Applying Statistical Analysis and Economics Models to Unscramble the Depositional Signals from Chemical Proxies in Black Shales
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cluster Analysis
2.2. Discrimination and Classification Analysis
2.3. Linear Regression Analysis
2.4. Sensitivity Test
- λ = −1 is a reciprocal transformation.
- λ = −0.5 is a reciprocal square root transformation.
- λ = 0 is a log transformation.
- λ = 0.5 is a square root transformation.
- λ = 1 is no transformation (identity).
- λ = 2 is a square transformation.
- λ = 3 is a cube transformation.
3. Results and Discussion of Geological Significance
3.1. Sensitivity Test
3.2. Cluster Analysis of the Woodford/Chattanooga Formation
3.3. Linear Regression Analysis of the Woodford/Chattanooga Formation
4. Conclusions and Next Steps
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arthur, M.A.; Sageman, B.B. Marine black shales: Depositional mechanisms and environments of ancient deposits. Annu. Rev. Earth Planet. Sci. 1994, 22, 499–551. [Google Scholar] [CrossRef]
- Battin, T.J.; Luyssaert, S.; Kaplan, L.A.; Aufdenkampe, A.K.; Richter, A.; Tranvik, L.J. The boundless carbon cycle. Nat. Geosci. 2009, 2, 598–600. [Google Scholar] [CrossRef]
- Calvert, S.E.; Pedersen, T.F. Organic Carbon Accumulation and Preservation. In Organic Matter: Productivity, Accumulation, and Preservation in Recent and Ancient Sediments; Columbia University Press: New York, NY, USA, 1992; p. 231. [Google Scholar]
- Wignall, P.; Newton, R. Black shales on the basin margin: A model based on examples from the Upper Jurassic of the Boulonnais, northern France. Sediment. Geol. 2001, 144, 335–356. [Google Scholar] [CrossRef]
- Sageman, B.B.; Murphy, A.E.; Werne, J.P.; Straeten, C.A.V.; Hollander, D.J.; Lyons, T.W. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin. Chem. Geol. 2003, 195, 229–273. [Google Scholar] [CrossRef]
- Tyson, R.V. The “Productivity Versus Preservation” Controversy: Cause, Flaws, and Resolution. In The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences; Harris, N.B., Ed.; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 2005; Volume 82. [Google Scholar] [CrossRef]
- Arnaboldi, M.; Meyers, P.A. Trace element indicators of increased primary production and decreased water-column ventilation during deposition of latest Pliocene sapropels at five locations across the Mediterranean Sea. Palaeogeogr. Palaeoclim. Palaeoecol. 2007, 249, 425–443. [Google Scholar] [CrossRef]
- Trabucho-Alexandre, J.; Dirkx, R.; Veld, H.; Klaver, G.; de Boer, P.L. Toarcian black shales in the Dutch Central Graben: Record of energetic, variable depositional conditions during an oceanic anoxic event. J. Sediment. Res. 2012, 82, 104–120. [Google Scholar] [CrossRef]
- Leonowicz, P. Nearshore transgressive black shale from the Middle Jurassic shallow-marine succession from southern Poland. Facies 2016, 62, 16. [Google Scholar] [CrossRef]
- Goldberg, K.; Humayun, M. Geochemical paleoredox indicators in organic-rich shales of the Irati Formation, Permian of the Paraná Basin, southern Brazil. Braz. J. Geol. 2016, 46, 377–393. [Google Scholar] [CrossRef]
- Pi, D.-H.; Liu, C.-Q.; Shields-Zhou, G.A.; Jiang, S.-Y. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China: Constraints for redox environments and origin of metal enrichments. Precambrian Res. 2013, 225, 218–229. [Google Scholar] [CrossRef]
