Towards a Better Understanding of Subsurface Processes in the Evolution of Sandstone Tablelands—Patterns and Controls of Contemporary Sand Removal from Sandstone Caprock, Stołowe Mountains Tableland, SW Poland
Abstract
:1. Introduction
2. Study Area
2.1. Geological and Geomorphological Context
2.2. Contemporary and Past Environment
2.3. Study Sites
2.3.1. Białe Skały
2.3.2. Szczeliniec Wielki
3. Materials and Methods
3.1. Methodological Design
3.2. Monitoring of Contemporary Sand Removal
3.2.1. Selection of Localities
3.2.2. Construction of Sand Collectors
3.2.3. Data Collection
3.3. Meteorological Data
3.4. Statistical Analysis
4. Results
4.1. Precipitation Patterns
4.2. Spatial and Temporal Variability of Contemporary Sand Removal
5. Discussion
5.1. Sand Removal Versus Rainfall Patterns
- To become activated, underground denudation systems require precipitation episodes with at least 30 mm in a few consecutive days, although significant reactions are recorded if the respective precipitation is 70 mm.
- High intensity of precipitation enhances the efficacy of sand removal systems, a statement particularly valid for Szczeliniec Wielki (Figure 6). In contrast, sustained delivery of atmospheric water, rather than short-term intensity, appears more important for Białe Skały.
- The frequency of days with precipitation and their distribution within an observation period are irrelevant for underground denudation.
5.2. The Role of Local Geological and Geomorphological Factors
5.3. Paleoenvironmental Implications and Significance for the Geomorphic Evolution of Sandstone Tablelands
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jutson, J.T. Erosion and the resulting land forms in sub-arid Western Australia, including the origin and growth of dry lakes. Geogr. J. 1917, 50, 418–437. [Google Scholar] [CrossRef]
- Bryan, K. The retreat of slopes. Ann. Assoc. Am. Geogr. 1940, 30, 254–268. [Google Scholar] [CrossRef]
- Peel, R.F. Some Aspects of Desert Geomorphology. Geography 1960, 45, 241–262. [Google Scholar]
- Howard, A.D.; Kochel, R.C. Introduction to cuesta landforms and sapping processes on the Colorado Plateau. In Sapping Features of the Colorado Plateau. A Comparative Planetary Geology Field Guide; Howard, A.D., Kochel, R.C., Holt, M.E., Eds.; NASA Scientific and Technical Information Division: Washington, DC, USA, 1988; pp. 6–56. [Google Scholar]
- Migoń, P.; Duszyński, F.; Jancewicz, K.; Kotwicka, W. Late evolutionary stages of residual hills in tablelands (Elbsandsteingebirge, Germany). Geomorphology 2020, 367, 107308. [Google Scholar] [CrossRef]
- Koons, E.D. Cliff retreat in the southwestern United States. Am. J. Sci. 1955, 253, 44–52. [Google Scholar] [CrossRef]
- McCarroll, N.R.; Temme, A.J.A.M. Transport and weathering of large limestone blocks on hillslopes in heterolithic sedimentary landscapes. J. Geophys. Res. Earth 2022, 127, e2022JF006609. [Google Scholar] [CrossRef]
- Schmidt, K.-H. Factors influencing structural landform dynamics on the Colorado Plateau: About the necessity of calibrating theoretical models by empirical data. Catena Suppl. 1987, 10, 51–66. [Google Scholar]
- Schmidt, K.-H. Hillslopes as evidence of climatic change. In Geomorphology of Desert Environments, 2nd ed.; Parsons, A.J., Abrahams, A.D., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 675–694. [Google Scholar]
