Applying Statistical Analysis and Economics Models to Unscramble the Depositional Signals from Chemical Proxies in Black Shales
Abstract
1. Introduction
2. Materials and Methods
2.1. Cluster Analysis
2.2. Discrimination and Classification Analysis
2.3. Linear Regression Analysis
2.4. Sensitivity Test
- λ = −1 is a reciprocal transformation.
- λ = −0.5 is a reciprocal square root transformation.
- λ = 0 is a log transformation.
- λ = 0.5 is a square root transformation.
- λ = 1 is no transformation (identity).
- λ = 2 is a square transformation.
- λ = 3 is a cube transformation.
3. Results and Discussion of Geological Significance
3.1. Sensitivity Test
3.2. Cluster Analysis of the Woodford/Chattanooga Formation
3.3. Linear Regression Analysis of the Woodford/Chattanooga Formation
4. Conclusions and Next Steps
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arthur, M.A.; Sageman, B.B. Marine black shales: Depositional mechanisms and environments of ancient deposits. Annu. Rev. Earth Planet. Sci. 1994, 22, 499–551. [Google Scholar] [CrossRef]
- Battin, T.J.; Luyssaert, S.; Kaplan, L.A.; Aufdenkampe, A.K.; Richter, A.; Tranvik, L.J. The boundless carbon cycle. Nat. Geosci. 2009, 2, 598–600. [Google Scholar] [CrossRef]
- Calvert, S.E.; Pedersen, T.F. Organic Carbon Accumulation and Preservation. In Organic Matter: Productivity, Accumulation, and Preservation in Recent and Ancient Sediments; Columbia University Press: New York, NY, USA, 1992; p. 231. [Google Scholar]
- Wignall, P.; Newton, R. Black shales on the basin margin: A model based on examples from the Upper Jurassic of the Boulonnais, northern France. Sediment. Geol. 2001, 144, 335–356. [Google Scholar] [CrossRef]
- Sageman, B.B.; Murphy, A.E.; Werne, J.P.; Straeten, C.A.V.; Hollander, D.J.; Lyons, T.W. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin. Chem. Geol. 2003, 195, 229–273. [Google Scholar] [CrossRef]
- Tyson, R.V. The “Productivity Versus Preservation” Controversy: Cause, Flaws, and Resolution. In The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences; Harris, N.B., Ed.; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 2005; Volume 82. [Google Scholar] [CrossRef]
- Arnaboldi, M.; Meyers, P.A. Trace element indicators of increased primary production and decreased water-column ventilation during deposition of latest Pliocene sapropels at five locations across the Mediterranean Sea. Palaeogeogr. Palaeoclim. Palaeoecol. 2007, 249, 425–443. [Google Scholar] [CrossRef]
- Trabucho-Alexandre, J.; Dirkx, R.; Veld, H.; Klaver, G.; de Boer, P.L. Toarcian black shales in the Dutch Central Graben: Record of energetic, variable depositional conditions during an oceanic anoxic event. J. Sediment. Res. 2012, 82, 104–120. [Google Scholar] [CrossRef]
- Leonowicz, P. Nearshore transgressive black shale from the Middle Jurassic shallow-marine succession from southern Poland. Facies 2016, 62, 16. [Google Scholar] [CrossRef]
- Goldberg, K.; Humayun, M. Geochemical paleoredox indicators in organic-rich shales of the Irati Formation, Permian of the Paraná Basin, southern Brazil. Braz. J. Geol. 2016, 46, 377–393. [Google Scholar] [CrossRef]
- Pi, D.-H.; Liu, C.-Q.; Shields-Zhou, G.A.; Jiang, S.-Y. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China: Constraints for redox environments and origin of metal enrichments. Precambrian Res. 2013, 225, 218–229. [Google Scholar] [CrossRef]