- Turner, B.W.; Tréanton, J.A.; Slatt, R.M. The use of chemostratigraphy to refine ambiguous sequence stratigraphic correlations in marine mudrocks. An example from the Woodford Shale, Oklahoma, USA. J. Geol. Soc. 2016, 173, 854–868. [Google Scholar] [CrossRef]
- Ganai, J.A.; Rashid, S.A. Anoxia and fluctuating climate recorded from the Devonian–Carboniferous black shales, Tethys Himalaya, India: A multi-proxy approach. Int. J. Earth Sci. 2019, 108, 863–883. [Google Scholar] [CrossRef]
- Calvert, S.; Pedersen, T. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record. Mar. Geol. 1993, 113, 67–88. [Google Scholar] [CrossRef]
- Algeo, T.J.; Maynard, J. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 2004, 206, 289–318. [Google Scholar] [CrossRef]
- Severmann, S.; Anbar, A.D. Reconstructing paleoredox conditions through a multitracer approach: The key to the past is the present. Elements 2009, 5, 359–364. [Google Scholar] [CrossRef]
- Berner, R.A.; Raiswell, R. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 1984, 12, 365–368. [Google Scholar] [CrossRef]
- Algeo, T.J.; Lyons, T.W. Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanogr. 2006, 21, 1. [Google Scholar] [CrossRef]
- Lyons, T.W.; Severmann, S. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochim. Cosmochim. Acta 2006, 70, 5698–5722. [Google Scholar] [CrossRef]
- Brumsack, H.-J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeogr. Palaeoclim. Palaeoecol. 2006, 232, 344–361. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Severmann, S.; Lyons, T.W.; Anbar, A.; McManus, J.; Gordon, G. Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans. Geology 2008, 36, 487. [Google Scholar] [CrossRef]
- Cunningham, S. Causal Inference: The Mixtape; Yale University Press: New Haven, CT, USA, 2021. [Google Scholar]
- Sageman, B.B.; Lyons, T.W. Geochemistry of Fine-grained Sediments and Sedimentary Rocks. Treatise Geochem. 2003, 7, 407. [Google Scholar] [CrossRef]
- Brower, S.C. An Integrated Sedimentological-Chemostratigraphic Study of the Late Devonian-Early Mississipian Chattanooga Formation in Kansas: High-Resolution Stratigraphy and Organic Matter Accumulation. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2019. [Google Scholar]
- Pew, B.A. Allogenic Controls on Organic Matter Accumulation in the Woodford Shale in Southern Oklahoma. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2021. [Google Scholar]
- Eme, C.E. Facies Analysis and Chemostratigraphy of the Chattanooga Formation in Tennessee and Alabama. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2023. [Google Scholar]
- Lambert, M.W. Lithology and geochemistry of shale members within the Devonian-Mississipian Chattanooga (Woodford) Shale, Midcontinent, USA. Ph.D Thesis, University of Kansas, Lawrence, KS, USA, 1992. [Google Scholar]
- Lambert, M.W. Internal Stratigraphy and Organic Facies of the Devonian-Mississippian Chattanooga (Woodford) Shale in Oklahoma and Kansas. In Source Rocks in a Sequence Stratigraphic Framework; Katz, B.J., Pratt, L.M., Eds.; AAPG Studies in Geology; American Association of Petroleum Geologists: Tulsa, OK, USA, 1993; Volume 37, pp. 163–176. [Google Scholar]
- Romero, A.M.; Philp, R.P. Organic geochemistry of the Woodford Shale, southeastern Oklahoma: How variable can shales be? AAPG Bull. 2006, 96, 493–517. [Google Scholar] [CrossRef]
- Marlow, C.S. Characterizing Geological and Geochemical Properties of Selected Gas Shales and Their Thermal Maturation in the Black Warrior Basin, Alabama. Master’s Thesis, Auburn University, Auburn, AL, USA, 2014. [Google Scholar]
