Geochemical Characteristics of Modern River-Sand and Its Bearing on the Mineral Exploration in the Manufahi Area, Timor-Leste
Abstract
:1. Introduction
2. Geographical and Geological Setting
3. Samples and Methods
3.1. Sampling and Preparation
3.2. Analytical Methods and Data Analysis
3.2.1. Univariate Analysis
3.2.2. Bivariate and Multivariate Analyses
4. Results
4.1. Statistical and Distribution Characteristics of Geochemical Elements
4.2. Correlation and Multi-Element Relationships
5. Discussion
5.1. Geochemistry and Provenance of River Sands
5.2. Influence of Mineral Deposit Potential on the Geochemical Characteristics of River Sands
5.3. Prediction of Target Areas for Future Research and Exploration
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Minor Elements | Basic-Ultramafic Igneous Rocks (in ppm) | Argillaceous Sedimentary Rocks (in ppm) | Sandstones (in ppm) |
---|---|---|---|
Cr | 170–3400 | 80–120 | 20–40 |
Co | 35–200 | 14–20 | 0.3–10 |
Ni | 130–160 | 40–90 | 5–20 |
Cu | 10–120 | 40–60 | 5–30 |
Zn | 40–120 | 80–120 | 15–30 |
Ga | 15–24 | 15–25 | 5–12 |
Rb | 2–45 | 120–200 | 10–45 |
Sr | 140–460 | 300–450 | 20–140 |
Y | 0.5–20 | 25–40 | 15–250 |
Zr | 80–200 | 160–200 | 180–250 |
Nb | 10–35 | 15–20 | 0.5–10 |
Ba | 250–400 | 500–800 | 100–320 |
Pb | 0.1–8 | 14–40 | 5–10 |
Th | 1–14 | 10–12 | 2–4 |
Sc | 5–35 | 10–15 | 1–3 |
La | 2–70 | 30–90 | 17–40 |
References
- Franzinelli, E.; Potter, P.E. Petrology, Chemistry, and Texture of Modern River Sands, Amazon River System. J. Geol. 1983, 91, 23–39. [Google Scholar] [CrossRef]
- He, J.; Garzanti, E.; Jiang, T.; Barbarano, M.; Resentini, A.; Liu, E.; Chen, S.; Shi, G.; Wang, H. Mineralogy and Geochemistry of Modern Red River Sediments (North Vietnam): Provenance and Weathering Implications. J. Sediment. Res. 2022, 92, 1169–1185. [Google Scholar] [CrossRef]
- Liang, W.; Hu, X.; Garzanti, E.; Wen, H.; Hou, M. Petrographic Composition and Heavy Minerals in Modern River Sand: A Global Database. Geosci. Data J. 2023, 11, 443–451. [Google Scholar] [CrossRef]
- Tanaka, T.; Kawabe, I.; Hirahara, Y.; Iwamori, H.; Mimura, K.; Sugisaki, R.; Asahara, Y.; Ito, T.; Yarai, H.; Yonezawa, C.; et al. Geochemical Survey of the Sanaga-Yama Area in Aichi Perfecture for Environmental Assessment. J. Earth Planet. Sci. Nagoya Univ. 1994, 41, 1–31. [Google Scholar]
- Yamamoto, K.; Tanaka, T.; Minami, M.; Mimura, K.; Asahara, Y.; Yoshida, H.; Yogo, S.; Takeuchi, M.; Inayoshi, M. Geochemical Mapping in Aichi Prefecture, Japan: Its Significance as a Useful Dataset for Geological Mapping. Appl. Geochem. 2007, 22, 306–319. [Google Scholar] [CrossRef]
- Dinis, P.A.; Sequeira, M.; Tavares, A.O.; Carvalho, J.; Castilho, A.; Pinto, M.C. Post-Wildfire Denudation Assessed from Compositional Features of River Sediments (Central Portugal). Appl. Clay Sci. 2020, 193, 105675. [Google Scholar] [CrossRef]
- Vital, H.; Stattegger, K. Major and Trace Elements of Stream Sediments from the Lowermost Amazon River. Chem. Geol. 2000, 168, 151–168. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M.; McLennan, S.M.; Keays, R.R. Effects of Chemical Weathering and Sorting on the Petrogenesis of Siliciclastic Sediments, with Implications for Provenance Studies. J. Geol. 1996, 104, 525–542. [Google Scholar] [CrossRef]
- Grunsky, E.C.; Drew, L.J.; Sutphin, D.M. Process recognition in multi-element soil and stream-sediment geochemical data. Appl. Geochem. 2009, 24, 1602–1616. [Google Scholar] [CrossRef]
- Johnsson, M.J. The System Controlling the Composition of Clastic Sediments. Geol. Soc. Am. 1993, 284, 1–21. [Google Scholar]
- Cocker, M.D. Geochemical Mapping in Georgia, USA: A Tool for Environmental Studies, Geologic Mapping and Mineral Exploration. J. Geochem. Explor. 1999, 67, 345–360. [Google Scholar] [CrossRef]
- Oliva, P.; Viers, J.; Dupré, B. Chemical Weathering in Granitic Environments. Chem. Geol. 2003, 202, 225–256. [Google Scholar] [CrossRef]
- Ottesen, R.T.; Theobald, P.K. Chapter 5: Stream Sediments in Mineral Exploration. In Handbook of Exploration Geochemistry: Drainage Geochemistry; Hale, M., Plant, J.A., Eds.; Elsevier Sci.: Amsterdam, The Netherlands, 1994; pp. 147–184. [Google Scholar]
- Reimann, C.; Melezhik, V. Metallogenic Provinces, Geochemical Provinces and Regional Geology—What Causes Large-Scale Patterns in Low Density Geochemical Maps of the C-Horizon of Podzols in Arctic Europe? Appl. Geochem. 2001, 16, 963–983. [Google Scholar] [CrossRef]
- Sawyer, E.W. The Influence of Source Rock Type, Chemical Weathering and Sorting on the Geochemistry of Clastic Sediments from the Quetico Metasedimentary Belt, Superior Province, Canada. Chem. Geol. 1986, 55, 77–95. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P. Normal and Lognormal data Distribution in Geochemistry: Death of a Myth. Consequence for the Statistical Treatment of Geochemical and Environmental Data. Environ. Geol. 1999, 39, 1001–1014. [Google Scholar] [CrossRef]
- Reimann, C.; Ladenberger, A.; Birke, M.; De Caritat, P. Low Density Geochemical Mapping and Mineral Exploration: Application of the Mineral System Concept. Geochem. Explor. Environ. Anal. 2016, 16, 48–61. [Google Scholar] [CrossRef]
