Effects of Anthropic Structures on Morphodynamic Beach Evolution along the Gulf of Roses (Northwestern Mediterranean, Spain)
Abstract
:1. Introduction
1.1. Study Area: The Gulf of Roses
1.2. Anthropic Interventions in the Study Area
1.3. Dynamic Characteristics: Waves and Sediment Drift
2. Materials and Methods
2.1. Multiannual Quantitative Analysis of the Variation in the Coastline
2.1.1. Analysis by Areas
2.1.2. Transect Analysis: The DSAS Extension
2.2. Grain Size Analysis
3. Results
3.1. Areal Evolution of Beaches
3.2. Evolution of the Shoreline
3.3. Grain-Size Distribution
4. Discussion
4.1. Areal vs. Transect Change Studies
4.2. Medium-Term Morphodynamic Evolution
4.3. Effect of Anthropogenic Structures
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Beach | Transect S-N | Distance | NSM | EPR | LRR | LR2 | LSE | LCI90 |
---|---|---|---|---|---|---|---|---|
Can Comes | 1 | 0 | −17.55 | −1.10 | −0.92 | 0.08 | 22.65 | 4.21 |
2 | 100 | 3.74 | 0.23 | 0.45 | 0.04 | 16.55 | 3.08 | |
3 | 200 | −2.50 | −0.16 | −0.34 | 0.02 | 18.04 | 3.35 | |
4 | 300 | 6.87 | 0.43 | 0.03 | 0.00 | 18.20 | 3.38 | |
5 | 400 | 1.96 | 0.12 | −0.12 | 0.00 | 20.25 | 3.77 | |
6 | 500 | 7.54 | 0.47 | 0.30 | 0.02 | 15.84 | 2.94 | |
7 | 600 | −5.10 | −0.32 | −0.15 | 0.00 | 20.28 | 3.77 | |
8 | 700 | −9.62 | −0.60 | −0.60 | 0.05 | 18.36 | 3.41 | |
9 | 800 | −13.50 | −0.84 | −0.75 | 0.10 | 16.39 | 3.05 | |
10 | 900 | −1.71 | −0.11 | 0.49 | 0.04 | 18.30 | 3.40 | |
11 | 1000 | 13.29 | 0.83 | 1.38 | 0.34 | 14.06 | 2.61 | |
12 | 1100 | 6.29 | 0.39 | 0.78 | 0.12 | 15.62 | 2.90 | |
13 | 1200 | −2.72 | −0.17 | 0.20 | 0.02 | 11.14 | 2.07 | |
14 | 1300 | −15.69 | −0.98 | −0.25 | 0.02 | 12.48 | 2.32 | |
15 | 1400 | −3.01 | −0.19 | 0.23 | 0.01 | 17.91 | 3.33 | |
16 | 1500 | 0.68 | 0.04 | 0.41 | 0.03 | 18.52 | 3.44 | |
17 | 1600 | 5.57 | 0.35 | 0.64 | 0.09 | 15.25 | 2.84 | |
18 | 1700 | 20.94 | 1.31 | 1.62 | 0.22 | 22.00 | 4.09 | |
19 | 1800 | 18.23 | 1.14 | 1.47 | 0.18 | 22.97 | 4.27 | |
20 | 1900 | 10.85 | 0.68 | 1.18 | 0.16 | 19.43 | 3.61 | |
21 | 2000 | 14.65 | 0.92 | 1.49 | 0.20 | 21.67 | 4.03 | |
22 | 2100 | −4.06 | −0.25 | 0.59 | 0.04 | 20.05 | 3.73 | |
23 | 2200 | 6.74 | 0.42 | 0.97 | 0.10 | 21.57 | 4.01 | |
24 | 2300 | 15.19 | 0.95 | 1.39 | 0.16 | 23.47 | 4.36 | |
25 | 2400 | −1.11 | −0.07 | 0.48 | 0.03 | 21.00 | 3.90 | |
26 | 2500 | 3.47 | 0.22 | 0.51 | 0.06 | 14.60 | 2.71 | |
27 | 2600 | −2.30 | −0.14 | 0.20 | 0.01 | 15.76 | 2.93 | |
28 | 2700 | −6.47 | −0.40 | −0.21 | 0.01 | 15.58 | 2.90 | |