- Lu, Y. Sedimentological and Geochemical Records of Depositional Environments of the Late Devonian Chattanooga Shale. Master’s Thesis, University of Alabama, Tuscaloosa, AL, USA, 2015. [Google Scholar]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. Ser. Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Xanthopoulos, P.; Pardalos, P.M.; Trafalis, T.B. Linear Discriminant Analysis. In Robust Data Mining. SpringerBriefs in Optimization; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Allen, M. (Ed.) Ordinary Least Squares; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2017; Volume 1–4. [Google Scholar] [CrossRef]
- Scholz, F.; Hensen, C.; Noffke, A.; Rohde, A.; Liebetrau, V.; Wallmann, K. Early diagenesis of redox-sensitive trace metals in the Peru upwelling area—Response to ENSO-related oxygen fluctuations in the water column. Geochim. Et Cosmochim. Acta 2011, 75, 7257–7276. [Google Scholar] [CrossRef]
- McManus, J.; Berelson, W.M.; Severmann, S.; Poulson, R.L.; Hammond, D.E.; Klinkhammer, G.P.; Holm, C. Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential. Geochim. Et Cosmochim. Acta 2006, 70, 4643–4662. [Google Scholar] [CrossRef]
Cluster | Fe/Al | Mo/Al | U/Al | U/Mo |
---|---|---|---|---|
1 (raw) | 0.6359066 | 2.210526 × 10−5 | 2.115789 × 10−4 | 8.5842105 |
2 (raw) | 0.4594432 | 7.466667 × 10−5 | 2.53 × 10−4 | 3.7733333 |
3 (raw) | 0.4141516 | 8.419811 × 10−4 | 3.530189 × 10−4 | 0.5635849 |
1 (normalized) | 1.770597 | −0.8740039 | −0.394565 | 2.0753108 |
2 (normalized) | −0.4868763 | 1.4427397 | 1.8343059 | −0.5652342 |
3 (normalized) | −0.2317273 | −0.1479243 | −0.3248862 | −0.2728719 |
Cluster | TOC | Ti/Al | Zr/Al | Si/Al | Ni/Al | Cu/Al | Fe/Al | Mo/Al | U/Al | P/Al |
---|---|---|---|---|---|---|---|---|---|---|
1 (raw) | 1.08 | 0.039 | 0.0017 | 2.1356 | 0.0013 | 0.0004 | 0.4009 | 0.0001 | 8.6 × 10−5 | 0.0011 |
2 (raw) | 8.92 | 0.077 | 0.003 | 7.685 | 0.002 | 0.0007 | 0.3864 | 0.0025 | 5.34 × 10−4 | 0.0083 |
3 (raw) | 15.67 | 0.058 | 0.0021 | 4.2566 | 0.0021 | 0.0033 | 0.3844 | 0.0028 | 8.24 × 10−4 | 0.0093 |
Outlier | 7.58 | 0.069 | 0.0042 | 42.3083 | 0.0256 | 0.0065 | 1.29 | 0.0116 | 1.81 × 10−2 | 0.0552 |
1 (log) | −0.39 | −3.237 | −6.376 | 0.7695 | −6.9783 | −7.7345 | −1.1613 | −9.2254 | −9.359 | −7.15589 |
2 (log) | 2.39 | −2.663 | −5.9383 | 1.7988 | −6.2902 | −7.0771 | −1.1184 | −6.154 | −7.4749 | −4.8239 |
Outlier A | 2.03 | −2.665 | −5.4684 | 3.745 | −3.6643 | −5.0391 | 0.2546 | −4.4569 | −4.011 | −2.896 |
Outlier B | 1.95 | −3.056 | −13.5158 | 1.636 | −5.9441 | −6.484 | −0.6733 | −7.2207 | −7.6158 | −4.9042 |
1 (Tuk.) | 4.44 | −1.24 | 0.0178 | −0.61420 | −14.8827 | −93.987 | 0.6169 | 0.124 | −2.9252 | 0.3146 |
2 (Tuk.) | 11.65 | −1.237 | 0.0152 | −0.5382 | −11.4773 | −39.0194 | 0.6467 | 0.206 | −2.4555 | 0.3859 |
Model | Raw Data | Log Distribution | Tukey Transformed |
---|---|---|---|
(i) No interaction | R2 0.7484 (adjusted R2 0.6675); relevant indices Ti/Al, Mo/Al, Si/Al, Cu/Al, Zr/Al | R2 0.8396 (adjusted R2 0.7881); relevant indices Ti/Al, Mo/Al, Fe/Al, (Si/Al, Cu/Al) | R2 0.7984 (adjusted R2 0.7336); relevant indices Ti/Al, Mo/Al, Fe/Al, (Si/Al, Cu/Al) |
(ii) Interaction between detrital input and primary productivity | R2 0.801 (adjusted R2 0.7054); relevant indices Ti/Al, Mo/Al; significant interaction between Ti/Al and Si/Al | R2 0.8835 (adjusted R2 0.8275); relevant indices Cu/Al, U/Al, Mo/Al; significant interaction between Ti/Al and Cu/Al | R2 0.8415 (adjusted R2 0.7654); relevant indices Si/Al, Mo/Al; significant interaction between Ti/Al and Si/Al |