- Turner, B.W.; Tréanton, J.A.; Slatt, R.M. The use of chemostratigraphy to refine ambiguous sequence stratigraphic correlations in marine mudrocks. An example from the Woodford Shale, Oklahoma, USA. J. Geol. Soc. 2016, 173, 854–868. [Google Scholar] [CrossRef]
- Ganai, J.A.; Rashid, S.A. Anoxia and fluctuating climate recorded from the Devonian–Carboniferous black shales, Tethys Himalaya, India: A multi-proxy approach. Int. J. Earth Sci. 2019, 108, 863–883. [Google Scholar] [CrossRef]
- Calvert, S.; Pedersen, T. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record. Mar. Geol. 1993, 113, 67–88. [Google Scholar] [CrossRef]
- Algeo, T.J.; Maynard, J. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 2004, 206, 289–318. [Google Scholar] [CrossRef]
- Severmann, S.; Anbar, A.D. Reconstructing paleoredox conditions through a multitracer approach: The key to the past is the present. Elements 2009, 5, 359–364. [Google Scholar] [CrossRef]
- Berner, R.A.; Raiswell, R. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 1984, 12, 365–368. [Google Scholar] [CrossRef]
- Algeo, T.J.; Lyons, T.W. Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanogr. 2006, 21, 1. [Google Scholar] [CrossRef]
- Lyons, T.W.; Severmann, S. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochim. Cosmochim. Acta 2006, 70, 5698–5722. [Google Scholar] [CrossRef]
- Brumsack, H.-J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeogr. Palaeoclim. Palaeoecol. 2006, 232, 344–361. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Severmann, S.; Lyons, T.W.; Anbar, A.; McManus, J.; Gordon, G. Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans. Geology 2008, 36, 487. [Google Scholar] [CrossRef]
- Cunningham, S. Causal Inference: The Mixtape; Yale University Press: New Haven, CT, USA, 2021. [Google Scholar]
- Sageman, B.B.; Lyons, T.W. Geochemistry of Fine-grained Sediments and Sedimentary Rocks. Treatise Geochem. 2003, 7, 407. [Google Scholar] [CrossRef]
- Brower, S.C. An Integrated Sedimentological-Chemostratigraphic Study of the Late Devonian-Early Mississipian Chattanooga Formation in Kansas: High-Resolution Stratigraphy and Organic Matter Accumulation. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2019. [Google Scholar]
- Pew, B.A. Allogenic Controls on Organic Matter Accumulation in the Woodford Shale in Southern Oklahoma. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2021. [Google Scholar]
- Eme, C.E. Facies Analysis and Chemostratigraphy of the Chattanooga Formation in Tennessee and Alabama. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2023. [Google Scholar]
- Lambert, M.W. Lithology and geochemistry of shale members within the Devonian-Mississipian Chattanooga (Woodford) Shale, Midcontinent, USA. Ph.D Thesis, University of Kansas, Lawrence, KS, USA, 1992. [Google Scholar]
- Lambert, M.W. Internal Stratigraphy and Organic Facies of the Devonian-Mississippian Chattanooga (Woodford) Shale in Oklahoma and Kansas. In Source Rocks in a Sequence Stratigraphic Framework; Katz, B.J., Pratt, L.M., Eds.; AAPG Studies in Geology; American Association of Petroleum Geologists: Tulsa, OK, USA, 1993; Volume 37, pp. 163–176. [Google Scholar]
- Romero, A.M.; Philp, R.P. Organic geochemistry of the Woodford Shale, southeastern Oklahoma: How variable can shales be? AAPG Bull. 2006, 96, 493–517. [Google Scholar] [CrossRef]
- Marlow, C.S. Characterizing Geological and Geochemical Properties of Selected Gas Shales and Their Thermal Maturation in the Black Warrior Basin, Alabama. Master’s Thesis, Auburn University, Auburn, AL, USA, 2014. [Google Scholar]