- Ward, D.J.; Berlin, M.M.; Anderson, R.S. Sediment dynamics below retreating cliffs. Earth Surf. Process. Landf. 2011, 36, 1023–1043. [Google Scholar] [CrossRef]
- Laity, J.; Malin, M.C. Sapping processes and the development of theater-headed valley networks on the Colorado Plateau. Bull. Geol. Soc. Am. 1985, 96, 203–217. [Google Scholar] [CrossRef]
- Higgins, C.G.; Osterkamp, W.R. Seepage-induced cliff recession and regional denudation. In Groundwater Geomorphology: The Role of Subsurface Water in Earth-Surface Processes and Landforms; Higgins, C.G., Coates, D.R., Eds.; Special Papers 252; Geological Society of America: Boulder, CO, USA, 1990; pp. 291–317. [Google Scholar]
- Campbell, I.A. Control of canyon and meander forms by jointing. Area 1973, 5, 291–296. [Google Scholar]
- Laity, J. The role of groundwater sapping in valley evolution on the Colorado Plateau. In Sapping Features of the Colorado Plateau. A Comparative Planetary Geology Field Guide; Howard, A.D., Kochel, R.C., Holt, M.E., Eds.; NASA Scientific and Technical Information Division: Washington, DC, USA, 1988; pp. 63–70. [Google Scholar]
- Cancelli, A.; Pellegrini, M. Deep-seated gravitational deformations in the Northern Apennines, Italy. In Proceedings of the Fifth ICFL, Australia and New Zealand, 1–12 August 1987; pp. 1–8. [Google Scholar]
- Brunsden, D.; Coombe, K.; Goudie, A.S.; Parker, A.G. The structural geomorphology of the Isle of Portland, southern England. Proc. Geol. Assoc. 1996, 107, 209–230. [Google Scholar] [CrossRef]
- Soldati, M.; Barrows, T.T.; Prampolini, M.; Fifield, K.L. Cosmogenic exposure dating constraints for coastal landslide evolution on the Island of Malta (Mediterranean Sea). J. Coast. Conserv. 2018, 22, 831–844. [Google Scholar] [CrossRef]
- Borgatti, L.; Guerra, C.; Nesci, O.; Romeo, R.W.; Veneri, F.; Landuzzi, A.; Benedetti, G.; Marchi, G.; Lucente, C.C. The 27 February 2014 San Leo landslide (northern Italy). Landslides 2015, 12, 387–394. [Google Scholar] [CrossRef]
- Duszyński, F.; Migoń, P. Boulder aprons indicate long-term gradual and non-catastrophic evolution of cliffed escarpments, Stołowe Mts, Poland. Geomorphology 2015, 250, 63–77. [Google Scholar] [CrossRef]
- Duszyński, F.; Migoń, P.; Kasprzak, M. Underground erosion and sand removal from a sandstone tableland, Stołowe Mountains, SW Poland. Catena 2016, 147, 1–15. [Google Scholar] [CrossRef]
- Bruthans, J.; Soukup, J.; Světlík, D.; Schweigstillová, J.; Mayo, A. Zpevněné povrchy puklin v kvádrovém pískovci a jejich role při vzniku skalních měst. Zpr. Geol. Výzk. 2012, 2012, 109–115, (In Czech, with English summary). [Google Scholar]
- Bruthans, J.; Svetlik, D.; Soukup, J.; Schweigstillova, J.; Valek, J.; Sedlackova, M.; Mayo, A.L. Fast evolving conduits in clay-bonded sandstone: Characterization, erosion processes and significance for the origin of sandstone landforms. Geomorphology 2012, 177, 178–193. [Google Scholar] [CrossRef]
- Migoń, P.; Duszyński, F.; Goudie, A. Rock cities and ruiniform relief: Forms—Processes—Terminology. Earth-Sci. Rev. 2017, 171, 78–104. [Google Scholar] [CrossRef]
