A Novel Approach for Bathymetry Estimation through Bayesian Gravity Inversion
Abstract
:1. Introduction
1.1. The Standard Procedure
1.2. The Proposed Procedure
2. Method and Data
2.1. Method
2.2. Data
3. Numerical Tests
3.1. First Test
3.2. Second Test
4. Final Remarks and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tozer, B.; Sandwell, D.T.; Smith, W.H.; Olson, C.; Beale, J.; Wessel, P. Global bathymetry and topography at 15 arc sec: SRTM15+. Earth Space Sci. 2019, 6, 1847–1864. [Google Scholar] [CrossRef]
- Smith, W.H.; Sandwell, D.T. Global sea floor topography from satellite altimetry and ship depth soundings. Science 1997, 277, 1956–1962. [Google Scholar] [CrossRef] [Green Version]
- Sampietro, D.; Capponi, M.; Thébault, E.; Gailler, L. An empirical method for the optimal setting of the potential fields inverse problem. Geophys. Prospect. 2023, 71, 350–365. [Google Scholar] [CrossRef]
- Smith, W. Bathymetric prediction from dense altimetry and sparse shipboard bathymetry. J. Geophys. Res. 1994, 99, 21–803. [Google Scholar] [CrossRef]
- Sansó, F.; Sampietro, D. Analysis of the Gravity Field: Direct and Inverse Problems; Birkhäuser: Cham, Switzerland, 2021. [Google Scholar]
- Rossi, L. Bayesian Gravity Inversion by Monte Carlo Methods. Ph.D. Thesis, Politecnico di Milano, Milan, Italy, 2017. [Google Scholar]
- Sampietro, D.; Capponi, M. Seismic Constrained Gravity Inversion: A Reliable Tool to Improve Geophysical Models Away from Seismic Information. Geosciences 2021, 11, 467. [Google Scholar] [CrossRef]
- Sampietro, D.; Capponi, M.; Maurizio, G. 3D Bayesian Inversion of Potential Fields: The Quebec Oka Carbonatite Complex Case Study. Geosciences 2022, 12, 382. [Google Scholar] [CrossRef]
- Sampietro, D.; Capponi, M. Practical tips for 3D regional gravity inversion. Geosciences 2019, 9, 351. [Google Scholar] [CrossRef] [Green Version]
- Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Sampietro, D.; Capponi, M.; Mansi, A.; Gatti, A.; Marchetti, P.; Sansò, F. Space-Wise approach for airborne gravity data modelling. J. Geod. 2017, 91, 535–545. [Google Scholar] [CrossRef] [Green Version]
- GEBCO Compilation Group. GEBCO 2020 Grid; British Oceanographic Data Centre, National Oceanography Centre: Liverpool, UK; NERC: Atlanta, GA, USA, 2020. [Google Scholar]
- Rexer, M.; Hirt, C.; Pail, R. High-resolution global forward modelling: A degree-5480 global ellipsoidal topographic potential model. In Proceedings of the EGU General Assembly Conference Abstracts, Proceeding of EGU General Assembly 2017, Vienna, Austria, 23–28 April 2017; p. 7725. [Google Scholar]
- Zingerle, P.; Pail, R.; Gruber, T.; Oikonomidou, X. The combined global gravity field model XGM2019e. J. Geod. 2020, 94, 66. [Google Scholar] [CrossRef]
- Sampietro, D.; Capponi, M.; Thébault, E.; Gailler, L. An enhanced view on the Mediterranean Sea crust from potential fields data. Sci. Rep. 2023, 13, 8298. [Google Scholar] [CrossRef] [PubMed]
- Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. Update on CRUST1.0—A 1-degree global model of Earth’s crust. In Proceedings of the EGU General Assembly 2013, Geophysical Research Abstracts, Vienna, Austria, 7–12 April 2013; Volume 15, p. 2658. [Google Scholar]
- Reguzzoni, M.; Sampietro, D. GEMMA: An Earth crustal model based on GOCE satellite data. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 31–43. [Google Scholar] [CrossRef]
- Szwillus, W.; Afonso, J.C.; Ebbing, J.; Mooney, W.D. Global crustal thickness and velocity structure from geostatistical analysis of seismic data. J. Geophys. Res. Solid Earth 2019, 124, 1626–1652. [Google Scholar] [CrossRef]
- Fullea, J.; Lebedev, S.; Martinec, Z.; Celli, N. WINTERC-G: Mapping the upper mantle thermochemical heterogeneity from coupled geophysical–petrological inversion of seismic waveforms, heat flow, surface elevation and gravity satellite data. Geophys. J. Int. 2021, 226, 146–191. [Google Scholar] [CrossRef]
- Barthelmes, F. Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models: Theory and Formulas Used by the Calculation Service of the International Centre for Global Earth Models (ICGEM); Deutsches GeoForschungsZentrum GFZ: Potsdam, Germany, 2009; Available online: http://icgem.gfz-potsdam.de (accessed on 19 September 2022).
- Ince, E.S.; Barthelmes, F.; Reißland, S.; Elger, K.; Förste, C.; Flechtner, F.; Schuh, H. ICGEM—15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth Syst. Sci. Data 2019, 11, 647–674. [Google Scholar] [CrossRef] [Green Version]
TID | Definition |
---|---|
0 | Land |
Direct measurements | |
10 | Singlebeam—depth value collected by a single beam echo-sounder |
11 | Multibeam—depth value collected by a multibeam echo-sounder |
12 | Seismic—depth value collected by seismic methods |
13 | Isolated sounding—depth value that is not part of a regular survey or trackline |
14 | ENC sounding—depth value extracted from an Electronic Navigation Chart (ENC) |
15 | Lidar—depth derived from a bathymetric lidar sensor |
16 | Depth measured by optical light sensor |
17 | Combination of direct measurement methods Indirect measurements |
Indirect measurements | |
40 | Predicted based on satellite-derived gravity data—depth value is an interpolated value guided by satellite-derived gravity data |
41 | Interpolated based on a computer algorithm—depth value is an interpolated value based on a computer algorithm (e.g., Generic Mapping Tools) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampietro, D.; Capponi, M. A Novel Approach for Bathymetry Estimation through Bayesian Gravity Inversion. Geosciences 2023, 13, 223. https://doi.org/10.3390/geosciences13080223
Sampietro D, Capponi M. A Novel Approach for Bathymetry Estimation through Bayesian Gravity Inversion. Geosciences. 2023; 13(8):223. https://doi.org/10.3390/geosciences13080223
Chicago/Turabian StyleSampietro, Daniele, and Martina Capponi. 2023. "A Novel Approach for Bathymetry Estimation through Bayesian Gravity Inversion" Geosciences 13, no. 8: 223. https://doi.org/10.3390/geosciences13080223
APA StyleSampietro, D., & Capponi, M. (2023). A Novel Approach for Bathymetry Estimation through Bayesian Gravity Inversion. Geosciences, 13(8), 223. https://doi.org/10.3390/geosciences13080223