- Lu, Y. Sedimentological and Geochemical Records of Depositional Environments of the Late Devonian Chattanooga Shale. Master’s Thesis, University of Alabama, Tuscaloosa, AL, USA, 2015. [Google Scholar]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. Ser. Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Xanthopoulos, P.; Pardalos, P.M.; Trafalis, T.B. Linear Discriminant Analysis. In Robust Data Mining. SpringerBriefs in Optimization; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Allen, M. (Ed.) Ordinary Least Squares; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2017; Volume 1–4. [Google Scholar] [CrossRef]
- Scholz, F.; Hensen, C.; Noffke, A.; Rohde, A.; Liebetrau, V.; Wallmann, K. Early diagenesis of redox-sensitive trace metals in the Peru upwelling area—Response to ENSO-related oxygen fluctuations in the water column. Geochim. Et Cosmochim. Acta 2011, 75, 7257–7276. [Google Scholar] [CrossRef]
- McManus, J.; Berelson, W.M.; Severmann, S.; Poulson, R.L.; Hammond, D.E.; Klinkhammer, G.P.; Holm, C. Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential. Geochim. Et Cosmochim. Acta 2006, 70, 4643–4662. [Google Scholar] [CrossRef]
Cluster | Fe/Al | Mo/Al | U/Al | U/Mo |
---|---|---|---|---|
1 (raw) | 0.6359066 | 2.210526 × 10−5 | 2.115789 × 10−4 | 8.5842105 |
2 (raw) | 0.4594432 | 7.466667 × 10−5 | 2.53 × 10−4 | 3.7733333 |
3 (raw) | 0.4141516 | 8.419811 × 10−4 | 3.530189 × 10−4 | 0.5635849 |
1 (normalized) | 1.770597 | −0.8740039 | −0.394565 | 2.0753108 |
2 (normalized) | −0.4868763 | 1.4427397 | 1.8343059 | −0.5652342 |
3 (normalized) | −0.2317273 | −0.1479243 | −0.3248862 | −0.2728719 |
Cluster | TOC | Ti/Al | Zr/Al | Si/Al | Ni/Al | Cu/Al | Fe/Al | Mo/Al | U/Al | P/Al |
---|---|---|---|---|---|---|---|---|---|---|
1 (raw) | 1.08 | 0.039 | 0.0017 | 2.1356 | 0.0013 | 0.0004 | 0.4009 | 0.0001 | 8.6 × 10−5 | 0.0011 |
2 (raw) | 8.92 | 0.077 | 0.003 | 7.685 | 0.002 | 0.0007 | 0.3864 | 0.0025 | 5.34 × 10−4 | 0.0083 |
3 (raw) | 15.67 | 0.058 | 0.0021 | 4.2566 | 0.0021 | 0.0033 | 0.3844 | 0.0028 | 8.24 × 10−4 | 0.0093 |
Outlier | 7.58 | 0.069 | 0.0042 | 42.3083 | 0.0256 | 0.0065 | 1.29 | 0.0116 | 1.81 × 10−2 | 0.0552 |
1 (log) | −0.39 | −3.237 | −6.376 | 0.7695 | −6.9783 | −7.7345 | −1.1613 | −9.2254 | −9.359 | −7.15589 |
2 (log) | 2.39 | −2.663 | −5.9383 | 1.7988 | −6.2902 | −7.0771 | −1.1184 | −6.154 | −7.4749 | −4.8239 |
Outlier A | 2.03 | −2.665 | −5.4684 | 3.745 | −3.6643 | −5.0391 | 0.2546 | −4.4569 | −4.011 | −2.896 |
Outlier B | 1.95 | −3.056 | −13.5158 | 1.636 | −5.9441 | −6.484 | −0.6733 | −7.2207 | −7.6158 | −4.9042 |
1 (Tuk.) | 4.44 | −1.24 | 0.0178 | −0.61420 | −14.8827 | −93.987 | 0.6169 | 0.124 | −2.9252 | 0.3146 |
2 (Tuk.) | 11.65 | −1.237 | 0.0152 | −0.5382 | −11.4773 | −39.0194 | 0.6467 | 0.206 | −2.4555 | 0.3859 |
Model | Raw Data | Log Distribution | Tukey Transformed |
---|---|---|---|
(i) No interaction | R2 0.7484 (adjusted R2 0.6675); relevant indices Ti/Al, Mo/Al, Si/Al, Cu/Al, Zr/Al | R2 0.8396 (adjusted R2 0.7881); relevant indices Ti/Al, Mo/Al, Fe/Al, (Si/Al, Cu/Al) | R2 0.7984 (adjusted R2 0.7336); relevant indices Ti/Al, Mo/Al, Fe/Al, (Si/Al, Cu/Al) |
(ii) Interaction between detrital input and primary productivity | R2 0.801 (adjusted R2 0.7054); relevant indices Ti/Al, Mo/Al; significant interaction between Ti/Al and Si/Al | R2 0.8835 (adjusted R2 0.8275); relevant indices Cu/Al, U/Al, Mo/Al; significant interaction between Ti/Al and Cu/Al | R2 0.8415 (adjusted R2 0.7654); relevant indices Si/Al, Mo/Al; significant interaction between Ti/Al and Si/Al |