29 | 2800 | 1.85 | 0.12 | 0.17 | 0.01 | 13.38 | 2.49 | |
30 | 2900 | 7.91 | 0.49 | 0.59 | 0.06 | 17.13 | 3.18 | |
31 | 3000 | 5.43 | 0.34 | 0.48 | 0.07 | 13.06 | 2.43 | |
32 | 3100 | 3.15 | 0.20 | 0.26 | 0.02 | 12.72 | 2.37 | |
33 | 3200 | 4.99 | 0.31 | 0.11 | 0.01 | 10.42 | 1.94 | |
34 | 3300 | 5.70 | 0.36 | 0.44 | 0.08 | 10.58 | 1.97 | |
35 | 3400 | −11.01 | −0.69 | −0.57 | 0.09 | 13.64 | 2.54 | |
36 | 3500 | 16.36 | 1.02 | 0.74 | 0.18 | 11.60 | 2.16 | |
37 | 3600 | 17.03 | 1.07 | 0.98 | 0.34 | 10.13 | 1.88 | |
38 | 3700 | 9.73 | 0.61 | 0.54 | 0.10 | 11.00 | 2.21 | |
Empuriabrava | 1 | 3800 | −5.90 | −0.37 | −0.25 | 0.02 | 13.40 | 2.49 |
2 | 3900 | 16.31 | 1.02 | 0.69 | 0.09 | 15.65 | 2.91 | |
3 | 4000 | 18.26 | 1.14 | 0.76 | 0.10 | 16.31 | 3.04 | |
4 | 4100 | 2.75 | 0.17 | 0.28 | 0.10 | 6.17 | 1.15 | |
5 | 4200 | 1.42 | 0.09 | 0.06 | 0.00 | 11.18 | 2.08 | |
6 | 4300 | 13.46 | 0.84 | 0.71 | 0.13 | 13.23 | 2.46 | |
7 | 4400 | −2.48 | −0.16 | −0.03 | 0.00 | 12.25 | 2.28 | |
8 | 4500 | 16.53 | 1.04 | 0.97 | 0.38 | 9.16 | 1.70 | |
9 | 4600 | 12.74 | 0.80 | 1.00 | 0.57 | 6.34 | 1.18 | |
10 | 4700 | 11.27 | 0.71 | 0.96 | 0.41 | 8.31 | 1.55 | |
11 | 4800 | 5.00 | 0.31 | 0.54 | 0.12 | 10.50 | 1.95 | |
12 | 4900 | 7.13 | 0.45 | 0.72 | 0.19 | 10.93 | 2.04 | |
13 | 5000 | 2.43 | 0.15 | 0.48 | 0.06 | 14.00 | 2.61 | |
La Rovina | 1 | 5100 | −5.67 | −0.35 | −0.29 | 0.08 | 7.51 | 1.40 |
2 | 5200 | −6.44 | −0.40 | −0.29 | 0.10 | 6.60 | 1.23 | |
3 | 5300 | 4.93 | 0.31 | 0.30 | 0.08 | 7.33 | 1.36 | |
4 | 5400 | −5.22 | −0.33 | −0.22 | 0.20 | 3.23 | 0.60 | |
5 | 5500 | −6.45 | −0.40 | −0.33 | 0.34 | 3.37 | 0.63 | |
6 | 5600 | 0.75 | 0.05 | −0.12 | 0.02 | 6.67 | 1.24 | |
7 | 5700 | −12.93 | −0.81 | −0.72 | 0.67 | 3.69 | 0.69 | |
8 | 5800 | 1.78 | 0.11 | −0.06 | 0.00 | 8.22 | 1.53 | |
9 | 5900 | −12.05 | −0.75 | −0.67 | 0.87 | 1.86 | 0.35 | |
10 | 6000 | 2.87 | 0.18 | 0.04 | 0.01 | 3.85 | 0.71 | |
11 | 6100 | 1.89 | 0.12 | −0.04 | 0.01 | 3.58 | 0.67 | |
12 | 6200 | −3.95 | −0.25 | −0.32 | 0.66 | 1.70 | 0.32 | |
13 | 6300 | −8.43 | −0.53 | −0.63 | 0.79 | 2.37 | 0.44 | |
14 | 6400 | −8.57 | −0.54 | −0.67 | 0.59 | 4.08 | 0.76 | |
15 | 6500 | −10.85 | −0.68 | −0.89 | 0.80 | 3.27 | 0.61 | |
16 | 6600 | −6.13 | −0.38 | −0.49 | 0.57 | 3.12 | 0.58 | |
17 | 6700 | −7.92 | −0.50 | −0.58 | 0.49 | 4.31 | 0.80 | |
18 | 6800 | −2.70 | −0.17 | −0.33 | 0.29 | 3.79 | 0.71 | |
S. Margarida | 1 | 6900 | −1.61 | −0.10 | −0.07 | 0.01 | 6.09 | 1.13 |
2 | 7000 | 3.07 | 0.19 | 0.21 | 0.04 | 7.88 | 1.46 | |