- Carranza, E.J.M. Usefulness of Stream Order to Detect Stream Sediment Geochemical Anomalies. Geochem. Explor. Environ. Anal. 2004, 4, 341–352. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P.; Garrett, R.G. Background and Threshold: Critical Comparison of Methods of Determination. Sci. Total Environ. 2005, 346, 1–16. [Google Scholar] [CrossRef]
- Carranza, E.J.M. Handbook of Exploration and Environmental Geochemistry: Geochemical Anomaly and Mineral Prospectivity Mapping in GIS; Elsevier B.V.: Amsterdam, The Netherlands, 2009; Volume 11, p. 347. [Google Scholar]
- Davis, J.C. Statistics and Data Analysis in Geology, 3rd ed.; John Willey & Sons: Overland Park, KS, USA, 2002; p. 257. [Google Scholar]
- Hawkes, H.E.; Webb, J.S. Geochemistry in Mineral Exploration; Harper: New York, NY, USA, 1962; 415p. [Google Scholar]
- Reimann, C.; Filzmoser, P.; Garrett, R.G. Factor Analysis Applied to Regional Geochemical Data: Problems and Possibilities. Appl. Geochem. 2002, 17, 185–206. [Google Scholar] [CrossRef]
- Robinson, G.R.; Kapo, K.E.; Grossman, J.N. Chemistry of Stream Sediments and Surface Waters in New England; United State Geological Survey: Hartford, CT, USA, 2004; p. 18. [Google Scholar]
- Sinclair, A.J. Chapter 3: Univariate Analysis. In Handbook of Exploration Geochemistry: Statistics and Data Analysis in Geochemical Prospecting; Howarth, R.J., Ed.; Elsevier Scientific Publishing Company: London, UK, 1983; Volume 2, pp. 59–83. [Google Scholar]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley Publishing Company: Princeton, NJ, USA, 1977; p. 711. [Google Scholar]
- Zuo, R. Identifying Geochemical Anomalies Associated with Cu and Pb-Zn Skarn Mineralization Using Principal Component Analysis and Spectrum-Area Fractal Modeling in the Gangdese Belt, Tibet (China). J. Geochem. Explor. 2011, 111, 13–22. [Google Scholar] [CrossRef]
- Audley-Charles, M.G. The Geology of Portuguese Timor. Mem. Geol. Soc. Lond. 1968, 4, 1–75. [Google Scholar]
- Audley-Charles, M.G. Tectonic Post-Collision Processes in Timor. Geol. Soc. Lond. Spec. Publ. 2011, 355, 241–266. [Google Scholar] [CrossRef]
- Carter, D.J.; Audley-Charles, M.G.; Barber, A.J. Stratigraphical Analysis of Island Arc—Continental Margin Collision in Eastern Indonesia. Geol. Soc. Lond. 1976, 132, 179–198. [Google Scholar] [CrossRef]
- Charlton, T.R. The Structural Setting and Tectonic Significance of the Lolotoi, Laclubar and Aileu Metamorphic Massifs, East Timor. J. Asian Earth Sci. 2002, 20, 851–865. [Google Scholar] [CrossRef]
- Harris, R.A. The Nature of the Banda Arc—Continent Collision in the Timor Region. In Arc-Continent Collision; Brown, D., Ryan, P.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 163–211. [Google Scholar] [CrossRef]
- Reed, T.A.; de Smet, M.E.M.; Harahap, B.H.; Sjapawi, A. Structural and Depositional History of East Timor. In Proceedings of the 25th Annual Convention Proceedings, Indonesia Petroleum Association, Jakarta, Indonesia, 8–10 October 1996; pp. 297–311. [Google Scholar]
- Yang, X.Z.; Zeng, Y.; Liu, J.A.; Chen, G.G.; Liu, C. An Analysis of Metal Mineral Resource Potential and Mining Investment Environment in East Timor. Geol. Bull. China 2014, 33, 334–341. [Google Scholar]
- Wittouck, S.F. Exploration of Portuguese Timor; Report of Allied Mining Corporation to Asia Investment Company Limited; Kolff & Co.: Hong Kong, 1937; 104p. [Google Scholar]
- CCOP-IOC. Metallogenesis, Hydrocarbons and Tectonic Patterns in Eastern Asia: United Nations Development Programme; CCOP-IOC: Bangkok, Thailand, 1974; 158p. [Google Scholar]
- Vital, V. Mapping and Structure of the Mineral Resources of the Districts of Dili and Manatuto. Implications for Genesis and Exploitation. Master’s Thesis, University of Evora, Evora, Portugal, 2011. [Google Scholar]
- Lay, A.; Graham, I.; Cohen, D.; Privat, K.; González-Jiménez, J.M.; Belousova, E.; Barnes, S.J. Ophiolitic Chromitites of Timor Leste: Their Composition, Platinum Group Element Geochemistry, Mineralogy, and Evolution. Can. Mineral. 2017, 55, 875–908. [Google Scholar] [CrossRef]
- Vicente, V.A.S.; Pratas, J.A.M.S.; Santos, F.C.M.; Silva, M.M.V.G.; Favas, P.J.C.; Conde, L.E.N. Geochemical Anomalies from a Survey of Stream Sediments in the Maquelab Area (Oecusse, Timor-Leste) and Their Bearing on the Identification of Mafic-Ultramafic Chromite Rich Complex. Appl. Geochem. 2021, 126, 104868. [Google Scholar] [CrossRef]
- Bryner, L. Ore Deposit of the Philippines—An Introduction to Their Geology. Econom. Geol. 1969, 64, 644–666. [Google Scholar] [CrossRef]
- Dimalanta, C.B.; Faustino-Eslava, D.V.; Gabo-Ratio, J.A.S.; Marquez, E.J.; Padrones, J.T.; Payot, B.D.; Queaño, K.L.; Ramos, N.T.; Yumul, G.P., Jr. Characterization of the Proto-Philippine Sea Plate: Evidence from the Emplaced Oceanic Lithospheric Fragments Along Eastern Philippines. Geosci. Front. 2020, 11, 3–21. [Google Scholar] [CrossRef]
- Ernowo, E.; Oktaviani, P. Review of Chromite Deposits of Indonesia. Bull. Sumber Daya Geol. 2010, 5, 1–10. [Google Scholar] [CrossRef]
- Zaccarini, F.; Idrus, A.; Garuti, G. Chromite Composition and Accessory Minerals in Chromitites from Sulawesi, Indonesia: Their Genetic Significance. Minerals 2016, 6, 46. [Google Scholar] [CrossRef]
- Idrus, A.; Zaccarini, F.; Garuti, G.; Kusuma-Wijaya, I.G.N.; Swamidharma, Y.C.A.; Bauer, C. Origin of Podiform Chromitites in the Sebuku Island Ophiolite (South Kalimantan, Indonesia): Constraints from Chromite Composition and PGE Mineralogy. Minerals 2022, 12, 974. [Google Scholar] [CrossRef]