(iii) Interaction between upwelling and primary productivity | R2 0.8644 (adjusted R2 0.7909); relevant indices U/Al, Mo/Al; no significant interaction between indices | R2 0.8837 (adjusted R2 0.8208); relevant indices U/Al, (P/Al, Cu/Al); significant interaction between P/Al and Cu/Al | R2 0.8702 (adjusted R2 0.7999); relevant indices U/Al, (Si/Al); significant interaction between Si/Al and P/Al |
(iv) Interaction between redox conditions and primary productivity | R2 0.9304 (adjusted R2 0.8712); relevant indices U/Al, Cu/Al, (Ni/Al) significant interactions between Cu/Al and Mo/Al, U/Al and Mo/Al, Ni/Al and Fe/Al, Ni/Al and U/Al, Cu/Al and Fe/Al, Cu/Al and U/Al, Mo/Al and Fe/Al, (Ni/Al and Mo/Al) | R2 0.9258 (adjusted R2 0.8628); relevant index U/Al; no significant interaction between indices | R2 0.895 (adjusted R2 0.8058); no relevant indices; significant interaction between Ni/Al and U/Al |
(v) All interactions (between detrital input, redox conditions, primary productivity and upwelling) | R2 0.9586 (adjusted R2 0.8822) relevant indices Ni/Al, Cu/Al and Zr/Al significant interactions between Cu/Al and Mo/Al, Cu/Al and U/Al, U/Al and Mo/Al, Cu/Al and Fe/Al, Ti/Al and Ni/Al | R2 0.9456 (adjusted R2 0.8451); no relevant indices; no significant interaction between indices | R2 0.9338 (adjusted R2 0.8114); no relevant indices; significant interactions between Ti/Al and Ni/Al, Ti/Al and Cu/Al, Si/Al and P/Al, Ni/Al and Fe/Al, Mo/Al and Fe/Al |
Raw Data | Log Distribution | Tukey Transformed | |||||||
---|---|---|---|---|---|---|---|---|---|
Simple Model (i) | Full Model (v) | Post-Stepwise Model | Simple Model (i) | Full Model (v) | Post-Stepwise Model | Simple Model (i) | Full Model (v) | Post-Stepwise Model | |
R2 | 0.748 | 0.959 | 0.957 | 0.84 | 0.946 | 0.943 | 0.798 | 0.934 | 0.932 |
R2 Adj. | 0.668 | 0.882 | 0.911 | 0.788 | 0.845 | 0.888 | 0.734 | 0.811 | 0.851 |
AIC | 210.1 | 171.5 | 163.3 | 91.9 | 80.8 | 70.8 | 190.5 | 178.2 | 171.4 |
BIC | 228.1 | 214.1 | 197.7 | 109.9 | 123.4 | 103.6 | 208.5 | 220.8 | 207.4 |
Log.Lik. | −94.057 | −59.758 | −60.667 | −34.956 | −14.421 | −15.424 | −84.263 | −63.117 | −63.684 |
F | 9.254 | 12.55 | 20.88 | 16.288 | 9.412 | 17.344 | 12.319 | 7.635 | 11.603 |
RMSE | 2.88 | 1.17 | 1.19 | 0.61 | 0.35 | 0.36 | 2.22 | 1.27 | 1.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goldberg, K.; Goldberg Da Rosa, L. Applying Statistical Analysis and Economics Models to Unscramble the Depositional Signals from Chemical Proxies in Black Shales. Geosciences 2024, 14, 43. https://doi.org/10.3390/geosciences14020043
Goldberg K, Goldberg Da Rosa L. Applying Statistical Analysis and Economics Models to Unscramble the Depositional Signals from Chemical Proxies in Black Shales. Geosciences. 2024; 14(2):43. https://doi.org/10.3390/geosciences14020043
Chicago/Turabian StyleGoldberg, Karin, and Lucas Goldberg Da Rosa. 2024. "Applying Statistical Analysis and Economics Models to Unscramble the Depositional Signals from Chemical Proxies in Black Shales" Geosciences 14, no. 2: 43. https://doi.org/10.3390/geosciences14020043
APA StyleGoldberg, K., & Goldberg Da Rosa, L. (2024). Applying Statistical Analysis and Economics Models to Unscramble the Depositional Signals from Chemical Proxies in Black Shales. Geosciences, 14(2), 43. https://doi.org/10.3390/geosciences14020043