Petrographic and Geotechnical Features of Dir Volcanics as Dimension Stone, Upper Dir, North Pakistan
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sample Collection
3.2. Experimental Program
4. Results and Discussion
4.1. Petrography
4.1.1. Andesites
4.1.2. Agglomerate
4.2. Physical Properties
4.2.1. Specific Gravity, Water Absorption, and Porosity
4.2.2. Ultrasonic Pulse Velocity (Vp)
4.3. Strength Properties
4.3.1. Unconfined Compressive Strength Test (UCS)
4.3.2. Uniaxial Tensile Strength (UTS)
4.3.3. Schmidt Hammer Rebound Hardness
4.4. Correlation among Petrographic, Physical, and Strength Properties
4.5. Degree of Polishing
5. Conclusions
- The rocks from the Dir volcanics, including andesites and agglomerates, possess physical and strength properties suitable for use as building and decorative stones. The presence of plagioclase, amphibole, and quartz contributes to good physical and strength properties in most samples.
- Low-grade metamorphism in andesites resulted in the presence of alteration products such as chlorite, epidote, sericite, and recrystallized quartz. The abundance of these alteration products negatively affected the physical and strength properties of certain andesite varieties (PMA-1 and PMA-2).
- Samples CMA, AG-1, and AG-2 exhibited high strength due to their interlocking grain pattern and low alteration. However, their strength was relatively lower than FMA and MMA due to factors such as coarse grain size and the presence of clasts.
- FMA and MMA showed high strength and low water absorption due to their fine-to-medium grain size and low alteration. These factors positively influenced their physical and strength properties.
- Strong correlations were observed between unconfined compressive strength (UCS) and variables such as ultrasonic pulse velocity (Vp), skeletal density, porosity, and water absorption. Conversely, the phenocryst to groundmass ratio (Pc:GM) demonstrated a weak correlation with UCS for the studied samples.
6. Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bukhari, S.A.; Basharat, M.; Janjuhah, H.T.; Mughal, M.S.; Goher, A.; Kontakiotis, G.; Vasilatos, C. Petrography and Geochemistry of Gahirat Marble in Relation to Geotechnical Investigation: Implications for Dimension Stone, Chitral, Northwest Pakistan. Appl. Sci. 2023, 13, 1755. [Google Scholar] [CrossRef]
- Kamran, A.; Ali, L.; Ahmed, W.; Zoreen, S.; Jehan, S.; Janjuhah, H.T.; Vasilatos, C.; Kontakiotis, G. Aggregate Evaluation and Geochemical Investigation of Limestone for Construction Industries in Pakistan: An Approach for Sustainable Economic Development. Sustainability 2022, 14, 10812. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Kalpogiannaki, M.; Laskaris, N.; Lampropoulou, P.; Mouzakis, P.; Panagiotaras, D.; Koukouzas, N. Sustainable Use of By-Products and Wastes from Greece to Produce Innovative Eco-Friendly Pervious Concrete. Appl. Sci. 2022, 12, 5861. [Google Scholar] [CrossRef]
- Ahmed, W.; Ahmad, N.; Janjuhah, H.T.; Islam, I.; Sajid, M.; Kontakiotis, G. The Evaluation of Non-Destructive Tests for the Strength and Physical Properties of Granite, Marble, and Sandstone: A Case Study from North Pakistan. Quaternary 2023, 6, 4. [Google Scholar] [CrossRef]
- Yasir, M.; Ahmed, W.; Islam, I.; Sajid, M.; Janjuhah, H.T.; Kontakiotis, G. Composition, Texture, and Weathering Controls on the Physical and Strength Properties of Selected Intrusive Igneous Rocks from Northern Pakistan. Geosciences 2022, 12, 273. [Google Scholar] [CrossRef]
- Tuǧrul, A. The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey. Eng. Geol. 2004, 75, 215–227. [Google Scholar] [CrossRef]
- Eren, Ö.; Bahali, M. Some engineering properties of natural building cut stones of Cyprus. Constr. Build. Mater. 2005, 19, 213–222. [Google Scholar] [CrossRef]
- Egesi, N.; Tse, C.A. Dimension stone: Exploration, evaluation and exploitation in southwest part of Oban massif south eastern Nigeria. J. Geol. Min. Res. 2011, 3, 115–122. [Google Scholar]
- Sousa, L.M.O. The influence of the characteristics of quartz and mineral deterioration on the strength of granitic dimensional stones. Environ. Earth Sci. 2013, 69, 1333–1346. [Google Scholar] [CrossRef]
- Petrounias, P.; Rogkala, A.; Giannakopoulou, P.P.; Kalpogiannaki, M.; Laskaris, N.; Lampropoulou, P. The role of the aggregate shape on the compressive strength of concrete using a new micro geo-informatics methodology. Micron 2022, 161, 103333. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Sideridis, A.; Koutsovitis, P.; Lampropoulou, P.; Koukouzas, N.; Pomonis, P.; Hatzipanagiotou, K. Influence of Petrogenesis on the Engineering Properties of Ultramafic Aggregates and on Their Suitability in Concrete. Appl. Sci. 2022, 12, 3990. [Google Scholar] [CrossRef]