3 | 7100 | −2.73 | −0.17 | −0.21 | 0.06 | 5.90 | 1.10 | |
4 | 7200 | 1.03 | 0.06 | −0.06 | 0.00 | 7.63 | 1.42 | |
5 | 7300 | −6.25 | −0.39 | −0.41 | 0.25 | 5.23 | 0.97 | |
6 | 7400 | −5.86 | −0.37 | −0.35 | 0.23 | 4.68 | 0.87 | |
Salatar | 1 | 7500 | −0.62 | −0.04 | 0.00 | 0.00 | 2.24 | 0.42 |
2 | 7600 | −0.29 | −0.02 | 0.02 | 0.00 | 3.23 | 0.60 | |
3 | 7700 | −1.60 | −0.10 | −0.10 | 0.03 | 4.37 | 0.81 | |
4 | 7800 | −3.79 | −0.24 | −0.17 | 0.07 | 4.47 | 0.83 | |
Rastrell | 1 | 7900 | −0.45 | −0.03 | 0.03 | 0.04 | 0.97 | 0.18 |
2 | 8000 | −3.10 | −0.19 | −0.06 | 0.03 | 2.36 | 0.44 | |
3 | 8100 | −2.66 | −0.17 | −0.07 | 0.05 | 2.20 | 0.41 | |
4 | 8200 | −4.58 | −0.29 | −0.23 | 0.74 | 1.02 | 0.19 | |
5 | 8300 | −14.43 | −0.90 | −0.73 | 0.12 | 14.35 | 2.67 | |
La Nova | 1 | 8400 | −1.94 | −0.12 | −0.04 | 0.00 | 11.09 | 2.06 |
2 | 8500 | 2.47 | 0.15 | 0.12 | 0.01 | 10.10 | 1.88 | |
3 | 8600 | −3.97 | −0.25 | −0.17 | 0.17 | 2.74 | 0.51 | |
4 | 8700 | −1.76 | −0.11 | −0.06 | 0.06 | 1.69 | 0.31 | |
5 | 8800 | −3.75 | −0.23 | −0.20 | 0.44 | 1.62 | 0.30 | |
6 | 8900 | −4.59 | −0.29 | −0.22 | 0.24 | 2.79 | 0.52 | |
7 | 9000 | −4.80 | −0.30 | −0.23 | 0.33 | 2.41 | 0.45 | |
8 | 9100 | −6.01 | −0.38 | −0.25 | 0.44 | 2.06 | 0.38 | |
La Punta | 1 | 9200 | −3.49 | −0.22 | 0.06 | 0.00 | 30.35 | 5.64 |
2 | 9300 | −9.00 | −0.56 | −0.45 | 0.11 | 9.39 | 1.75 | |
3 | 9400 | 2.01 | 0.13 | −0.02 | 0.00 | 7.41 | 1.38 | |
4 | 9500 | −33.34 | −2.09 | −1.61 | 0.32 | 17.20 | 3.20 | |
5 | 9600 | −14.43 | −0.90 | −0.73 | 0.12 | 14.35 | 2.67 |
Appendix B
References
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef]
- Bruun, P. Coast Erosion and the Development of Beach Profiles; US Beach Erosion Board: Fort Belvoir, VA, USA, 1954; Volume 44. [Google Scholar]
- Wright, L.D.; Thom, B.G. Coastal depositional landforms: A morphodynamic approach. Prog. Phys. Geogr. 1977, 1, 412–459. [Google Scholar] [CrossRef]
- Short, A.D.; Jackson, D.W.T. 2013. Beach morphodynamics. In Treatise on Geomorphology; Shroder, J., Sherman, D.J., Eds.; Academic Press: San Diego, CA, USA; Coastal Geomorphology: San Diego, CA, USA, 2013; Volume 10, pp. 106–129. [Google Scholar]
- Sigren, J.; Figlus, J.; Armitage, A. Coastal sand dunes and dune vegetation: Restoration, erosion, and storm protection. Shore Beach 2014, 82, 5–12. [Google Scholar]
- United Nations. Ocean Conference: Factsheet: People and Oceans. 2017. Available online: https://sustainabledevelopment.un.org/content/documents/Ocean_Factsheet_People.pdf (accessed on 5 October 2024).
