #1 | 272.12 | 188.97 | 1.44 |
Spectrum #2 | 154.78 | 108.24 | 1.43 |
Spectrum #3 | 150.93 | 101.29 | 1.49 |
Spectrum #4 | 159.03 | 109.68 | 1.45 |
Spectrum #5 | 177.60 | 121.64 | 1.46 |
Spectrum #6 | 169.23 | 116.71 | 1.45 |
Spectrum #7 | 154.56 | 108.84 | 1.42 |
Spectrum #8 | 148.96 | 104.90 | 1.42 |
Spectrum #9 | 143.57 | 99.70 | 1.44 |
Spectrum #10 | 145.97 | 99.98 | 1.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Croce, A.; Gatti, G.; Calisi, A.; Cagna, L.; Bellis, D.; Bertolotti, M.; Rinaudo, C.; Maconi, A. Asbestos Bodies in Human Lung: Localization of Iron and Carbon in the Coating. Geosciences 2024, 14, 58. https://doi.org/10.3390/geosciences14030058
Croce A, Gatti G, Calisi A, Cagna L, Bellis D, Bertolotti M, Rinaudo C, Maconi A. Asbestos Bodies in Human Lung: Localization of Iron and Carbon in the Coating. Geosciences. 2024; 14(3):58. https://doi.org/10.3390/geosciences14030058
Chicago/Turabian StyleCroce, Alessandro, Giorgio Gatti, Antonio Calisi, Laura Cagna, Donata Bellis, Marinella Bertolotti, Caterina Rinaudo, and Antonio Maconi. 2024. "Asbestos Bodies in Human Lung: Localization of Iron and Carbon in the Coating" Geosciences 14, no. 3: 58. https://doi.org/10.3390/geosciences14030058
APA StyleCroce, A., Gatti, G., Calisi, A., Cagna, L., Bellis, D., Bertolotti, M., Rinaudo, C., & Maconi, A. (2024). Asbestos Bodies in Human Lung: Localization of Iron and Carbon in the Coating. Geosciences, 14(3), 58. https://doi.org/10.3390/geosciences14030058