- Migoń, P.; Duszyński, F.; Jancewicz, K.; Kotowska, M.; Porębna, W. Surface-subsurface connectivity in the morphological evolution of sandstone-capped tabular hills—How much analogy to karst? Geomorphology 2023, 440, 108884. [Google Scholar] [CrossRef]
- Wray, R.A.L.; Sauro, F. An updated global review of solutional weathering processes and forms in quartz sandstones and quartzites. Earth-Sci. Rev. 2017, 171, 520–557. [Google Scholar] [CrossRef]
- Duszyński, F.; Jancewicz, K.; Migoń, P. Evidence for subsurface origin of boulder caves, roofed slots and boulder-filled canyons (Broumov Highland, Czechia). Int. J. Speleol. 2018, 47, 343–359. [Google Scholar] [CrossRef]
- Duszyński, F.; Kacprzak, A.; Bartz, W.; Jancewicz, K.; Potysz, A.; Kasprzak, M.; Porębna, W.; Michniewicz, A.; Woronko, B.; Raczyk, J.; et al. Structure-controlled and dissolution-facilitated? Towards a more complex understanding of the genesis and environmental controls of sandstone ruiniform relief, Stołowe Mountains tableland, SW Poland. Catena 2024, 246, 108462. [Google Scholar] [CrossRef]
- Duszyński, F.; Migoń, P.; Strzelecki, M.C. Escarpment retreat in sedimentary tablelands and cuesta landscapes—Landforms, mechanisms and patterns. Earth-Sci. Rev. 2019, 196, 102890. [Google Scholar] [CrossRef]
- Gutiérrez Elorza, M.; Sesé Martínez, V.H. Multiple talus flatirons, variations of scarp retreat rates and the evolution of slopes in Almazán Basin (semi-arid central Spain). Geomorphology 2011, 38, 19–29. [Google Scholar] [CrossRef]
- Boroda, R.; Amit, R.; Matmon, A.; ASTER Team; Finkel, R.; Porat, N.; Enzel, Y.; Eyal, Y. Quaternary-scale evolution of sequences of talus flatirons in the hyperarid Negev. Geomorphology 2011, 127, 41–52. [Google Scholar] [CrossRef]
- McCarroll, N.R.; Pederson, J.L.; Hidy, A.J.; Rittenour, T.M. Chronostratigraphy of talus flatirons and piedmont alluvium along the Book Cliffs, Utah—Testing models of dryland escarpment evolution. Quat. Sci. Rev. 2021, 274, 107286. [Google Scholar] [CrossRef]
- Duszyński, F.; Jancewicz, K.; Migoń, P.; Waroszewski, J.; Christl, M.; Tikhomirov, D.; Egli, M. Changing rates of escarpment retreat linked to environmental change in a sedimentary tableland, Stołowe Mountains, SW Poland. Geomorphology 2024, 461, 109314. [Google Scholar] [CrossRef]
- Peña-Monné, J.L.; Sampietro-Vattuone, M.M.; Picazo-Millán, J.; Alcolea-Gracia, M. Block alignments/talus flatiron stages as response to lithological factors and dynamic slope changes in the Central Ebro Basin, NE Spain. Quat. Sci. Rev. 2024, 340, 108864. [Google Scholar] [CrossRef]
- Duszyński, F.; Waroszewski, J.; Fenn, K.; Kacprzak, A.; Jancewicz, K.; Egli, M. Cliff-foot sandy cones: A proxy to study the time frames, patterns and rates of sandstone caprock decay? Catena 2024, 247, 108529. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Morgan, M.L.; Matthews, V.; Gutiérrez, M.; Jiménez-Moreno, G. Relict slope rings and talus flatirons in the Colorado Piedmont: Origin, chronology and paleoenvironmental implications. Geomorphology 2015, 231, 146–161. [Google Scholar] [CrossRef]
- Bruthans, J.; Filippi, M.; Schweigstillová, J.; Řihošek, J. Quantitative study of a rapidly weathering overhang developed in an artificially wetted sandstone cliff. Earth Surf. Proc. Land. 2017, 42, 711–723. [Google Scholar] [CrossRef]
