Organic Geochemistry of Crude Oils from the Kohat Basin, Pakistan
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Samples
3.2. Laboratory Work
4. Results
5. Discussion
5.1. Source and Depositional Condition
5.1.1. Short Chain N-Alkanes and Isoprenoids
5.1.2. Steranes and Diasteranes
5.1.3. Terpanes
5.1.4. Aromatics
5.2. Thermal Maturity
6. Conclusions
- The short-chain alkane distribution patterns along with their standard ratios, including CPI, TAR, and isoprenoids (Pr/Ph), indicate a mixed source of organic matter deposition in sub-oxic conditions in marine depositional environments. The CPI and OEP further indicate that source units that have generated the analyzed oils fall into the oil window.
- The steranes parameters such as C29 and C27, which are commonly used source indicators, also support the mixed source of organic matter, while maturity-related parameters from the steranes group also indicate maturity for the oil of the source units.
- The organic input and facies of the source units were also determined by terpanes (C20/C23, C19/C23), oleanane index, C29/C30H, Ts/Tm, C35/C34 HH, C26/C25 tricyclic, and C31 R H/C30 H, and DBT/P, where most of the parameters indicate shale lithologies containing mixed organic matter deposited in sub-oxic marine conditions.
- Most of the maturity-related biomarkers and non-biomarker parameters, such as CPI, C29 S/S + R, ββ/αα + ββ), moretane to hopane (M29/C30H), pentacyclic terpanes C27 (Ts/Ts + Tm), H32 (S/S + R) hopanes, and aromatic methylphenanthrene index (MPI), agree that the analyzed oils from the selected wells in the Mela oilfield have originated from thermally mature rocks falling in the oil window.
- As in the study basin, proven source rocks are Paleocene and Cretaceous shales, which are shallow marine deposits having marine organic matter, but this study reveals that the oils in the Mela wells have been generated by the strata of mixed organic matter, which may be deltaic, so these strata can increase the hydrocarbon potentiality in the area and can be expected in the surrounding non-explored areas of the basin too.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maslen, E. Evaluating the Source, Age, Thermal History and Palaeoenvironments of Deposition of Australian and Western Canadian Petroleum Systems: Compound Specific Stable Isotopes Coupled with Inorganic Trace Elements. Ph.D. Thesis, Curtin University, Singapore, 2010. [Google Scholar]
- Magoon, L.B.; Dow, W.G. The Petroleum System. Pet. Syst.—Source Trap. 1994, 60, 3–24. [Google Scholar] [CrossRef]
- Kontakiotis, G.; Karakitsios, V.; Cornée, J.-J.; Moissette, P.; Zarkogiannis, S.D.; Pasadakis, N.; Koskeridou, E.; Manoutsoglou, E.; Drinia, H.; Antonarakou, A. Preliminary results based on geochemical sedimentary constraints on the hydrocarbon potential and depositional environment of a Messinian sub-salt mixed siliciclastic-carbonate succession onshore Crete (Plouti section, eastern Mediterranean). Mediterr. Geosci. Rev. 2020, 2, 247–265. [Google Scholar] [CrossRef]
- Kontakiotis, G.; Karakitsios, V.; Maravelis, A.G.; Zarkogiannis, S.D.; Agiadi, K.; Antonarakou, A.; Pasadakis, N.; Zelilidis, A. Integrated isotopic and organic geochemical constraints on the depositional controls and source rock quality of the Neogene Kalamaki sedimentary successions (Zakynthos Island, Ionian Sea). Mediterr. Geosci. Rev. 2021, 3, 193–217. [Google Scholar] [CrossRef]