- Bowman, D.; Guillen, J.; Lopez, L.; Pellegrino, V. Planview Geometry and morphological characteristics of pocket beaches on the Catalan coast (Spain). Geomorphology 2009, 108, 191–199. [Google Scholar] [CrossRef]
- Macau, F. L’Alt Empordà geometritzat per la Tramontana». Ann. L’institut D’estudis Empord. 1964, 5, 19–39. [Google Scholar]
- Bach i Plaza, J. Sedimentación holocena en el litoral emergido de L’Alt Empordà (NE de Catalunya). Acta Geològica Hispànica 1986–1987, 21–22, 195–203. [Google Scholar]
- Serra, J.; Verdaguer, A.; Julià, R.; Marquès, M.A. Caracterització geológica dels Aiguamolls de la Badia de Roses. Treb. Inst. Catalana D’historia Nat. 1994, 13, 21–78. [Google Scholar]
- Amblas, D.; Canals, M.; Urgeles, R.; Lastras, G.; Liquete, C.; Hughes-Clarke, J.E.; Casamor, J.L.; Calafat, A.M. Morphogenetic mesoscale analysis of the northeastern Iberian margin, NW Mediterranean Basin. Mar. Geol. 2006, 234, 3–20. [Google Scholar] [CrossRef]
- Liquete, C.; Canals, M.; Ludwig, W.; Arnau, P. Sediment discharge of the rivers of Catalonia, NE Spain, and the influence of human impacts. J. Hydrol. 2009, 366, 76–88. [Google Scholar] [CrossRef]
- Durán, R.; Canals, M.; Sanz, J.L.; Lastras, G.; Amblàs, D.; Micallef, A. Morphology and sediment dynamics of the northern Catalan continental shelf, northwestern Mediterranean Sea. Geomorphology 2014, 204, 1–20. [Google Scholar] [CrossRef]
- Jiménez, J.; Gracia, V.; Valdemoro, H.I.; Mendoza, E.T.; Sánchez-Arcilla, A. Managing erosion-induced problems in NW Mediterranean urban beaches. Ocean. Coast. Manag. 2011, 54, 907–918. [Google Scholar] [CrossRef]
- Bach i Plaza, J.B.; Llacer, P.; Buxó, R.; i Casas, F.B. El Territori d’Emporion I Les Seves Dades Paleoambientals. Empúries Rev. De Món Clàssic I Antig. Tardana 2005, 54, 25–32. Available online: https://raco.cat/index.php/Empuries/article/view/95677 (accessed on 5 October 2024).
- Ejarque, A.; Julià, R.; Reed, J.M.; Mesquita-Joanes, F.; Marco-Barba, J.; Riera, S. Coastal Evolution in a Mediterranean Microtidal Zone: Mid to Late Holocene Natural Dynamics and Human Management of the Castelló Lagoon, NE Spain. PLoS ONE 2016, 11, e0155446. [Google Scholar] [CrossRef]
- Bouzas Sabater, M.; Burch I Rius, J.; Julià Brugués, R.; Palahí Grimal, L.; Pons Mir, P.; Solà Subiranas, J. Changes and Transformations on the Coast Using the Example of Roses (Alt Empordà, Catalonia). Land 2023, 12, 2104. [Google Scholar] [CrossRef]
- López-Dóriga, U.; Jiménez, J.A. Impact of Relative Sea-Level Rise on Low-Lying Coastal Areas of Catalonia, NW Mediterranean, Spain. Water 2020, 12, 3252. [Google Scholar] [CrossRef]
- Guillén, J.; Stive, M.J.F.; Capobianco, M. Shoreline evolution of the Holland coast on a decadal scale. Earth Surf. Process. Landf. 1999, 24, 517–536. [Google Scholar] [CrossRef]
- Calafat, A.; Vírseda, S.; Lovera, R.; Lucena, J.R.; Bladé, C.; Rivero, L.; Ninot, J.M. Assessment of the Restoration of the Remolar Dune System (Viladecans, Barcelona): The Resilience of a Coastal Dune System. J. Mar. Sci. Eng. 2021, 9, 113. [Google Scholar] [CrossRef]
- GCGeneralitat de Catalunya. Llibre Verd de l’Estat de la Zona Costanera a Catalunya (LVCC). Barcelona. 2010. Available online: https://www.icgc.cat/Administracio-i-empresa/Serveis/Riscos-geologics/Dinamica-de-la-costa/Llibre-verd-de-l-Estat-de-la-zona-costanera-a-Catalunya-2010 (accessed on 5 October 2024). (In Catalan).