(iii) Interaction between upwelling and primary productivity | R2 0.8644 (adjusted R2 0.7909); relevant indices U/Al, Mo/Al; no significant interaction between indices | R2 0.8837 (adjusted R2 0.8208); relevant indices U/Al, (P/Al, Cu/Al); significant interaction between P/Al and Cu/Al | R2 0.8702 (adjusted R2 0.7999); relevant indices U/Al, (Si/Al); significant interaction between Si/Al and P/Al |
(iv) Interaction between redox conditions and primary productivity | R2 0.9304 (adjusted R2 0.8712); relevant indices U/Al, Cu/Al, (Ni/Al) significant interactions between Cu/Al and Mo/Al, U/Al and Mo/Al, Ni/Al and Fe/Al, Ni/Al and U/Al, Cu/Al and Fe/Al, Cu/Al and U/Al, Mo/Al and Fe/Al, (Ni/Al and Mo/Al) | R2 0.9258 (adjusted R2 0.8628); relevant index U/Al; no significant interaction between indices | R2 0.895 (adjusted R2 0.8058); no relevant indices; significant interaction between Ni/Al and U/Al |
(v) All interactions (between detrital input, redox conditions, primary productivity and upwelling) | R2 0.9586 (adjusted R2 0.8822) relevant indices Ni/Al, Cu/Al and Zr/Al significant interactions between Cu/Al and Mo/Al, Cu/Al and U/Al, U/Al and Mo/Al, Cu/Al and Fe/Al, Ti/Al and Ni/Al | R2 0.9456 (adjusted R2 0.8451); no relevant indices; no significant interaction between indices | R2 0.9338 (adjusted R2 0.8114); no relevant indices; significant interactions between Ti/Al and Ni/Al, Ti/Al and Cu/Al, Si/Al and P/Al, Ni/Al and Fe/Al, Mo/Al and Fe/Al |
Raw Data | Log Distribution | Tukey Transformed | |||||||
---|---|---|---|---|---|---|---|---|---|
Simple Model (i) | Full Model (v) | Post-Stepwise Model | Simple Model (i) | Full Model (v) | Post-Stepwise Model | Simple Model (i) | Full Model (v) | Post-Stepwise Model | |
R2 | 0.748 | 0.959 | 0.957 | 0.84 | 0.946 | 0.943 | 0.798 | 0.934 | 0.932 |
R2 Adj. | 0.668 | 0.882 | 0.911 | 0.788 | 0.845 | 0.888 | 0.734 | 0.811 | 0.851 |
AIC | 210.1 | 171.5 | 163.3 | 91.9 | 80.8 | 70.8 | 190.5 | 178.2 | 171.4 |
BIC | 228.1 | 214.1 | 197.7 | 109.9 | 123.4 | 103.6 | 208.5 | 220.8 | 207.4 |
Log.Lik. | −94.057 | −59.758 | −60.667 | −34.956 | −14.421 | −15.424 | −84.263 | −63.117 | −63.684 |
F | 9.254 | 12.55 | 20.88 | 16.288 | 9.412 | 17.344 | 12.319 | 7.635 | 11.603 |
RMSE | 2.88 | 1.17 | 1.19 | 0.61 | 0.35 | 0.36 | 2.22 | 1.27 | 1.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goldberg, K.; Goldberg Da Rosa, L. Applying Statistical Analysis and Economics Models to Unscramble the Depositional Signals from Chemical Proxies in Black Shales. Geosciences 2024, 14, 43. https://doi.org/10.3390/geosciences14020043
Goldberg K, Goldberg Da Rosa L. Applying Statistical Analysis and Economics Models to Unscramble the Depositional Signals from Chemical Proxies in Black Shales. Geosciences. 2024; 14(2):43. https://doi.org/10.3390/geosciences14020043
Chicago/Turabian StyleGoldberg, Karin, and Lucas Goldberg Da Rosa. 2024. "Applying Statistical Analysis and Economics Models to Unscramble the Depositional Signals from Chemical Proxies in Black Shales" Geosciences 14, no. 2: 43. https://doi.org/10.3390/geosciences14020043
APA StyleGoldberg, K., & Goldberg Da Rosa, L. (2024). Applying Statistical Analysis and Economics Models to Unscramble the Depositional Signals from Chemical Proxies in Black Shales. Geosciences, 14(2), 43. https://doi.org/10.3390/geosciences14020043