- Maravelis, A.G.; Kontakiotis, G.; Bellas, S.; Antonarakou, A.; Botziolis, C.; Janjuhah, H.T.; Makri, P.; Moissette, P.; Cornée, J.-J.; Pasadakis, N. Organic Geochemical Signatures of the Upper Miocene (Tortonian—Messinian) Sedimentary Succession Onshore Crete Island, Greece: Implications for Hydrocarbon Prospectivity. J. Mar. Sci. Eng. 2022, 10, 1323. [Google Scholar] [CrossRef]
- Avramidis, P.; Zelilidis, A. Potential source rocks, organic geochemistry and thermal maturation in the southern depocenter (Kipourio–Grevena) of the Mesohellenic Basin, central Greece. Int. J. Coal Geol. 2007, 71, 554–567. [Google Scholar] [CrossRef]
- Johnson, J.E.; Phillips, S.C.; Torres, M.E.; Piñero, E.; Rose, K.K.; Giosan, L. Influence of total organic carbon deposition on the inventory of gas hydrate in the Indian continental margins. Mar. Pet. Geol. 2014, 58, 406–424. [Google Scholar] [CrossRef]
- Burton, Z.F.M.; Dafov, L.N. Testing the Sediment Organic Contents Required for Biogenic Gas Hydrate Formation: Insights from Synthetic 3-D Basin and Hydrocarbon System Modelling. Fuels 2022, 3, 555–562. [Google Scholar] [CrossRef]
- Tserolas, P.; Maravelis, A.; Pasadakis, N.; Zelilidis, A. Organic geochemical features of the Upper Miocene successions of Lefkas and Cephalonia islands, Ionian Sea, Greece: An integrated geochemical and statistical approach. Arab. J. Geosci. 2018, 11, 105. [Google Scholar] [CrossRef]
- Maravelis, A.G.; Koukounya, A.; Tserolas, P.; Pasadakis, N.; Zelilidis, A. Geochemistry of Upper Miocene–Lower Pliocene source rocks in the Hellenic Fold and Thrust Belt, Zakynthos Island, Ionian Sea, western Greece. Mar. Pet. Geol. 2015, 66, 217–230. [Google Scholar] [CrossRef]
- Dembicki, H., Jr. Three common source rock evaluation errors made by geologists during prospect or play appraisals. AAPG Bull. 2009, 93, 341–356. [Google Scholar] [CrossRef]
- Grohmann, S.; Romero-Sarmiento, M.-F.; Nader, F.H.; Baudin, F.; Littke, R. Geochemical and petrographic investigation of Triassic and Late Miocene organic-rich intervals from onshore Cyprus, Eastern Mediterranean. Int. J. Coal Geol. 2019, 209, 94–116. [Google Scholar] [CrossRef]
- Bou Daher, S.; Nader, F.H.; Müller, C.; Littke, R. Geochemical and petrographic characterization of Campanian–Lower Maastrichtian calcareous petroleum source rocks of Hasbayya, South Lebanon. Mar. Pet. Geol. 2015, 64, 304–323. [Google Scholar] [CrossRef]
- Gürgey, K. Geochemical characteristics and thermal maturity of oils from the Thrace Basin (Western Turkey) and Western Turkmenistan. J. Pet. Geol. 1999, 22, 167–189. [Google Scholar] [CrossRef]
- Peters, K.E.; Peters, K.E.; Walters, C.C.; Moldowan, J. The Biomarker Guide; Cambridge University Press: Cambridge, UK, 2005; Volume 1. [Google Scholar]
- Rezaee, R. Petroleum Geology; Alavi Publication: Tehran, Iran, 2002; p. 479. [Google Scholar]
- Vandenbroucke, M.; Largeau, C. Kerogen origin, evolution and structure. Org. Geochem. 2007, 38, 719–833. [Google Scholar] [CrossRef]
- Maravelis, A.G.; Chamilaki, E.; Pasadakis, N.; Vassiliou, A.; Zelilidis, A. Organic geochemical characteristics and paleodepositional conditions of an Upper Carboniferous mud-rich succession (Yagon Siltstone): Myall Trough, southeast Australia. J. Pet. Sci. Eng. 2017, 158, 322–335. [Google Scholar] [CrossRef]
- Pasadakis, N.; Dagounaki, V.; Chamilaki, E.; Vafidis, A.; Zelilidis, A.; Piliotis, I.; Panagopoulos, G.; Manoutsoglou, E. Organic geochemical evaluation of Neogene formations in Messara (Heraklion, Crete) basin as source rocks of biogenetic methane. Miner. Wealth 2012, 166, 8–26. [Google Scholar]
- Idris, H.; Salihu, A.; Abdulkadir, I.; Almustapha, M. Application of geochemical parameters for characterization of oil samples using GC-MS technique. Int. J. Phys. Sci. 2008, 3, 152–155. [Google Scholar]