- Agustí i Vergés, J. Projecte de Reparació Simple de les Platges de La Punta i de La Nova a Roses a Conseqüència dels Desperfectes Provocats pels Temporals; Ajuntament de Roses: Girona, Spain, 2012. (In Catalan) [Google Scholar]
- Quera, J. Projecte Constructiu de L’espigó Transversal D’escullera, per a L’estabilització de la Platja de La Punta, En Compliment de les Obligacions de la Concessió del Port Esportiu de Roses; Ajuntament de Roses i Enigest: Girona, Spain, 2017; 119p. (In Catalan) [Google Scholar]
- Mendoza, E.T.; Jiménez, J.J.A.; Mateo, J. A coastal storms intensity scale for the Catalan Sea (NW Mediterranean). Nat. Hazards Earth Syst. Sci. 2011, 11, 2453–2462. [Google Scholar] [CrossRef]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. Digital Shoreline Analysis System (DSAS) Version 4.0—An ArcGIS Extension for Calculating Shoreline Change; U.S. Geological Survey Open-File Report 2008–1278; U.S. Geological Survey: Reston, VA, USA, 2009.
- Folk, R.L. The Petrology of Sedimentary Rocks; Hemphill Publishing Co.: Austin, TX, USA, 1974; 182p. [Google Scholar]
- Blott, S.J.; Pye, K. Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Dolan, R.; Fenster, M.S.; Holmes, S.J. Temporal analysis of shoreline recession and accretion. J. Coast. Res. 1991, 7, 723–744. [Google Scholar]
- Apostolopoulos, D.N.; Avramidis, P.; Nikolakopoulos, K.G. Estimating Quantitative Morphometric Parameters and Spatiotemporal Evolution of the Prokopos Lagoon Using Remote Sensing Techniques. J. Mar. Sci. Eng. 2022, 10, 931. [Google Scholar] [CrossRef]
- Anfuso, G.; Bowman, D.; Danese, C.; Pranzini, E. Transect based analysis versus area based analysis to quantify shoreline displacement: Spatial resolution issues. Environ. Monit. Assess. 2016, 188, 568. [Google Scholar] [CrossRef]
- Walker, I.J.; Davidson-Arnott, R.G.D.; Bauer, B.O.; Hesp, P.A.; Delgado-Fernandez, I.; Ollerhead, J.; Smyth, T.A.G. Scale-dependent perspectives on the geomorphology and evolution of beach-dune systems. Earth-Sci. Rev. 2017, 171, 220–253. [Google Scholar] [CrossRef]
- Durán, R.; Guillén, J.; Ruiz, A.; Jiménez, J.A.; Sagristà, E. Morphological changes, beach inundation and overwash caused by an extreme storm on a low-lying embayed beach bounded by a dune system (NW Mediterranean). Geomorphology 2016, 274, 129–142. [Google Scholar] [CrossRef]
- Vos, K.; Harley, M.D.; Splinter, K.D.; Simmons, J.A.; Turner, I.L. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coast. Eng. 2019, 150, 160–174. [Google Scholar] [CrossRef]
- Warrick, J.A. Littoral Sediment from Rivers: Patterns, Rates and Processes of River Mouth Morphodynamics. Front. Earth Sci. 2020, 8, 355. [Google Scholar] [CrossRef]
- Guillén, J.; Jiménez, J. Process behind the Longshore Variation of the Sediment Grain Size in the Ebro Delta Coast. J. Coast. Res. 1995, 11, 205–218. [Google Scholar]
- Huisman, B.J.A.; de Schipper, M.A.; Ruessink, B.G. Sediment sorting at the Sand Motor at storm and annual time scales. Mar. Geol. 2016, 381, 209–226. [Google Scholar] [CrossRef]