- Schumm, S.A.; Chorley, R.J. Talus weathering and scarp recession in the Colorado Plateau. Z. Geomorphol. 1966, 10, 11–36. [Google Scholar]
- Ford, T.D.; Huntoon, P.W.; Breed, W.J.; Billingsley, G.H., Jr. Rock movement and mass wastage in the Grand Canyon. In Geology of the Grand Canyon; Breed, W.J., Road, E., Eds.; Museum of Northern Arizona and Grand Canyon Natural History Association: Prescott, AZ, USA, 1978; pp. 116–128. [Google Scholar]
- Curry, A.M.; Morris, C.J. Lateglacial and Holocene talus slope development and rockwall retreat on Mynydd Du, UK. Geomorphology 2004, 58, 85–106. [Google Scholar] [CrossRef]
- Forczek, I. Analysis of geodynamic processes of sandstone plateaus in the Bohemian Paradise protected landscape area. Z. Geomorphol. 2009, 53 (Suppl. S2), 11–21. [Google Scholar]
- Howard, A.D.; Selby, M.J. Rock slopes. In Geomorphology of Desert Environments, 2nd ed.; Parsons, A.J., Abrahams, A.D., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 189–232. [Google Scholar]
- Jennings, J.N. Sandstone pseudokarst or karst. In Aspects of Australian Sandstone Landscapes; Young, R.W., Nanson, G.C., Eds.; Australian and New Zealand Geomorphology Group Special Publication 1: Melbourne, Australia, 1983; pp. 21–30. [Google Scholar]
- Migoń, P.; Duszyński, F. Ruiniform relief. In Treatise on Geomorphology, 2nd ed.; Shroder, J.J.F., Ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2022; Volume 3, pp. 408–431. [Google Scholar]
- Kasprzak, M.; Migoń, P. DEM-based analysis of Geomorphology of a stepped sandstone plateau, Stołowe Mountains (SW Poland). Z. Geomorphol. 2015, 59 (Suppl. S1), 247–270. [Google Scholar] [CrossRef]
- Migoń, P.; Duszyński, F. Process–form relationship in the Stołowe Mountains tableland (Central Europe)—An example of strong lithostructural control on geomorphic systems of medium-altitude mountains. Stud. Geomorphol. Carpatho-Balcan. 2018, 51–52, 155–178. [Google Scholar]
- Jerzykiewicz, T. Sedymentacja górnych piaskowców ciosowych niecki śródsudeckiej (górna kreda) (Sedimentation of the upper jointed sandstones in the Intrasudetic Trough (Upper cretaceous)). Geol. Sudet. 1968, 4, 409–462, (In Polish, with English summary). [Google Scholar]
- Dumanowski, B. Zagadnienie rozwoju stoku na przykładzie Gór Stołowych (The problem of slope development on the example of the Stołowe Mountains). Czas. Geogr. 1961, 32, 311–324, (In Polish, with English summary). [Google Scholar]
- Pulinowa, M.Z. Rzeźba Gór Stołowych (The Relief of the Stołowe Mountains); Wydawnictwo Uniwersytetu Śląskiego w Katowicach: Katowice, Poland, 1989. [Google Scholar]
- Jancewicz, K.; Migoń, P.; Kasprzak, M. Connectivity patterns in contrasting types of tableland sandstone relief revealed by topographic wetness index. Sci. Total Environ. 2019, 656, 1046–1062. [Google Scholar] [CrossRef] [PubMed]
- Skoček, V.; Valečka, J. Paleogeography of the Late Cretaceous Quadersandstein of Central Europe. Palaeogeogr. Palaeoclim. Palaeoecol. 1983, 44, 71–92. [Google Scholar] [CrossRef]
- Adamovič, J.; Mikuláš, R.; Cílek, V. Sandstone districts of the Bohemian Paradise: Emergence of a romantic landscape. Geolines 2006, 21, 1–100. [Google Scholar]
- Mertlik, J.; Adamovič, J. Bohemian Paradise: Sandstone landscape in the foreland of a major fault. In Landscapes and Landforms of the Czech Republic; Pánek, T., Hradecký, J., Eds.; Springer: Cham, Switzerland, 2016; pp. 195–208. [Google Scholar]