- Welte, D.; Tissot, P. Petroleum Formation and Occurrence; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Burton, Z.F.M.; Moldowan, J.M.; Sykes, R.; Graham, S.A. Unraveling Petroleum Degradation, Maturity, and Mixing and Addressing Impact on Petroleum Prospectivity: Insights from Frontier Exploration Regions in New Zealand. Energy Fuels 2018, 32, 1287–1296. [Google Scholar] [CrossRef]
- Burton, Z.F.M.; Moldowan, J.M.; Magoon, L.B.; Sykes, R.; Graham, S.A. Interpretation of source rock depositional environment and age from seep oil, east coast of New Zealand. Int. J. Earth Sci. 2019, 108, 1079–1091. [Google Scholar] [CrossRef]
- Thompson-Butler, W.; Peters, K.E.; Magoon, L.B.; Scheirer, A.H.; Moldowan, J.M.; Blanco, V.O.; Gonzalez, R.E.; Graham, S.A.; Zumberge, J.E.; Wavrek, D.A. Identification of genetically distinct petroleum tribes in the Middle Magdalena Valley, Colombia. AAPG Bull. 2019, 103, 3003–3034. [Google Scholar] [CrossRef]
- Yurchenko, I.A.; Moldowan, J.M.; Peters, K.E.; Magoon, L.B.; Graham, S.A. Source rock heterogeneity and migrated hydrocarbons in the Triassic Shublik Formation and their implication for unconventional resource evaluation in Arctic Alaska. Mar. Pet. Geol. 2018, 92, 932–952. [Google Scholar] [CrossRef]
- Ali, S.K.; Janjuhah, H.T.; Shahzad, S.M.; Kontakiotis, G.; Saleem, M.H.; Khan, U.; Zarkogiannis, S.D.; Makri, P.; Antonarakou, A. Depositional Sedimentary Facies, Stratigraphic Control, Paleoecological Constraints, and Paleogeographic Reconstruction of Late Permian Chhidru Formation (Western Salt Range, Pakistan). J. Mar. Sci. Eng. 2021, 9, 1372. [Google Scholar] [CrossRef]
- Kontakiotis, G.; Moforis, L.; Karakitsios, V.; Antonarakou, A. Sedimentary Facies Analysis, Reservoir Characteristics and Paleogeography Significance of the Early Jurassic to Eocene Carbonates in Epirus (Ionian Zone, Western Greece). J. Mar. Sci. Eng. 2020, 8, 706. [Google Scholar] [CrossRef]
- Gharib, A.F.; Özkan, A.M.; Hakimi, M.H.; Zainal Abidin, N.S.; Lashin, A.A. Integrated geochemical characterization and geological modeling of organic matter-rich limestones and oils from Ajeel Oilfield in Mesopotamian Basin, Northern Iraq. Mar. Pet. Geol. 2021, 126, 104930. [Google Scholar] [CrossRef]
- Ahmed, A.; Jahandad, S.; Hakimi, M.H.; Gharib, A.F.; Mehmood, S.; Kahal, A.Y.; Khan, M.A.; Munir, M.N.; Lashin, A. Organic matter characteristics and conventional oil potentials of shales from the Early Jurassic Datta Formation in the Upper Indus Basin, Northern Pakistan. J. Asian Earth Sci. 2022, 224, 104975. [Google Scholar] [CrossRef]
- Makri, V.I.; Bellas, S.; Moschou, G.; Pasadakis, N. An Integrated Approach for the Thermal Maturity Modeling Re-Assessment of an Exploration Well in the Hellenides Fold and Thrust Belt. Geosciences 2023, 13, 76. [Google Scholar] [CrossRef]
- Yasir, M.; Ahmed, W.; Islam, I.; Sajid, M.; Janjuhah, H.T.; Kontakiotis, G. Composition, Texture, and Weathering Controls on the Physical and Strength Properties of Selected Intrusive Igneous Rocks from Northern Pakistan. Geosciences 2022, 12, 273. [Google Scholar] [CrossRef]
- Pivnik David, A.; Sercombe William, J. Compression- and transpression-related deformation in the Kohat Plateau, NW Pakistan. Geol. Soc. Lond. Spec. Publ. 1993, 74, 559–580. [Google Scholar] [CrossRef]
- Abbasi, I.A.; McElroy, R. Thrust kinematics in the Kohat Plateau, Trans Indus Range, Pakistan. J. Struct. Geol. 1991, 13, 319–327. [Google Scholar] [CrossRef]