- Leblanc, M.; Violette, J.F. Distribution of Aluminum-Rich and Chromium-Rich Chromite Pods in Ophiolite Peridotites. Econom. Geol. 1983, 78, 293–301. [Google Scholar] [CrossRef]
- Audley-Charles, M.G. Rates of Neogene and Quaternary Tectonic Movements in the Southern Banda Arc Based on Micropalaeontology. J. Geol. Soc. Lond. 1986, 143, 161–175. [Google Scholar] [CrossRef]
- Audley-Charles, M.G. Ocean Trench Blocked and Obliterated by Banda Forearc Collision with Australian Proximal Continental Slope. Tectonophysics 2004, 389, 65–79. [Google Scholar] [CrossRef]
- Ely, K.S.; Sandiford, M.; Hawke, M.L.; Phillips, D.; Quigley, M.; dos Reis, J.E. Evolution of Ataúro Island: Temporal constraints on subduction processes beneath the Wetar zone, Banda Arc. J. Asian Earth Sci. 2011, 41, 477–493. [Google Scholar] [CrossRef]
- Tate, G.W.; McQuarrie, N.; Van Hinsbergen, D.J.J.; Bakker, R.R.; Harris, R.; Jiang, H. Australia Going Down Under: Quantifying Continental Subduction During Arc-Continent Accretion in Timor-Leste. Geosphere 2015, 11, 1860–1883. [Google Scholar] [CrossRef]
- Barnett, J.; Dessai, S.; Jones, R.N. Vulnerability to Climate Variability and Change in East Timor. Roy. Swed. Acad. Sci. 2007, 36, 372–378. [Google Scholar] [CrossRef]
- Pacific-Australia Climate Change Science and Adaptation Planning Program (PACCSAP). Current and Future Climate of Timor-Leste. 2011. Available online: https://www.pacificclimatechangescience.org (accessed on 8 October 2022).
- Wallace, L.; Sundaram, B.; Brodie, R.S.; Marshall, S.; Dawson, S.; Jaycock, J.; Stewart, G.; Furness, L. Vulnerability Assessment of Climate Change Impacts on Groundwater Resources in Timor-Leste—Summary Report; Geoscience Australia: Canberra, Australia, 2012. [Google Scholar]
- Seeds of Life. Annual Research Report, 2006. 2007. Available online: https://www.seedsoflifetimor.org (accessed on 8 October 2022).
- Bird, P. An Updated Digital Model of Plate Boundaries. Geochem. Geophys. Geosyst. 2003, 4, 1027–1080. [Google Scholar] [CrossRef]
- Pisut, D. Plate Tectonic and Boundaries. 2020. Available online: https://services.arcgis.com/jIL9msH9OI208GCb/arcgis/rest/services/Tectonic_Plates_and_Boundaries/FeatureServer (accessed on 12 November 2022).
- Poiata, N.; Koketsu, K.; Miyake, H. Source Processes of the 2009 Irian Jaya, Indonesia, Earthquake Doublet. Earth Planet Space 2010, 62, 475–481. [Google Scholar] [CrossRef]
- Bachri, S.; Situmorang, R.L. Geological Map of the Dili Quadrangle 2406-2407, East Timor, Scale 1: 250.000; Geological Research and Development Centre: Bandung, Indonesia, 1994. [Google Scholar]
- Partoyo, E.; Hermanto, B.; Bachri, S. Geological Map of the Baucau Quadrangle 2057, East Timor, Scale 1: 250.000; Geological Research and Development Centre: Bandung, Indonesia, 1995. [Google Scholar]
- Boger, S.D.; Spelbrink, L.G.; Lee, R.I.; Sandiford, M.; Maas, R.; Woodhead, J.D. Isotopic (U-Pb, Nd) and Geochemical Constraints on the Origins of the Aileu and Gondwana Sequences of Timor. J. Asian Earth Sci. 2017, 134, 330–351. [Google Scholar] [CrossRef]
- Charlton, T.R.; Barber, A.J.; Harris, R.A.; Barkham, S.T.; Bird, P.R.; Archbold, N.W.; Morris, N.J.; Nicoll, R.S.; Owen, H.G.; Owens, R.M.; et al. The Permian of Timor: Stratigraphy, Palaeontology and Palaeogeography. J. Asian Earth Sci. 2002, 20, 719–774. [Google Scholar] [CrossRef]
- Charlton, T.R.; Barber, A.J.; McGowan, A.J.; Nicoll, R.S.; Roniewicz, E.; Cook, S.E.; Barkham, S.T.; Bird, P.R. The Triassic of Timor: Lithostratigraphy, Chronostratigraphy and Palaeogeography. J. Asian Earth Sci. 2009, 36, 341–363. [Google Scholar] [CrossRef]
- Duffy, B.; Kalansky, J.; Bassett, K.; Harris, R.; Quigley, M.; van Hinsbergen, D.J.J.; Strachan, L.J.; Rosenthal, Y. Mélange Versus Forearc Contributions to Sedimentation and Uplift, During Rapid Denudation of a Young Banda Forearc-Continent Collisional Belt. J. Asian Earth Sci. 2017, 138, 186–210. [Google Scholar] [CrossRef]
- Haig, D.W.; McCartain, E.; Mory, A.J.; Borges, G.; Davydov, V.I.; Dixon, M.; Ernst, A.; Groflin, S.; Håkansson, E.; Keep, M.; et al. Postglacial Early Permian (late Sakmarian-early Artinskian) shallow-marine carbonate deposition along a 2000km transect from Timor to west Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 409, 180–204. [Google Scholar] [CrossRef]
- Haig, D.W.; McCartain, E. Triassic Organic—Cemented Siliceous Agglutinated Foraminifera from Timor Leste: Conservative Development in Shallow—Marine Environments. J. Foraminiferal Res. 2010, 40, 366–392. [Google Scholar] [CrossRef]
- Harris, R.A.; Sawyer, R.K.; Audley-Charles, M.G. Collisional Melange Development: Geologic Associations of Active Melange-Forming Processes with Exhumed Melange Facies in the Western Banda Orogen, Indonesia. Tectonics 1998, 17, 458–479. [Google Scholar] [CrossRef]
- Kenyon, C.S. Stratigraphy and Sedimentology of the Late Miocene to Quaternary Deposits of Timor. Doctoral Thesis, University of London, London, UK, 1974. [Google Scholar]
- Lisboa, J.V.V.; Silva, T.P.; De Oliveira, D.P.S.; Carvalho, J.F. Mineralogical and Geochemistry Characteristics of the Bobonaro Melange of Western East Timor: Provenance Implications. Comun. Geol. 2020, 106, 35–49. Available online: https://www.lneg.pt/wp-content/uploads/2020/05/Volume_106.pdf (accessed on 30 August 2021).