- Badouna, I.; Koutsovitis, P.; Karkalis, C.; Laskaridis, K.; Koukouzas, N.; Tyrologou, P.; Patronis, M.; Papatrechas, C.; Petrounias, P. Petrological and Geochemical Properties of Greek Carbonate Stones, Associated with Their Physico-Mechanical and Aesthetic Characteristics. Minerals 2020, 10, 507. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Stamatis, P.M.; Lampropoulou, P.; Tsikouras, B.; Hatzipanagiotou, K. The Effect of Petrographic Characteristics and Physico-Mechanical Properties of Aggregates on the Quality of Concrete. Minerals 2018, 8, 577. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi, A.; Nikudel, M.R.; Mashalah, K. Estimating the durability of building stones against salt crystallization: Considering the physical properties and strength characteristics. J. Geope. 2013, 3, 35–48. [Google Scholar]
- Irfan, T.Y. Mineralogy, fabric properties and classification of weathered granites in Hong Kong. Q. J. Eng. Geol. 1996, 29, 5–35. [Google Scholar] [CrossRef]
- Sajid, M.; Arif, M.; Shah, M.T. Petrogenesis of granites from the Utla area of Gadoon, north-west Pakistan: Implications from petrography and geochemistry. J. Earth Sci. 2014, 25, 445–459. [Google Scholar] [CrossRef]
- Sajid, M.; Coggan, J.; Arif, M.; Andersen, J.; Rollinson, G. Petrographic features as an effective indicator for the variation in strength of granites. Eng. Geol. 2016, 202, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Stamatis, P.M.; Tsikouras, B.; Papoulis, D.; Lampropoulou, P.; Hatzipanagiotou, K. The Influence of Alteration of Aggregates on the Quality of the Concrete: A Case Study from Serpentinites and Andesites from Central Macedonia (North Greece). Geosciences 2018, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- De Vallejo, L.G.; Ferrer, M. Geological Engineering; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Heap, M.J.; Violay, M.E.S. The mechanical behaviour and failure modes of volcanic rocks: A review. Bull. Volcanol. 2021, 83, 33. [Google Scholar] [CrossRef]
- Pola, A.; Crosta, G.B.; Fusi, N.; Castellanza, R. General characterization of the mechanical behaviour of different volcanic rocks with respect to alteration. Eng. Geol. 2014, 169, 1–13. [Google Scholar] [CrossRef]
- Korkanç, M.; Solak, B. Estimation of engineering properties of selected tuffs by using grain/matrix ratio. J. Afr. Earth Sci. 2016, 120, 160–172. [Google Scholar] [CrossRef]
- Ündül, Ö. Assessment of mineralogical and petrographic factors affecting petro-physical properties, strength and cracking processes of volcanic rocks. Eng. Geol. 2016, 210, 10–22. [Google Scholar] [CrossRef]
- Shah, M.T.; Shervais, J.W. The Dir-Utror metavolcanic sequence, Kohistan arc terrane, northern Pakistan. J. Asian Earth Sci. 1999, 17, 459–475. [Google Scholar] [CrossRef]
- Borrelli, L.; Greco, R.; Gullà, G. Weathering grade of rock masses as a predisposing factor to slope instabilities: Reconnaissance and control procedures. Geomorphology 2007, 87, 158–175. [Google Scholar] [CrossRef]
- ASTM C170-17; Standard Test Method for Compressive Strength of Dimension Stone. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM C97-18; Standard Test Methods for Absorption and Bulk Specific Gravity of Dimension Stone. ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- Franklin, J.A. Suggested methods for determining water-content, porosity, density, absorption and related properties and swelling and slake-durability index properties. Part 1. Suggested methods for determining water-content, porosity, density, absorption and related properties. Int. J. Rock Mech. Min. Sci. 1979, 16, 143–151. [Google Scholar]
- Aydin, A. Upgraded ISRM Suggested Method for Determining Sound Velocity by Ultrasonic Pulse Transmission Technique. Rock Mech. Rock Eng. 2014, 47, 255–259. [Google Scholar] [CrossRef]
- ASTM D3967-16; Standard Test Method For Splitting Tensile Strength Of Intact Rock Core Specimens. ASTM International: West Conshohocken, PA, USA, 2023. [CrossRef]
- ASTM D5873-14; Standard Test Method for Determination of Rock Hardness by Rebound Hammer Method. ASTM International: West Conshohocken, PA, USA, 2014. [CrossRef]
- Anon, O. Classification of rocks and soils for engineering geological mapping. Part 1: Rock and soil materials. Bull. Eng. Geol. Environ. 1979, 19, 364–437. [Google Scholar]
- Karaman, K.; Kesimal, A. Evaluation of the influence of porosity on the engineering properties of volcanic rocks from the Eastern Black Sea Region: NE Turkey. Arab. J. Geosci. 2013, 8, 557–564. [Google Scholar] [CrossRef]
- Karakaş, A.; Güçtekin, A. Evaluation of physico-mechanical properties with petrographic characteristics of Hisartepe volcanic rocks (Söke-western Anatolia) based on alteration indices. Arab. J. Geosci. 2021, 14, 1117. [Google Scholar] [CrossRef]
- Tandon, R.S.; Gupta, V. Estimation of strength characteristics of different Himalayan rocks from Schmidt hammer rebound, point load index, and compressional wave velocity. Bull. Eng. Geol. Environ. 2015, 74, 521–533. [Google Scholar] [CrossRef]
- ASTM C615-11; Standard Specification For Granite Dimension Stone. ASTM International: West Conshohocken, PA, USA, 2018.