- McDougall, J.W.; Hussain, A. Fold and Thrust Propagation in the Western Himalaya Based on a Balanced Cross Section of the Surghar Range and Kohat Plateau, Pakistan1. AAPG Bull. 1991, 75, 463–478. [Google Scholar] [CrossRef]
- Ahmed, B.; Bakht, S.; Wahid, S.; Hanif, M. Structural analysis and reservoir characterisation of Cretaceous sequence in Kohala Bala, Khyber Pakhtunkhwa, Pakistan. Rud.-Geološko-Naft. Zb. 2022, 37, 65–81. [Google Scholar] [CrossRef]
- Meissner, C.R., Jr.; Master, J.; Rashid, M.; Hussain, M. Stratigraphy of the Kohat Quadrangle, Pakistan; 2330–7102; Geological Survery Professional Publisher; U.S. Government Publishing Office: Washington, DC, USA, 1974. [Google Scholar]
- Siyar, S.M.; Zafar, M.; Jahandad, S.; Khan, T.; Ali, F.; Ahmad, S.; Fnais, M.S.; Abdelrahman, K.; Ansari, M.J. Hydrocarbon generation potential of Chichali Formation, Kohat Basin, Pakistan: A case study. J. King Saud Univ.-Sci. 2021, 33, 101235. [Google Scholar] [CrossRef]
- Wandrey, C.J.; Law, B.; Shah, H.A. Patala-Nammal Composite Total Petroleum System, Kohat-Potwar Geologic Province, Pakistan; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2004. [Google Scholar]
- Bilal, A.; Yang, R.; Mughal, M.S.; Janjuhah, H.T.; Zaheer, M.; Kontakiotis, G. Sedimentology and Diagenesis of the Middle-Late Eocene Carbonate Deposits of the Ceno-Tethys Ocean. J. Mar. Sci. Eng. 2022, 10, 1794. [Google Scholar] [CrossRef]
- Zaheer, M.; Khan, M.R.; Mughal, M.S.; Janjuhah, H.T.; Makri, P.; Kontakiotis, G. Petrography and Lithofacies of the Siwalik Group in the Core of Hazara-Kashmir Syntaxis: Implications for Middle Stage Himalayan Orogeny and Paleoclimatic Conditions. Minerals 2022, 12, 1055. [Google Scholar] [CrossRef]
- Rahim, H.-U.; Qamar, S.; Shah, M.M.; Corbella, M.; Martín-Martín, J.D.; Janjuhah, H.T.; Navarro-Ciurana, D.; Lianou, V.; Kontakiotis, G. Processes Associated with Multiphase Dolomitization and Other Related Diagenetic Events in the Jurassic Samana Suk Formation, Himalayan Foreland Basin, NW Pakistan. Minerals 2022, 12, 1320. [Google Scholar] [CrossRef]
- Fazal, A.G.; Umar, M.; Shah, F.; Miraj, M.A.; Janjuhah, H.T.; Kontakiotis, G.; Jan, A.K. Geochemical Analysis of Cretaceous Shales from the Hazara Basin, Pakistan: Provenance Signatures and Paleo-Weathering Conditions. J. Mar. Sci. Eng. 2022, 10, 800, Correction in J. Mar. Sci. Eng. 2022, 10, 1654. [Google Scholar] [CrossRef]
- Ahmad, I.; Shah, M.M.; Janjuhah, H.T.; Trave, A.; Antonarakou, A.; Kontakiotis, G. Multiphase Diagenetic Processes and Their Impact on Reservoir Character of the Late Triassic (Rhaetian) Kingriali Formation, Upper Indus Basin, Pakistan. Minerals 2022, 12, 1049. [Google Scholar] [CrossRef]
- Wadood, B.; Khan, S.; Li, H.; Liu, Y.; Ahmad, S.; Jiao, X. Sequence stratigraphic framework of the Jurassic Samana Suk carbonate formation, North Pakistan: Implications for reservoir potential. Arab. J. Sci. Eng. 2021, 46, 525–542. [Google Scholar] [CrossRef]
- Meigs, A.J.; Burbank, D.W.; Beck, R.A. Middle-late Miocene (>10 Ma) formation of the Main Boundary thrust in the western Himalaya. Geology 1995, 23, 423–426. [Google Scholar] [CrossRef]
- Kazmi, A.H.; Jan, M.Q. Tectonic Map of Pakistan; Geological Survey of Pakistan: Quetta, Pakistan, 1982. [Google Scholar]
- Fowler, M.; Hamblin, A.; Hawkins, D.; Stasiuk, L.; Knight, I. Petroleum geochemistry and hydrocarbon potential of Cambrian and Ordovician rocks of western Newfoundland. Bull. Can. Pet. Geol. 1995, 43, 187–213. [Google Scholar]
- Bourbonniere, R.A.; Meyers, P.A. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol. Oceanogr. 1996, 41, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Hughes, W.B.; Holba, A.G.; Dzou, L.I. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim. Cosmochim. Acta 1995, 59, 3581–3598. [Google Scholar] [CrossRef]