- Park, S.I.; Kwon, S.; Kim, S.W. Evidence for the Jurassic Arc Volcanism of the Lolotoi complex, Timor: Tectonic Implications. J. Asian Earth Sci. 2014, 95, 254–265. [Google Scholar] [CrossRef]
- Standley, C.E.; Harris, R. Tectonic Evolution of Forearc Nappes of the Active Banda Arc—Continent Collision: Origin, Age, Metamorphic History and Structure of the Lolotoi Complex, East Timor. Tectonophysics 2009, 479, 66–94. [Google Scholar] [CrossRef]
- Hale, M.; Plant, J.A. Introduction: The Foundation of Modern Drainage Geochemistry. In Handbook of Exploration Geochemistry: Drainage Geochemistry; Govett, G.J.S., Ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1994; pp. 3–9. [Google Scholar]
- Darnley, A.G.; Bjorklund, A.; Bolviken, B.; Gustavsson, N.; Koval, P.V.; Plant, J.A.; Steenfelt, A.; Tauchid, M.; Xuejing, X.; Garrett, R.G.; et al. A Global Geochemical Reference Network & Field Methods for Regional Surveys. In A Global Geochemical Database for Environmental and Resource Management: Recommendations for International Geochemical Mapping; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 1995; pp. 37–53. [Google Scholar]
- Tanaka, T.; Kawabe, I.; Yamamoto, K.; Iwamori, H.; Hirahara, Y.; Mimura, K.; Asahara, Y.; Ito, T.; Yonezawa, C.; Dragusanu, C.; et al. Distributions of Elements in Stream Sediments in and around Seto City, Aichi Prefecture: An Attempt to a Geoenvironmental Assessment by Geochemical Mapping. Geochemistry 1995, 29, 113–125. [Google Scholar]
- Fletcher, W.K. Stream Sediment Geochemistry in Today’s Exploration World. In Proceedings of the Exploration 97: Fourth Decennial International Conference on Mineral Exploration, Toronto, ON, Canada, 14–18 September 1997; pp. 249–260. [Google Scholar]
- Ohta, A.; Imai, N.; Terashima, S.; Tachibana, Y. Application of Multi-Element Statistical Analysis for Regional Geochemical Mapping in Central Japan. Appl. Geochem. 2005, 20, 1017–1037. [Google Scholar] [CrossRef]
- Sun, H.; Nelson, M.; Chen, F.; Husch, J. Soil Mineral Structural Water Loss During Loss on Ignition Analyses. Can. J. Soil Sci. 2009, 89, 603–610. [Google Scholar] [CrossRef]
- Yamamoto, K.; Morishita, T. Preparation of Standard Composites for the Trace Elements Analysis by X-Ray Fluorescence. Geol. Soc. Jpn. 1997, 103, 1037–1045. [Google Scholar] [CrossRef]
- Balanda, K.P.; Macgillivray, H.L. Kurtosis: A Critical Review. Am. Stat. Assoc. 1988, 42, 111–119. [Google Scholar] [CrossRef]
- Dapples, E.C. Laws of Distribution Applied to Sand Sizes. Geol. Soc. Am. 1975, 142, 37–61. [Google Scholar]
- De Carlo, L.T. On the Meaning and Use of Kurtosis. Am. Psychol. Assoc. Inc. 1997, 2, 292–307. [Google Scholar]
- Velasco, F.; Verma, S.P. Importance of Skewness and Kurtosis Statistical Tests for Outlier Detection and Elimination in Evaluation of Geochemical Reference Materials. Math. Geol. 1998, 30, 109–128. [Google Scholar] [CrossRef]
- Kurzl, H. Exploratory Data Analysis: Recent Advances for the Interpretation of Geochemical Data. J. Geochem. Explor. 1988, 30, 309–322. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P.; Garrett, R.G.; Dutter, R. Statistical Data Analysis Explained: Applied Environmental Statistics with R; John Wiley & Sons: Hoboken, NJ, USA, 2008; p. 359. [Google Scholar]
- Reimann, C.; de Caritat, P. Establishing Geochemical Background Variation and Threshold Values for 59 Elements in Australian Surface Soil. Sci. Total Environ. 2017, 578, 633–648. [Google Scholar] [CrossRef]
- Sun, X.; Zheng, Y.; Wang, C.; Zhao, Z.; Geng, X. Identifying Geochemical Anomalies Associated with Sb-Au-Pb-Zn-Ag Mineralization in North Himalaya, Southern Tibet. Ore Geol. Rev. 2016, 73, 1–12. [Google Scholar] [CrossRef]
- Carranza, E.J.M. Exploratory Data Analysis. In Encyclopedia of Mathematical Geosciences; Sagar, B.S.D., Cheng, Q., McKinley, J., Agterberg, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 364–368. [Google Scholar]
- Howarth, R.J. Dictionary of Mathematical Geosciences: With Historical Notes; Springer: London, UK, 2017; 892p. [Google Scholar]
- Zheng, Y.; Sun, X.; Gao, S.; Wang, C.; Zhao, Z.; Wu, S.; Li, J.; Wu, X. Analysis of Stream Sediment Data for Exploring the Zhunuo Porphyry Cu Deposit, Southern Tibet. J. Geochem. Explor. 2014, 143, 19–30. [Google Scholar] [CrossRef]