- Rocha, M.; Aisenstein, B.; Call, R.; Cording, E.J.; Franciss, F.; Franklin, J.; Helfrich, H.; Jennings, J.; Morfeldt, C.O.; Obert, L. Basic Geotechnical Description of Rock Masses. Int. J. Rock Mech. Min. Sci. 1981, 18, 85–110. [Google Scholar]
- Anon, Q. The description of rock masses for engineering purposes. Q. J. Eng. Geol. 1977, 10, 355–399. [Google Scholar]
S.No | Rock Type | Specimen Designation | Texture | Descriptive Term | Weathering Grade |
---|---|---|---|---|---|
1 | Andesite | MMA | Fine | Fresh | WG-I |
2 | FMA | Very fine | |||
3 | PMA-2 | Porphyritic | Slightly weathered | WG-II | |
4 | CMA | Coarse | |||
5 | PMA-1 | Porphyritic | Moderately weathered | WG-III | |
6 | Agglomerate | AG-1 | Clastic | Fresh | WG-I |
7 | AG-2 | Slightly weathered | WG-II |
Rock Type | S. No. | Plg | Alkf | Qtz | Amp | Ep | Car | Op | Cl | Gm | Pc: Gm |
---|---|---|---|---|---|---|---|---|---|---|---|
Andesite | MMA | 37.08 | 8.01 | 5.98 | 2.60 | 2.00 | 45.00 | 1.26 | |||
PMA-1 | 18.87 | 5.00 | 3.90 | 4.67 | 1.90 | 1.67 | 1.63 | 3.83 | 59.13 | 0.70 | |
PMA-2 | 27.67 | 5.00 | 11.97 | 4.40 | 1.00 | 1.00 | 1.50 | 1.73 | 45.23 | 1.33 | |
CMA | 33.97 | 7.00 | 6.83 | 1.70 | 1.67 | 10.00 | 34.43 | 1.87 | |||
FMA | 6.00 | 7.40 | 15.80 | 6.67 | 1.33 | 1.00 | 62.13 | 0.62 | |||
Agglomerate | AG-1 | 50.97 | 2.00 | 3.47 | 2.00 | 2.87 | 2.17 | 6.60 | 31.27 | 2.23 | |
AG-2 | 29.00 | 14.33 | 1.00 | 19.67 | 1.33 | 35.33 | 2.14 |
Sample | Specific Gravity (g/cm3) | Water Absorption (%) | Skeletal Density (g/cm3) | Porosity (%) | Ultrasonic Pulse Velocity (m/s) | R-Value | UTS (MPa) | UCS (MPa) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Oven Dry | Saturated | ||||||||||
Value | S.D | Value | S.D | ||||||||
MMA | 2.86 | 0.13 | 2.85 | 0.39 | 5121.83 | 256.09 | 5275.56 | 248.95 | 53.0 | 16.13 | 117.87 |
PMA-1 | 2.76 | 0.28 | 2.74 | 0.77 | 4465.03 | 223.25 | 4667.33 | 228.59 | 44.6 | 12.06 | 44.45 |
PMA-2 | 2.76 | 0.26 | 2.74 | 0.72 | 4522.66 | 226.13 | 4726.66 | 232.56 | 50.2 | 14.59 | 47.97 |
CMA | 2.81 | 0.23 | 2.79 | 0.66 | 4650.00 | 232.50 | 4810.00 | 238.48 | 50.8 | 12.25 | 62.73 |
FMA | 2.86 | 0.17 | 2.84 | 0.50 | 4905.00 | 239.11 | 5154.66 | 245.15 | 54.2 | 16.89 | 102.94 |
AG-1 | 2.92 | 0.10 | 2.91 | 0.28 | 4782.23 | 295.25 | 5060.90 | 308.79 | 58.2 | 11.26 | 77.05 |
AG-2 | 2.77 | 0.11 | 2.76 | 0.30 | 4624.80 | 301.72 | 4854.33 | 309.14 | 50.0 | 10.32 | 56.95 |
Pc:Gm | Skeletal Density | Porosity | W.A | Vp | UTS | R-Value | UCS | ||
---|---|---|---|---|---|---|---|---|---|