- Tserolas, P.; Maravelis, A.G.; Tsochandaris, N.; Pasadakis, N.; Zelilidis, A. Organic geochemistry of the Upper Miocene-Lower Pliocene sedimentary rocks in the Hellenic Fold and Thrust Belt, NW Corfu island, Ionian sea, NW Greece. Mar. Pet. Geol. 2019, 106, 17–29. [Google Scholar] [CrossRef]
- Didyk, B.; Simoneit, B.; Brassell, S.T.; Eglinton, G. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 1978, 272, 216–222. [Google Scholar] [CrossRef]
- Peters, K.E.; Moldowan, J.M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments; Prentice Hall: Hoboken, NJ, USA, 1993. [Google Scholar]
- Waples, D. Geochemistry in Petroleum Exploration; International Human Resources Development Co.: Boston, MA, USA, 2016; pp. 33–94. [Google Scholar]
- Peters, K.E.; Moldowan, J.M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Org. Geochem. 1991, 17, 47–61. [Google Scholar] [CrossRef]
- ten Haven, H.L.; de Leeuw, J.W.; Sinninghe Damsté, J.S.; Schenck, P.A.; Palmer, S.E.; Zumberge, J.E. Application of biological markers in the recognition of palaeohypersaline environments. Geol. Soc. Lond. Spec. Publ. 1988, 40, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Ten Haven, H.L.; RullkÖTter, J.; De Leeuw, J.W.; DamstÉ, J.S.S. Pristane/phytane ratio as environmental indicator. Nature 1988, 333, 604. [Google Scholar] [CrossRef]
- Shanmugam, G. Significance of Coniferous Rain Forests and Related Organic Matter in Generating Commercial Quantities of Oil, Gippsland Basin, Australia1. AAPG Bull. 1985, 69, 1241–1254. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Meinschein, W. Sterols as ecological indicators. Geochim. Cosmochim. Acta 1979, 43, 739–745. [Google Scholar] [CrossRef]
- Groune, K.; Halim, M.; Lemée, L.; Benmakhlouf, M.; Amblès, A. Chromatographic study of the organic matter from Moroccan Rif bituminous rocks. Arab. J. Chem. 2019, 12, 1552–1562. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.; Wang, C.; Du, J.; Liu, L.; Chen, Z. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China. Mar. Pet. Geol. 2015, 67, 460–467. [Google Scholar] [CrossRef]
- Aquino, N.F. Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleum. Adv. Org. Geochem. 1981, 1983, 659–667. [Google Scholar]
- Ogbesejana, A.B.; Bello, O.M.; Ali, T.; Uduma, U.A.; Kabo, K.S.; Akintade, O.O. Geochemical significance of tricyclic and tetracyclic terpanes in source rock extracts from the Offshore Niger Delta Basin, Nigeria. Acta Geochim. 2021, 40, 184–198. [Google Scholar] [CrossRef]
- Murray, A.P.; Sosrowidjojo, I.B.; Alexander, R.; Kagi, R.I.; Norgate, C.M.; Summons, R.E. Oleananes in oils and sediments: Evidence of marine influence during early diagenesis? Geochim. Cosmochim. Acta 1997, 61, 1261–1276. [Google Scholar] [CrossRef]
- El-Sabagh, S.M.; El-Naggar, A.Y.; El Nady, M.M.; Ebiad, M.A.; Rashad, A.M.; Abdullah, E.S. Distribution of triterpanes and steranes biomarkers as indication of organic matters input and depositional environments of crude oils of oilfields in Gulf of Suez, Egypt. Egypt. J. Pet. 2018, 27, 969–977. [Google Scholar] [CrossRef]
- Rullkötter, J.; Peakman, T.M.; Lo Ten Haven, H. Early diagenesis of terrigenous triterpenoids and its implications for petroleum geochemistry. Org. Geochem. 1994, 21, 215–233. [Google Scholar] [CrossRef]
- Kara-Gülbay, R.; Ziya Kırmacı, M.; Korkmaz, S. Organic geochemistry and depositional environment of the Aptian bituminous limestone in the Kale Gümüşhane area (NE-Turkey): An example of lacustrine deposits on the platform carbonate sequence. Org. Geochem. 2012, 49, 6–17. [Google Scholar] [CrossRef]