- Pan, G. Correlation Coefficient. In Encyclopedia of Mathematical Geosciences; Sagar, B.S.D., Cheng, Q., McKinley, J., Agterberg, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 201–208. [Google Scholar]
- Carranza, E.J.M.; Hale, M. A Catchment Basin Approach to the Analysis of Reconnaissance Geochemical-Geological Data from Albay Province, Philippines. J. Geochem. Explor. 1997, 60, 157–171. [Google Scholar] [CrossRef]
- Darwish, M.A.G. Stream Sediment Geochemical Patterns Around an Ancient Gold Mine in the Wadi El Quleib Area of the Allaqi Region, South Eastern Desert of Egypt: Implications for Mineral Exploration and Environmental Studies. J. Geochem. Explor. 2017, 175, 156–175. [Google Scholar] [CrossRef]
- Demšar, U.; Harris, P.; Brunsdon, C.; Fotheringham, A.S.; McLoone, S. Principal Component Analysis on Spatial Data: An Overview. Ann. Assoc. Am. Geogr. 2013, 103, 106–128. [Google Scholar] [CrossRef]
- Kaiser, H.F. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Panigrahi, N. Inverse Distance Weight. In Encyclopedia of Mathematical Geosciences; Sagar, B.S.D., Cheng, Q., McKinley, J., Agterberg, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 666–672. [Google Scholar]
- Vilanova, V.; Ohtani, T.; Kojima, S.; Yatabe, K.; Cristovão, N.; Araujo, A. Modern River-Sand Geochemical Mapping in the Manufahi Municipality and Its Surroundings, Timor-Leste: Implications for Provenance. Geosciences 2024, 14, 177. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; p. 561. [Google Scholar]
- Winter, J.D. Principles of Igneous and Metamorphic Petrology, 2nd ed.; Pearson Education Limited: London, UK, 2007; 561p. [Google Scholar]
- Wedepohl, K.H. Handbook of Geochemistry; Springer: Berlin/Heidelberg, Germany, 1978; Volume II, pp. 1–5. [Google Scholar]
- Greensmith, J.T. Petrology of the Sedimentary Rocks, 7th ed.; UNWIN Hyman: London, UK, 1988; 271p. [Google Scholar]
- Zuffa, G.G. Unravelling Hinterland and Offshore Palaeogeography from Deep-water Arenites. In Marine Clastic Seimentology: Models and Case Studies (A Volume in Memory of C. Tarquin Teale); Leggett, J.K., Zuffa, G.G., Eds.; Graham and Trotman: London, UK, 1987; pp. 39–61. [Google Scholar]
- Tashakor, M.; Modabberi, S.; van der Ent, A.; Echevarria, G. Impacts of Ultramafic Outcrops in Peninsular Malaysia and Sabah on Soil and Water Quality. Environ. Monit. Assess. 2018, 190, 333. [Google Scholar] [CrossRef]
- Kronberg, B.I.; Nesbitt, H.W.; Fyfe, W.S. Mobilities of Alkalis, Alkaline Earths and Halogens During Weathering. Chem. Geol. 1987, 60, 41–49. [Google Scholar] [CrossRef]
- Nesbitt, W.H.; Markovics, G.; Price, R.C. Chemical Processes Affecting Alkalis and Alkaline Earths During Continental Weathering. Geochim. Cosmochim. Acta 1980, 44, 1659–1666. [Google Scholar] [CrossRef]
- Ohta, A.; Minami, M. Less Impact of Limestone Bedrock on Elemental Concentrations in Stream Sediments-Case Study of Akiyoshi Area. Bull. Geol. Surv. Jpn. 2013, 64, 121–138. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Knights, K.V.; Key, R.M.; Johnson, C.C.; Ayoade, E.; Adekanmi, M.A.; Arisekola, T.M.; Okunlola, O.A.; Backman, B.; Eklund, M.; et al. Geochemical Mapping Using Stream Sediments in West-Central Nigeria: Implications for Environmental Studies and Mineral Exploration in West Africa. Appl. Geochem. 2012, 27, 1035–1052. [Google Scholar] [CrossRef]
- Pirajno, F. Hydrothermal Processes and Mineral Systems; Springer Science and Business Media B.V.: Perth, Australia, 2009; 1273p. [Google Scholar]
- Silva-Filho, E.V.; Marques, E.D.; Vilaça, M.; Gomes, O.V.O.; Sanders, C.J.; Kutter, V.T. Distribution of Trace Metals in Stream Sediments Along the Trans-Amazonian Federal Highway, Pará State, Brazil. J. S. Am. Earth Sci. 2014, 54, 182–195. [Google Scholar] [CrossRef]
- Audley-Charles, M.G. The Geology of Portuguese Timor. Doctoral Thesis, University of London, London, UK, 1965. [Google Scholar]
- Reimann, C.; Fabian, K.; Birke, M.; Filzmoser, P.; Demetriades, A.; Négrel, P.; Oorts, K.; Matschullat, J.; de Caritat, P.; The GEMAS Project Team. GEMAS: Establishing Geochemical Background and Threshold for 53 Chemical Elements in European Agricultural Soil. Appl. Geochem. 2018, 88, 302–318. [Google Scholar] [CrossRef]