- Guillén, J.; Hoekstra, P. Sediment distribution in the nearshore zone: Grain size evolution in response to shoreface nourishment (Island of Terschelling, The Netherlands). Estuar. Coast. Shelf Sci. 1997, 45, 639–652. [Google Scholar] [CrossRef]
- Carrión, N.; Calafat, A. Definition of the littoral cells of the Maresme coast (Barcelona). XI J. Geomorfol. Litoral Galicia 2022, 2022, 251–255. [Google Scholar]
- Anfuso, G.; Benavente, J.; Del Rio, L.; Gracia, F.J. An approximation to short-term evolution and sediment transport pathways along the littoral of Cadiz Bay (SW Spain). Environ. Geol. 2008, 56, 69–79. [Google Scholar] [CrossRef]
- Del Río, L.; Gracia, F.J.; Benavente, J. Shoreline change patterns in sandy coasts. A case study in SW Spain. Geomorphology 2013, 196, 252–266. [Google Scholar] [CrossRef]
- Pardo-Pascual, J.E.; Sanjaume, E. Beaches in Valencian Coast. In The Spanish Coastal Systems; Morales, J., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Cabezas-Rabadán, C.; Pardo-Pascual, J.E.; Palomar-Vázquez, J. Characterizing the Relationship between the Sediment Grain Size and the Shoreline Variability Defined from Sentinel-2 Derived Shorelines. Remote Sens. 2021, 13, 2829. [Google Scholar] [CrossRef]
Beach | Length (km) | Direction (° to N) | Width (m) | DSAS Transects | Number of DSAS Transects | Sediment Sampling Stations | Number of Sampling Stations |
---|---|---|---|---|---|---|---|
Can Comes | 3.94 | 18 | 87.05 | 1–38 | 38 | 25–36 | 12 |
Empuriabrava | 1.30 | 35 | 95.74 | 39–51 | 13 | 21–24 | 4 |
La Rovina | 1.79 | 44 | 73.21 | 52–69 | 18 | 15–20 | 6 |
Sta. Margarida | 0.61 | 58 | 42.16 | 70–75 | 6 | 12–14 | 3 |
El Salatar | 0.46 | 68 | 29.04 | 76–79 | 4 | 11 | 1 |
El Rastrell | 0.46 | 94 | 36.54 | 80–84 | 5 | 9–10 | 2 |
La Nova | 0.80 | 143 | 26.30 | 85–92 | 8 | 4–8 | 5 |
La Punta | 0.50 | 134 | 56.59 | 93–97 | 5 | 1–3 | 3 |
TOTAL | 9.86 | 97 | 36 |
Tp | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<0.55 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.0< | Total | ||
Hs | ≤0.5 | - | - | 0.005 | 0.425 | 1.921 | 5.033 | 6.101 | 6.236 | 5.407 | 5.385 | 13.608 | 44.122 |
1.0 | - | - | - | 0.001 | 0.058 | 0.687 | 3.486 | 4.881 | 2.987 | 2.439 | 18.129 | 32.668 | |
1.5 | - | - | - | - | 0.001 | 0.005 | 0.045 | 1.188 | 2.203 | 0.938 | 9.434 | 13.812 | |
2.0 | - | - | - | - | - | - | - | 0.015 | 0.298 | 0.907 | 4.224 | 5.444 | |
2.5 | - | - | - | - | - | - | - | - | 0.008 | 0.155 | 2.168 | 2.331 | |
3.0 | - | - | - | - | - | - | - | - | - | 0.015 | 0.876 | 0.891 | |
3.5 | - | - | - | - | - | - | - | - | - | - | 0.400 | 0.400 | |
4.0 | - | - | - | - | - | - | - | - | - | - | 0.174 | 0.174 | |
4.5 | - | - | - | - | - | - | - | - | - | - | 0.075 | 0.075 | |
5.0 | - | - | - | - | - | - | - | - | - | - | 0.037 | 0.037 | |
5.0< | - | - | - | - | - | - | - | - | - | - | 0.048 | 0.048 | |
Total | 0.005 | 0.426 | 1.979 | 5.725 | 9.632 | 12.320 | 10.903 | 9.839 | 49.172 | 100 |
Beach | Length (km) | Accretion Surface (m2) | Erosion Surface (m2) | Total Balance (m2) | EPRa (m2·y−1) | EPRan (m·y−1) |
---|---|---|---|---|---|---|