- Vítek, J. Adršpach-Teplice Rocks and Broumov Cliffs—Large sandstone rock cities in the Central Europe. In Landscapes and Landforms of the Czech Republic; Pánek, T., Hradecký, J., Eds.; Springer: Cham, Switzerland, 2016; pp. 209–220. [Google Scholar]
- Migoń, P.; Różycka, M.; Jancewicz, K.; Duszyński, F. Evolution of sandstone mesas—Following landform decay until death. Prog. Phys. Geogr. 2018, 42, 588–606. [Google Scholar] [CrossRef]
- Young, R.W.; Wray, R.A.L.; Young, A.R.M. Sandstone Landforms; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Migoń, P.; Duszyński, F. Landscapes and landforms in coarse clastic sedimentary tablelands—Is there a unifying theme? Catena 2022, 218, 106545. [Google Scholar] [CrossRef]
- Sobik, M.; Błaś, M. Klimat Gór Stołowych. In Góry Stołowe—Przyroda i Ludzie; Kabała, C., Kadej, M., Kącki, Z., Mazur, T., Miścicki, S., Eds.; PNGS: Kudowa-Zdrój, Poland, 2018; pp. 107–124. (In Polish) [Google Scholar]
- Dubicki, A.; Głowicki, B. Climate. In Przyroda Parku Narodowego Gór Stołowych; Witkowski, A., Pokryszko, B.M., Ciężkowski, W., Eds.; PNGS: Kudowa-Zdrój, Poland, 2008; pp. 101–113, (In Polish, with English summary). [Google Scholar]
- Jahn, A. The permafrost active layer in the Sudety Mountains during the last glaciation. Quest. Geogr. 1977, 4, 29–42. [Google Scholar]
- Waroszewski, J.; Malkiewicz, M.; Mazurek, R.; Labaz, B.; Jezierski, P.; Kabała, C. Lithological discontinuities in Podzols developed from sandstone cover beds in the Stolowe Mountains (Poland). Catena 2015, 126, 11–19. [Google Scholar] [CrossRef]
- Migoń, P.; Kasprzak, M. Analiza rzeźby stoliwa Szczelińca Wielkiego w Górach Stołowych na podstawie numerycznego modelu terenu z danych LiDAR (LiDAR DEM-based analysis of geomorphology of the Szczeliniec Wielki mesa in Poland’s Stołowe Mountains). Prz. Geogr. 2015, 87, 27–52, (In Polish, with English summary). [Google Scholar] [CrossRef]
- LSOP 2024. [Lokalny System Osłony Przeciwpowodziowej Powiatu Kłodzkiego, Kłodzko County Flood Protection System], Meteorological Station Karłów P-15. Available online: https://lsop.powiat.klodzko.pl (accessed on 10 August 2024).
- Lin, M.L.; Jeng, F.S.; Tsai, L.S.; Huang, T.H. Wetting weakening of tertiary sandstone-microscopic mechanism. Environ. Geol. 2005, 48, 265–275. [Google Scholar] [CrossRef]
- Wray, R.A.L. A global review of solutional weathering forms on quartz sandstone. Earth-Sci. Rev. 1997, 42, 137–160. [Google Scholar] [CrossRef]
- Wray, R.A.L. Quartzite dissolution: Karst or pseudokarst? Cave Karst Sci. 1997, 24, 81–86. [Google Scholar]
- Wray, R.A.L. Solutional weathering and karstic landscapes on quartz sandstones and quartzite. In Treatise on Geomorphology; Frumkin, A., Ed.; Academic Press: San Diego, CA, USA, 2013; Volumne 6, pp. 463–483. [Google Scholar]
- Young, R.W. Tower Karst in sandstone: Bungle Bungle massif, northwestern Australia. Z. Geomorph. 1986, 30, 189–202. [Google Scholar] [CrossRef]
- Young, R.W. Quartz etching and sandstone karst: Examples from the east Kimberleys, northwestern Australia. Z. Geomorph. 1988, 32, 409–423. [Google Scholar] [CrossRef]
- Doerr, S.D. Karst-like landforms and hydrology in quartzites of the Venezuelan Guyana shield: Pseudokarst or ‘real’ karst? Z. Geomorph. 1999, 43, 1–17. [Google Scholar] [CrossRef]