- Wang, M.; Hu, K.; Zhang, D.; Lai, J. Speciation and Spatial Distribution of Heavy Metals (Cu and Zn) in Wetland Soils of Poyang Lake (China) in Wet Seasons. Soc. Wetl. Sci. 2019, 39, 89–98. [Google Scholar] [CrossRef]
- Kierczak, J.; Pedziwiatr, A.; Waroszewski, J.; Modelska, M. Mobility of Ni, Cr and Co in Serpentine Soils Derived on Various Ultrabasic Bedrocks Under Temperate Climate. Geoderma 2016, 268, 78–91. [Google Scholar] [CrossRef]
- Dasgupta, S.; Roy, S.; Fukuoka, M. Depositional Models for Manganese Oxide and Carbonate Deposits of the Precambrian Sausar Group, India. Econom. Geol. 1992, 87, 1412–1418. [Google Scholar] [CrossRef]
- Gazley, M.F.; Collins, K.S.; Robertson, J.; Hines, B.R.; Fisher, L.A.; McFarlane, A. Application of Principal Component Analysis and Cluster Analysis to Mineral Exploration and Mine Geology. In Proceedings of the AusIMM New Zealand Branch Annual Conference, Rotorua, New Zealand, 30 August–2 September 2015; pp. 131–139. [Google Scholar]
- Ghezelbash, R.; Maghsoudi, A.; Daviran, M.; Yilmaz, H. Incorporation of principal component analysis, geostatistical interpolation approaches and frequency-space-based models for portraying the Cu-Au geochemical prospects in the Feizabad district, NW Iran. Geochemistry 2019, 79, 323–336. [Google Scholar] [CrossRef]
Elements | Min. | Q25 | Median | Q75 | Max. | Mean | Mode | Std. | Variance | Range | Skew | Kurt | MAD | IQR | Mean+2Std | M+2MAD | TIF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 36.84 | 49.25 | 52.47 | 54.6 | 59.94 | 51.55 | 54.53 | 4.82 | 23.212 | 23.1 | −1.14 | 1.77 | 2.54 | 5.35 | - | 57.55 | - |
TiO2 | 0.67 | 1.06 | 1.2 | 1.37 | 2.17 | 1.21 | 1.48 | 0.27 | 0.07 | 1.5 | 0.7 | 2.14 | 0.15 | 0.32 | 1.74 | 1.49 | 1.84 |
Al2O3 | 9.97 | 13.2 | 14.1 | 16.2 | 17.9 | 14.5 | 13.2 | 1.93 | 3.739 | 7.93 | −0.11 | −0.56 | 1.3 | 3 | - | 16.7 | - |
Fe2O3 | 4.75 | 7.2 | 8.19 | 9.24 | 11.94 | 8.18 | - | 1.54 | 2.369 | 7.19 | 0.33 | 0.16 | 1.03 | 2.04 | 11.26 | 10.24 | - |
MnO | 0.09 | 0.17 | 0.18 | 0.23 | 0.32 | 0.19 | 0.16 | 0.04 | 0.002 | 0.23 | 0.43 | 0.25 | 0.02 | 0.07 | 0.28 | 0.23 | - |
MgO | 1.66 | 2.65 | 3.12 | 3.76 | 4.70 | 3.2 | 2.98 | 0.75 | 0.559 | 3.04 | 0.08 | −0.62 | 0.49 | 1.11 | 4.7 | 4.1 | - |
Na2O | 1.06 | 1.81 | 2.11 | 2.47 | 2.79 | 2.09 | 2.06 | 0.43 | 0.181 | 1.73 | −0.41 | −0.28 | 0.34 | 0.66 | - | 2.79 | - |
K2O | 0.68 | 1.28 | 1.4 | 1.63 | 2.15 | 1.45 | - | 0.29 | 0.084 | 1.47 | 0.35 | 0.61 | 0.14 | 0.35 | 2.03 | 1.68 | - |
P2O5 | 0.15 | 0.18 | 0.2 | 0.22 | 0.27 | 0.2 | 0.21 | 0.03 | 0.001 | 0.12 | −0.03 | −0.31 | 0.02 | 0.04 | 0.26 | 0.24 | - |
CaO | 4.93 | 6.86 | 10.00 | 12.54 | 24.25 | 10.5 | - | 4.49 | 20.185 | 19.32 | 1.39 | 2.23 | 3.02 | 5.68 | 19.49 | 16.03 | 21.05 |
Cr | 49 | 126.5 | 166 | 205.5 | 1148 | 195.04 | 165 | 152.74 | 23,328.152 | 1099 | 4.9 | 29.75 | 39 | 79 | 500.51 | 244 | 324 |
Co | 0 | 36 | 59 | 79 | 109 | 56.36 | 0 | 28.69 | 823.31 | 109 | −0.12 | −0.8 | 21 | 43 | - | 101 | - |
Ni | 23 | 45.5 | 56 | 70.5 | 103 | 58.93 | 46 | 17.63 | 310.84 | 80 | 0.42 | −0.19 | 11 | 25 | 94.19 | 78 | - |
Cu | 0 | 24.5 | 38 | 54 | 599 | 51.49 | 26 | 80.05 | 6408.14 | 599 | 6.38 | 44.08 | 14 | 29.5 | 211.59 | 66 | 98.25 |
Zn | 38 | 81 | 97 | 109 | 240 | 95.72 | 81 | 30.07 | 904.25 | 202 | 1.95 | 9.31 | 16 | 28 | 155.86 | 129 | 151 |
Ga | 0 | 13 | 21 | 30.5 | 41 | 21.08 | 0 | 11.36 | 129.15 | 41 | −0.27 | −0.86 | 9 | 17.5 | - | 39 | - |
Rb | 0 | 42.5 | 62 | 74.5 | 115 | 58.6 | 61 | 25.71 | 661.13 | 115 | −0.43 | 0.17 | 14 | 32 | 110.02 | 90 | - |
Sr | 225 | 277.5 | 321 | 348 | 443 | 316.76 | 258 | 49.49 | 2449.15 | 218 | 0.36 | −0.15 | 37 | 70.5 | - | 395 | - |
Y | 0 | 15.5 | 26 | 38.5 | 52 | 25.42 | 0 | 14.7 | 216.02 | 52 | −0.27 | −0.88 | 12 | 23 | - | 50 | - |
Zr | 65 | 162 | 196 | 209.5 | 265 | 184.51 | 167 | 40.27 | 1621.52 | 200 | −0.73 | 0.63 | 22 | 47.5 | - | 240 | - |
Nb | 0 | 4.5 | 18 | 28.5 | 38 | 16.81 | 0 | 12.51 | 156.39 | 38 | 0.004 | −1.37 | 11 | 24 | - | - | - |
Ba | 0 | 330.5 | 408 | 553.5 | 1718 | 483.26 | 396 | 303.92 | 92,369.85 | 1718 | 1.95 | 5.33 | 104 | 223 | 1091.1 | 616 | 888 |
Pb | 0 | 32.5 | 61 | 84.5 | 149 | 57.13 | 0 | 36.82 | 1356 | 149 | 0.08 | −0.48 | 26 | 52 | 130.77 | 113 | - |
Th | 0 | 0 | 22 | 48.5 | 73 | 26.17 | 0 | 24.61 | 605.68 | 73 | 0.41 | −1.3 | 22 | 48.5 | - | 66 | - |