Can Comes | 3.94 | 22,821 | −23,242 | −421 | −26.31 | −0.006 |
Empuriabrava | 1.30 | 10,099 | −3951 | 6148 | 384.25 | 0.30 |
La Rovina | 1.79 | 431 | −12,400 | −11.969 | −746.19 | −0.42 |
Santa Margarida | 0.61 | 225 | −3338 | −3.113 | −194.56 | −0.32 |
El Salatar | 0.46 | 0 | −1.095 | −1.095 | −68.44 | −0.15 |
El Rastrell | 0.46 | 0 | −2.376 | −2.376 | −171.00 | −0.37 |
La Nova | 0.80 | 49 | −3.610 | −3.560 | −222.50 | −0.28 |
La Punta | 0.50 | 203 | −4.627 | −4.424 | −276.50 | −0.55 |
Total | 33,828 | 54.638 | −20.810 |
Beach | Transects | NSM (m) | NSM Range (m) | EPR (m·y−1) | EPR Range (m·y−1) | LRR (m·y−1) | LRR Range (m·y−1) |
---|---|---|---|---|---|---|---|
Can Comes | 38 | 2.94 | 20.94–17.55 | 0.18 | 1.31–1.10 | 0.40 | 1.62–0.92 |
Empuriabrava | 13 | 7.61 | 18.26–0.37 | 0.48 | 1.14–0.25 | 0.53 | 1.00–0.00 |
La Rovina | 18 | −4.73 | 4.93–12.93 | −0.30 | 0.31–0.81 | −0.35 | 0.30–0.89 |
Santa Margarida | 6 | −2.06 | 3.07–6.25 | −0.13 | 0.19–0.39 | −0.15 | 0.21–0.41 |
El Salatar | 4 | −1.58 | −0.29–3.79 | −0.10 | −0.02–0.24 | −0.06 | 0.02–0.17 |
El Rastrell | 5 | −5.04 | −0.45–14.43 | −0.32 | −0.03–0.90 | −0.21 | 0.03–0.73 |
La Nova | 8 | −3.04 | 2.47–6.01 | −0.19 | 0.15–0.38 | −0.13 | 0.12–0.25 |
La Punta | 5 | −9.21 | 2.01–33.34 | −0.58 | 0.13–2.09 | −0.43 | 0.06–1.61 |
WET BEACH | DRY BEACH | ||||||
---|---|---|---|---|---|---|---|
Beach | N | Mean | SD | CV | Mean | SD | CV |
Can Comes | 12 | 421.25 | 155.27 | 0.37 | 505.50 | 235.75 | 0.47 |
Empuriabrava | 4 | 745.25 | 473.75 | 0.64 | 985.50 | 768.00 | 0.78 |
La Rovina | 6 | 497.17 | 322.33 | 0.65 | 1171.50 | 1027.67 | 0.88 |
Sta. Margarida | 3 | 446.00 | 233.67 | 0.52 | 519.00 | 321.67 | 0.62 |
El Salatar | 1 | 476.00 | 260.00 | 0.55 | 479.00 | 425.00 | 0.89 |
El Rastrell | 2 | 338.00 | 125.50 | 0.37 | 441.00 | 279.00 | 0.63 |
La Nova | 5 | 307.60 | 111.04 | 0.36 | 358.20 | 221.60 | 0.62 |
La Punta | 3 | 264.00 | 106.83 | 0.40 | 237.00 | 110.50 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calafat, A.; Salvador, M.; Guinau, M.; Casamor, J.L. Effects of Anthropic Structures on Morphodynamic Beach Evolution along the Gulf of Roses (Northwestern Mediterranean, Spain). Geosciences 2024, 14, 265. https://doi.org/10.3390/geosciences14100265
Calafat A, Salvador M, Guinau M, Casamor JL. Effects of Anthropic Structures on Morphodynamic Beach Evolution along the Gulf of Roses (Northwestern Mediterranean, Spain). Geosciences. 2024; 14(10):265. https://doi.org/10.3390/geosciences14100265
Chicago/Turabian StyleCalafat, Antoni, Manel Salvador, Marta Guinau, and José L. Casamor. 2024. "Effects of Anthropic Structures on Morphodynamic Beach Evolution along the Gulf of Roses (Northwestern Mediterranean, Spain)" Geosciences 14, no. 10: 265. https://doi.org/10.3390/geosciences14100265
APA StyleCalafat, A., Salvador, M., Guinau, M., & Casamor, J. L. (2024). Effects of Anthropic Structures on Morphodynamic Beach Evolution along the Gulf of Roses (Northwestern Mediterranean, Spain). Geosciences, 14(10), 265. https://doi.org/10.3390/geosciences14100265