- Schumm, S.A.; Chorley, R.J. The fall of Threatening Rock. Am. J. Sci. 1964, 262, 1041–1054. [Google Scholar] [CrossRef]
- Duszyński, F.; Migoń, P. Historyczne przypadki epizodycznych ruchów masowych w Górach Stołowych. Przyr. Sudetów 2019, 22, 143–160. [Google Scholar]
- Ahnert, F. The influence of Pleistocene climates upon the morphology of cuesta scarps on the Colorado Plateau. Ann. Assoc. Am. Geogr. 1960, 50, 139–156. [Google Scholar] [CrossRef]
- Busche, D. Early Quaternary landslides of the Sahara and their significance for the geomorphic and climatic history. J. Arid Environ. 2001, 49, 429–448. [Google Scholar] [CrossRef]
- Sauro, F. Structural and lithological guidance on speleogenesis in quartz-sandstone: Evidence of the arenisation process. Geomorphology 2014, 226, 106–123. [Google Scholar] [CrossRef]
- Mecchia, M.; Sauro, F.; Piccini, L.; Columbu, A.; De Waele, J. A hybrid model to evaluate subsurface chemical weathering and fracture karstification in quartz sandstone. J. Hydrol. 2019, 572, 745–760. [Google Scholar] [CrossRef]
Locality | Study Site | Latitude | Longitude | Altitude, m.a.s.l. | Fissure Outlet Width [cm] | Caprock Thickness [m] |
---|---|---|---|---|---|---|
Białe Skały | SC-BS-1 | 50°27′32.43″ N | 16°21′37.93″ E | 776.2 | 30 | 8–14 |
SC-BS-2 | 50°27′32.27″ N | 16°21′37.85″ E | 775.6 | 10 | 8–14 | |
SC-BS-3 | 50°27′38.41″ N | 16°21′26.31″ E | 786.8 | 20 | 22–26 | |
Szczeliniec Wielki | SC-SzW-1 | 50°28′55.33″ N | 16°20′38.54″ E | 872.2 | 23 | 30–31 |
SC-SzW-2 | 50°28′55.45″ N | 16°20′38.98″ E | 876.7 | 70 | 30–31 | |
SC-SzW-3 | 50°28′55.43″ N | 16°20′39.05″ E | 875.9 | 5–10 | 30–31 |
Observation Period | SC-BS-1 | SC-BS-2 | SC-BS-3 | SC-SzW-1 | SC-SzW-2 | SC-SzW-3 | BS in Total | SzW in Total | All Sites |
---|---|---|---|---|---|---|---|---|---|
1 (30 June 2022–2 August 2022) | 8 | 45 | 10 | 170 | 10 | 2 | 63 | 182 | 245 |
2 (3 August 2022–3 September 2022) | 4 | 2 | 2 | 1980 | 70 | 6800 | 8 | 8850 | 8858 |
3 (4 September 2022–7 October 2022) | 2 | 2 | 2 | 13 | 2 | 15 | 6 | 30 | 36 |
4 (8 October 2022–3 November 2022) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 (4 November 2022–29 November 2022) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 (30 November 2022–30 December 2022) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 (31 December 2022–2 February 2023) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 (3 February 2023–6 March 2023) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 (7 March 2023–5 April 2023) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 (6 April 2023–6 May 2023) | 2 | 4 | 0 | 0 | 0 | 2 | 6 | 2 | 8 |
11 (7 May 2023–27 May 2023) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 (28 May 2023–6 July 2023) | 0 | 0 | 0 | 0 | 0 | 3000 | 0 | 3000 | 3000 |
13 (7 July 2023–7 August 2023) | 0 | 0 | 0 | 4 | 800 | 950 | 0 | 1754 | 1754 |
14 (8 August 2023–2 September 2023) | 20 | 10 | 45 | 10 | 0 | 1025 | 75 | 1035 | 1110 |
15 (3 September 2023–12 October 2023) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 (13 October 2023–21 November 2023) | 0 | 0 | 20 | 0 | 0 | 0 | 20 | 0 | 20 |
17 (22 November 2023–5 January 2024) | 30 | 5 | 32 | 500 | 2 | 4800 | 67 | 5302 | 5369 |