Sc | 16 | 23.5 | 26 | 29.5 | 36 | 26.21 | 25 | 4.01 | 16.09 | 20 | 0.05 | −0.09 | 3 | 6 | 34.23 | 32 | - |
La | 0 | 18 | 38 | 53 | 85 | 36.17 | 0 | 23.06 | 531.68 | 85 | 0.08 | −0.79 | 16 | 35 | 82.29 | 70 | - |
SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | MgO | Na2O | K2O | P2O5 | CaO | Cr | Co | Ni | Cu | Zn | Ga | Rb | Sr | Y | Zr | Nb | Ba | Pb | Th | Sc | La | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | — | |||||||||||||||||||||||||
TiO2 | −0.03 | — | ||||||||||||||||||||||||
Al2O3 | 0.52 | 0.39 | — | |||||||||||||||||||||||
Fe2O3 | 0.02 | 0.76 | 0.66 | — | ||||||||||||||||||||||
MnO | 0.23 | 0.5 | 0.08 | 0.20 | — | |||||||||||||||||||||
MgO | 0.18 | 0.45 | 0.79 | 0.78 | −0.01 | — | ||||||||||||||||||||
Na2O | 0.49 | 0.44 | 0.77 | 0.61 | 0.17 | 0.74 | — | |||||||||||||||||||
K2O | 0.45 | −0.13 | 0.41 | −0.03 | 0.11 | −0.01 | 0.02 | — | ||||||||||||||||||
P2O5 | 0.06 | 0.47 | 0.59 | 0.68 | 0.17 | 0.55 | 0.5 | 0.37 | — | |||||||||||||||||
CaO | −0.76 | −0.3 | −0.9 | −0.53 | −0.21 | −0.65 | −0.72 | −0.51 | −0.49 | — | ||||||||||||||||
Cr | 0.24 | 0.51 | 0.76 | 0.81 | 0.13 | 0.88 | 0.68 | 0.01 | 0.53 | −0.68 | — | |||||||||||||||
Co | 0.37 | 0.6 | 0.87 | 0.87 | 0.18 | 0.84 | 0.72 | 0.24 | 0.68 | −0.82 | 0.9 | — | ||||||||||||||
Ni | 0.29 | 0.34 | 0.84 | 0.69 | 0.06 | 0.86 | 0.62 | 0.31 | 0.61 | −0.77 | 0.89 | 0.87 | — | |||||||||||||
Cu | 0.29 | 0.47 | 0.81 | 0.75 | 0.22 | 0.7 | 0.62 | 0.35 | 0.75 | −0.73 | 0.74 | 0.85 | 0.79 | — | ||||||||||||
Zn | 0.48 | 0.35 | 0.88 | 0.62 | 0.12 | 0.67 | 0.57 | 0.53 | 0.58 | −0.86 | 0.69 | 0.84 | 0.79 | 0.89 | — | |||||||||||
Ga | 0.49 | 0.49 | 0.92 | 0.79 | 0.16 | 0.78 | 0.71 | 0.37 | 0.65 | −0.9 | 0.84 | 0.97 | 0.86 | 0.84 | 0.89 | — | ||||||||||
Rb | 0.58 | 0.13 | 0.76 | 0.37 | 0.15 | 0.41 | 0.38 | 0.8 | 0.45 | −0.84 | 0.46 | 0.67 | 0.66 | 0.64 | 0.83 | 0.77 | — | |||||||||
Sr | −0.27 | −0.3 | −0.4 | −0.49 | 0.06 | −0.52 | −0.34 | 0.01 | −0.22 | 0.48 | −0.4 | −0.53 | −0.36 | −0.34 | −0.4 | −0.51 | −0.33 | — | ||||||||
Y | 0.59 | 0.48 | 0.91 | 0.7 | 0.19 | 0.72 | 0.7 | 0.42 | 0.56 | −0.94 | 0.78 | 0.93 | 0.81 | 0.76 | 0.87 | 0.97 | 0.81 | −0.53 | — | |||||||
Zr | 0.53 | 0.5 | 0.81 | 0.69 | 0.24 | 0.62 | 0.56 | 0.47 | 0.56 | −0.87 | 0.7 | 0.88 | 0.74 | 0.72 | 0.83 | 0.92 | 0.82 | −0.56 | 0.94 | — | ||||||
Nb | 0.63 | 0.38 | 0.87 | 0.64 | 0.20 | 0.69 | 0.65 | 0.49 | 0.54 | −0.96 | 0.74 | 0.9 | 0.8 | 0.78 | 0.89 | 0.95 | 0.84 | −0.54 | 0.97 | 0.92 | — | |||||
Ba | 0.06 | 0.45 | 0.12 | 0.25 | 0.42 | −0.05 | −0.07 | 0.29 | 0.21 | −0.18 | 0.15 | 0.22 | 0.13 | 0.23 | 0.27 | 0.24 | 0.28 | 0.22 | 0.27 | 0.37 | 0.25 | — | ||||
Pb | 0.39 | 0.45 | 0.87 | 0.77 | 0.19 | 0.7 | 0.61 | 0.46 | 0.7 | −0.84 | 0.8 | 0.93 | 0.83 | 0.84 | 0.86 | 0.95 | 0.82 | −0.4 | 0.91 | 0.89 | 0.91 | 0.3 | — | |||
Th | 0.51 | 0.48 | 0.89 | 0.76 | 0.21 | 0.73 | 0.67 | 0.39 | 0.6 | −0.91 | 0.79 | 0.94 | 0.81 | 0.82 | 0.88 | 0.97 | 0.79 | −0.52 | 0.96 | 0.92 | 0.96 | 0.26 | 0.94 | — | ||
Sc | 0.01 | 0.5 | 0.56 | 0.73 | −0.13 | 0.76 | 0.6 | −0.24 | 0.41 | −0.4 | 0.68 | 0.66 | 0.55 | 0.51 | 0.47 | 0.58 | 0.15 | −0.49 | 0.52 | 0.47 | 0.45 | −0.09 | 0.48 | 0.55 | — | |
La | 0.44 | 0.6 | 0.87 | 0.82 | 0.23 | 0.76 | 0.67 | 0.37 | 0.65 | −0.86 | 0.81 | 0.96 | 0.83 | 0.83 | 0.87 | 0.97 | 0.75 | −0.5 | 0.95 | 0.91 | 0.93 | 0.30 | 0.94 | 0.95 | 0.56 | — |
PC1 | PC2 | PC3 | PC4 | PC1 | PC2 | PC3 | PC4 | ||
---|---|---|---|---|---|---|---|---|---|
Eigenvalues | 14.57 | 3.41 | 2.01 | 1.46 | Eigenvalues | 14.57 | 3.41 | 2.01 | 1.46 |
Explanation (%) | 56.04 | 13.1 | 7.72 | 5.63 | Explanation (%) | 56.04 | 13.1 | 7.72 | 5.63 |
SiO2 | 0.582 | 0.519 | Cu | −0.496 | 0.737 | ||||
TiO2 | 0.504 | −0.374 | 0.675 | Zn | 0.635 | 0.338 | −0.396 | 0.484 | |
Al2O3 | 0.939 | Ga | 0.983 | ||||||
Fe2O3 | 0.773 | −0.479 | Rb | 0.79 | 0.502 | ||||
MnO | 0.745 | 0.307 | Sr | −0.504 | 0.509 | ||||
MgO | 0.776 | −0.506 | Y | 0.965 | |||||
Na2O | 0.718 | Zr | 0.923 | ||||||
K2O | 0.364 | 0.816 | Nb | 0.936 | |||||
P2O5 | 0.685 | Ba | 0.469 | 0.705 | |||||
CaO | −0.882 | Pb | 0.941 | ||||||
Cr | 0.519 | −0.394 | Th | 0.94 | |||||
Co | 0.975 | Sc | 0.569 | −0.743 | |||||
Ni | 0.872 | La | 0.962 |
PC1 | PC2 | PC3 | PC4 | PC1 | PC2 | PC3 | PC4 | ||
---|---|---|---|---|---|---|---|---|---|