Pc:Gm | Pearson correlation | 1 | −0.17 | 0.07 | 0.20 | −0.17 | −0.42 | 0.27 | −0.32 |
Sig. (2-tailed) | 0.55 | 0.80 | 0.47 | 0.55 | 0.12 | 0.32 | 0.25 | ||
Skeletal Density | Pearson correlation | −0.12 | 1 | −0.94 * | −0.90 * | 0.95 * | 0.68 * | 0.55 | 0.91 * |
Sig. (2-tailed) | 0.82 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.00 | ||
Porosity | Pearson correlation | 0.68 | −0.71 | 1 | 0.94 * | −0.92 * | −0.66 * | −0.66 | 0.81 * |
Sig. (2-tailed) | 0.14 | 0.11 | 0 | 0 | 0.01 | 0 | 0.00 | ||
W.A | Pearson correlation | 0.61 | −0.70 | 0.98 * | 1 | −0.90 * | −0.46 | −0.78 * | |
Sig. (2-tailed) | 0.20 | 0.12 | 0.00 | 0 | 0.02 | 0.07 | 0.00 | ||
Vp | Pearson correlation | −0.76 | 0.71 | −0.92 ** | −0.88 ** | 1 | 0.75 * | 0.37 | 0.92 * |
Sig. (2-tailed) | 0.08 | 0.11 | 0.01 | 0.02 | 0.00 | 0.16 | 0.00 | ||
UTS | Pearson correlation | −0.91 ** | 0.42 | −0.91 ** | −0.86 ** | 0.87 ** | 1 | 0.62 | 0.79 * |
Sig. (2-tailed) | 0.01 | 0.40 | 0.01 | 0.03 | 0.02 | 0.02 | 0.00 | ||
R-value | Pearson correlation | 0.27 | 0.55 | −0.66 | −0.46 | 0.40 | 0.62 | 1 | 0.77 |
Sig. (2-tailed) | 0.32 | 0.04 | 0.00 | 0.07 | 0.13 | 0.02 | 0.00 | ||
UCS | Pearson correlation | −0.45 | 0.8 6** | 0.89 ** | 0.92 * | 0.90 ** | 0.71 | 0.77 | 1 |
Sig. (2-tailed) | 0.37 | 0.03 | 0.02 | 0.01 | 0.01 | 0.11 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, M.; Ahmed, W.; Yasir, M.; Islam, I.; Janjuhah, H.T.; Kontakiotis, G.; Antonarakou, A.; Stouraiti, C. Petrographic and Geotechnical Features of Dir Volcanics as Dimension Stone, Upper Dir, North Pakistan. Geosciences 2023, 13, 224. https://doi.org/10.3390/geosciences13080224
Nawaz M, Ahmed W, Yasir M, Islam I, Janjuhah HT, Kontakiotis G, Antonarakou A, Stouraiti C. Petrographic and Geotechnical Features of Dir Volcanics as Dimension Stone, Upper Dir, North Pakistan. Geosciences. 2023; 13(8):224. https://doi.org/10.3390/geosciences13080224
Chicago/Turabian StyleNawaz, Muhammad, Waqas Ahmed, Muhammad Yasir, Ihtisham Islam, Hammad Tariq Janjuhah, George Kontakiotis, Assimina Antonarakou, and Christina Stouraiti. 2023. "Petrographic and Geotechnical Features of Dir Volcanics as Dimension Stone, Upper Dir, North Pakistan" Geosciences 13, no. 8: 224. https://doi.org/10.3390/geosciences13080224
APA StyleNawaz, M., Ahmed, W., Yasir, M., Islam, I., Janjuhah, H. T., Kontakiotis, G., Antonarakou, A., & Stouraiti, C. (2023). Petrographic and Geotechnical Features of Dir Volcanics as Dimension Stone, Upper Dir, North Pakistan. Geosciences, 13(8), 224. https://doi.org/10.3390/geosciences13080224