18 (6 January 2024–28 January 2024) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
19 (29 January 2024–29 February 2024) | 0 | 0 | 40 | 0 | 0 | 560 | 40 | 560 | 600 |
20 (1 March 2024–5 April 2024) | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 10 | 10 |
21 (6 April 2024–9 May 2024) | 0 | 0 | 10 | 0 | 0 | 0 | 10 | 0 | 10 |
22 (10 May 2024–29 May 2024) | 0 | 0 | 40 | 0 | 0 | 35 | 40 | 35 | 75 |
23 (30 May 2024–4 July 2024) | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 100 |
24 (5 July 2024–7 August 2024) | 0 | 20 | 230 | 5 | 5 | 330 | 250 | 340 | 590 |
Total yield | 58 | 43 | 521 | 2522 | 879 | 17,519 | 622 | 20,918 | 21,540 |
Number of reactions | 5 | 6 | 10 | 7 | 5 | 10 | 21 | 22 |
var_11 | var_12 | var_13 | var_14 | var_15 | var_16 | var_17 | var_18 | var_19 | |
var_1 | 0.247 | 0.400 * | 0.474 ** | 0.417 * | 0.379 * | 0.146 | 0.233 | 0.428 * | 0.228 |
var_2 | 0.187 | 0.410 * | 0.490 ** | 0.385 * | 0.319 | 0.092 | 0.129 | 0.449 ** | 0.334 * |
var_3 | 0.263 | 0.346 * | 0.406 * | 0.407 * | 0.358 * | 0.180 | 0.161 | 0.459 ** | 0.307 |
var_4 | 0.230 | 0.374 * | 0.438 ** | 0.204 | 0.252 | 0.040 | 0.110 | 0.387 * | 0.346 * |
var_5 | 0.222 | 0.501 ** | 0.550 ** | 0.061 | 0.203 | 0.133 | 0.153 | 0.491 ** | 0.368 * |
var_6 | 0.181 | 0.468 ** | 0.547 ** | 0.259 | 0.310 | 0.343 * | 0.380 * | 0.514 ** | 0.363 * |
var_7 | 0.273 | 0.399 * | 0.467 ** | 0.458 ** | 0.406 * | 0.175 | 0.195 | 0.509 ** | 0.306 |
var_8 | 0.147 | 0.406 * | 0.492 ** | 0.215 | 0.261 | 0.304 | 0.349 * | 0.460 ** | 0.332 * |
var_9 | 0.227 | 0.481 ** | 0.607 ** | 0.365 * | 0.412 * | 0.359 * | 0.388 * | 0.536 ** | 0.408 ** |
var_10 | 0.385 | 0.494 ** | 0.788 ** | 0.540 ** | 0.451 ** | 0.300 | 0.433 * | 0.705 ** | 0.560 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duszyński, F.; Kacprzak, A.; Jancewicz, K.; Różycka, M.; Porębna, W.; Migoń, P. Towards a Better Understanding of Subsurface Processes in the Evolution of Sandstone Tablelands—Patterns and Controls of Contemporary Sand Removal from Sandstone Caprock, Stołowe Mountains Tableland, SW Poland. Geosciences 2024, 14, 356. https://doi.org/10.3390/geosciences14120356
Duszyński F, Kacprzak A, Jancewicz K, Różycka M, Porębna W, Migoń P. Towards a Better Understanding of Subsurface Processes in the Evolution of Sandstone Tablelands—Patterns and Controls of Contemporary Sand Removal from Sandstone Caprock, Stołowe Mountains Tableland, SW Poland. Geosciences. 2024; 14(12):356. https://doi.org/10.3390/geosciences14120356
Chicago/Turabian StyleDuszyński, Filip, Andrzej Kacprzak, Kacper Jancewicz, Milena Różycka, Wioleta Porębna, and Piotr Migoń. 2024. "Towards a Better Understanding of Subsurface Processes in the Evolution of Sandstone Tablelands—Patterns and Controls of Contemporary Sand Removal from Sandstone Caprock, Stołowe Mountains Tableland, SW Poland" Geosciences 14, no. 12: 356. https://doi.org/10.3390/geosciences14120356
APA StyleDuszyński, F., Kacprzak, A., Jancewicz, K., Różycka, M., Porębna, W., & Migoń, P. (2024). Towards a Better Understanding of Subsurface Processes in the Evolution of Sandstone Tablelands—Patterns and Controls of Contemporary Sand Removal from Sandstone Caprock, Stołowe Mountains Tableland, SW Poland. Geosciences, 14(12), 356. https://doi.org/10.3390/geosciences14120356