Eigenvalues | 14.57 | 3.41 | 2.01 | 1.46 | Eigenvalues | 14.57 | 3.41 | 2.01 | 1.46 |
Explanation (%) | 56.04 | 13.1 | 7.72 | 5.63 | Explanation (%) | 56.04 | 13.1 | 7.72 | 5.63 |
SS1 | 6.241 | 1.91 | −0.167 | −0.279 | SS28 | −1.369 | 0.128 | −0.044 | 0.422 |
SS2 | 1.795 | 1.945 | −0.84 | −0.266 | SS29 | −8.541 | −2.186 | −1.95 | −1.434 |
SS3 | −2.082 | −1.894 | −0.521 | −0.407 | SS30 | −5.838 | −0.517 | −1.524 | 0.255 |
SS4 | −6.08 | −4.906 | −0.515 | −0.484 | SS31 | −3.878 | −0.54 | −0.939 | −0.138 |
SS5 | −0.41 | 0.349 | 1.025 | 0.455 | SS32 | −2.069 | 0.997 | −1.185 | −0.219 |
SS6 | −5.92 | −1.675 | −0.853 | −0.827 | SS33 | −4.552 | −0.524 | 0.144 | −0.006 |
SS7 | 1.277 | 0.131 | 0.166 | 0.454 | SS34 | −1.158 | 1.178 | 1.457 | −0.317 |
SS8 | 1.041 | 0.483 | 0.148 | −0.189 | SS35 | 2.759 | −0.232 | 0.805 | −0.712 |
SS9 | −1.57 | 2.325 | 0.873 | −1.247 | SS36 | −1.977 | 0.428 | 0.453 | 0.364 |
SS10 | 2.101 | −0.774 | −1.291 | −2.191 | SS37 | −0.29 | −0.559 | 0.99 | 0.809 |
SS11 | −3.52 | −2.292 | −0.501 | −0.17 | SS38 | −2.657 | 0.558 | −0.406 | −0.26 |
SS12 | −0.632 | 3.786 | −1.375 | −2.795 | SS39 | −1.509 | 4.305 | −5.062 | 5.982 |
SS13 | −2.188 | 2.016 | 2.731 | 0.817 | SS40 | 5.329 | −0.149 | −1.263 | −0.236 |
SS14 | −3.546 | 1.994 | −0.891 | −1.376 | SS41 | 5.991 | −0.907 | −0.933 | 0.09 |
SS15 | −7.762 | −0.435 | 3.481 | 1.546 | SS42 | 5.387 | −0.705 | −1.064 | −0.381 |
SS16 | −4.358 | 0.418 | 1.244 | 0.451 | SS43 | 1.27 | 2.588 | 0.389 | −0.473 |
SS17 | 0.961 | 1.531 | −1.053 | −0.293 | SS44 | 3.672 | −1.408 | −0.843 | −0.078 |
SS18 | −0.465 | 1.047 | −0.961 | 0.166 | SS45 | 5.258 | −4.152 | −0.039 | 2.173 |
SS19 | 1.482 | −0.967 | 1.393 | 0.872 | SS46 | 3.949 | −1.411 | −0.963 | −0.155 |
SS20 | 2.01 | 0.079 | 1.01 | 0.31 | SS47 | 2.445 | −1.105 | −1.047 | −0.922 |
SS21 | 0.032 | −0.602 | 1.697 | 0.96 | SS48 | 5.193 | −0.235 | 0.951 | 0.499 |
SS22 | 4.61 | −0.499 | 0.333 | −0.288 | SS49 | −1.696 | 5.748 | 3.063 | −0.59 |
SS23 | 6.534 | −0.502 | 0.938 | 0.173 | SS50 | 5.409 | −2.045 | 2.706 | 1.177 |
SS24 | −4.508 | −1.248 | −0.083 | 0.422 | SS51 | 3.578 | −0.471 | −0.622 | −0.75 |
SS25 | −0.995 | −1.209 | 1.446 | 0.951 | SS52 | 3.554 | −0.393 | −0.681 | −0.851 |
SS26 | −3.164 | −0.407 | 0.059 | 0.023 | SS53 | 1.763 | 0.918 | −0.551 | −1.636 |
SS27 | −0.905 | 0.088 | 0.665 | 0.603 |
Geochemical Class | Calculated Values (in ppm) | |||
---|---|---|---|---|
Cr | Cu | Zn | Ba | |
Extremely low background | - | - | 38–45 | - |
Low background | 49–126.5 | 0–24.5 | 45–81 | 0–330.5 |
Background | 126.5–205.5 | 24.5–54 | 81–109 | 330.5–553.5 |
High background | 205.5–324 | 54–98.25 | 109–151 | 553.5–888 |
Anomaly | 324–1148 | 98.25–599 | 151–240 | 888–1718 |
Geochemical Class | |||||
---|---|---|---|---|---|
Extremely Low Background | Low Background | Background | High Background | Anomaly | |
Negative score of PC2 | - | - | 0–(−0.94) | (−0.94)–(−2.29) | (−2.34)–(−4.91) |
Positive score of PC3 | - | - | 0–0.94 | 0.94–1.7 | 2.36–3.48 |
Negative value of PC3 | - | - | 0–(−0.94) | (−0.94)–(−1.95) | (−2.34)–(−5.06) |
Positive value of PC4 | - | - | 0–0.45 | 0.45–0.96 | 1.13–5.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilanova, V.; Ohtani, T.; Kojima, S.; Yatabe, K.; Moniz, E. Geochemical Characteristics of Modern River-Sand and Its Bearing on the Mineral Exploration in the Manufahi Area, Timor-Leste. Geosciences 2024, 14, 338. https://doi.org/10.3390/geosciences14120338
Vilanova V, Ohtani T, Kojima S, Yatabe K, Moniz E. Geochemical Characteristics of Modern River-Sand and Its Bearing on the Mineral Exploration in the Manufahi Area, Timor-Leste. Geosciences. 2024; 14(12):338. https://doi.org/10.3390/geosciences14120338
Chicago/Turabian StyleVilanova, Vital, Tomoyuki Ohtani, Satoru Kojima, Kazuma Yatabe, and Elizario Moniz. 2024. "Geochemical Characteristics of Modern River-Sand and Its Bearing on the Mineral Exploration in the Manufahi Area, Timor-Leste" Geosciences 14, no. 12: 338. https://doi.org/10.3390/geosciences14120338
APA StyleVilanova, V., Ohtani, T., Kojima, S., Yatabe, K., & Moniz, E. (2024). Geochemical Characteristics of Modern River-Sand and Its Bearing on the Mineral Exploration in the Manufahi Area, Timor-Leste. Geosciences, 14(12), 338. https://doi.org/10.3390/geosciences14120338