- Chen, J.; Summons, R.E. Complex patterns of steroidal biomarkers in Tertiary lacustrine sediments of the Biyang Basin, China. Org. Geochem. 2001, 32, 115–126. [Google Scholar] [CrossRef]
- Zhongquan, L.; Xiangchun, C.; Youde, X.; Bingbing, S.; Zhiping, Z.; Pengfei, Z. Depositional environment, age determination and source diagnose of oils from the western Chepaizi Uplift (Junggar Basin) constrained by molecular biomarkers. J. Pet. Sci. Eng. 2022, 214, 110495. [Google Scholar] [CrossRef]
- Radke, M. Application of aromatic compounds as maturity indicators in source rocks and crude oils. Mar. Pet. Geol. 1988, 5, 224–236. [Google Scholar] [CrossRef]
- Ogbesejana, A.B.; Bello, O.M. Distribution and geochemical significance of dibenzofurans, phenyldibenzofurans and benzo[b]naphthofurans in source rock extracts from Niger Delta basin, Nigeria. Acta Geochim. 2020, 39, 973–987. [Google Scholar] [CrossRef]
- Radke, M.; Vriend, S.; Ramanampisoa, L. Alkyldibenzofurans in terrestrial rocks: Influence of organic facies and maturation. Geochim. Cosmochim. Acta 2000, 64, 275–286. [Google Scholar] [CrossRef]
- Seifert, W.K.; Moldowan, J.M.; Jones, R. Application of biologic markers in combination with stable carbon isotopes to source rock/oil correlations, Prudhoe Bay, Alaska. AAPG Bull. 1981, 65, 990–991. [Google Scholar]
- Mackenzie, A.S.; McKenzie, D. Isomerization and aromatization of hydrocarbons in sedimentary basins formed by extension. Geol. Mag. 2009, 120, 417–470. [Google Scholar] [CrossRef]
- Seifert, W.K.; Moldowan, J.M. Use of biological markers in petroleum exploration. Methods Geochem. Geophys. 1986, 24, 261–290. [Google Scholar]
- Price, P.; O’Sullivan, T.; Alexander, R. The Nature and Occurrence of Oil in Seram, Indonesia; 1987; Volume 12, pp. 12–98. Available online: https://www.semanticscholar.org/paper/The-Nature-and-Occurrence-of-Oil-in-Seram%2C-Price-O%27sullivan/7a84396760793c6d1aca019c939f2d73da499750 (accessed on 3 June 2023).
- McKirdy, D. A geochemical comparison of some crude oils from pre-Ordovician carbonate rocks. In Advances in Organic Geochemistry; Wiley: Hoboken, NJ, USA, 1983; pp. 99–107. [Google Scholar]
- Rullkötter, J.; Spiro, B.; Nissenbaum, A. Biological marker characteristics of oils and asphalts from carbonate source rocks in a rapidly subsiding graben, Dead Sea, Israel. Geochim. Cosmochim. Acta 1985, 49, 1357–1370. [Google Scholar] [CrossRef]
- Seifert, W.K.; Moldowan, J.M. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochim. Cosmochim. Acta 1978, 42, 77–95. [Google Scholar] [CrossRef]
- Mackenzie, A.; Patience, R.; Maxwell, J.; Vandenbroucke, M.; Durand, B. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France—I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes. Geochim. Cosmochim. Acta 1980, 44, 1709–1721. [Google Scholar] [CrossRef]
Short-Chain N-Alkanes | Steranes | Terpanes | |||||||||||||||
Well | Sample | CPI | TAR | OEP | Pr/nC17 | Ph/n-C18 | Pr/Ph | C27% | C28% | C29% | C19/C19 + C23 | C20/C23 | C22/C21 | C24/C23 | C26/C25 | C29/C30H | H31R/C30H |
Mela-01 | Oil | 1.04 | 0.43 | 1.09 | 0.39 | 0.48 | 1.04 | 30.26 | 31.34 | 38.39 | 0.26 | 0.68 | 0.26 | 0.82 | 0.74 | 0.42 | 0.23 |
Mela-04 | Oil | 1 | 0.13 | 1.05 | 0.55 | 0.45 | 1.52 | 34.81 | 28.69 | 35.5 | 0.33 | 0.81 | 0.24 | 0.81 | 1.48 | 0.42 | 0.16 |
Thermal Maturity Parameters | |||||||||||||||||
Steranes C29 | Terpanes | Aromatics | |||||||||||||||
S/S + R | ββ/αα + ββ | M29/C30H | Ts/Ts + Tm | H32 (S/S + R) | C31 H (S/S + R) | MPI | |||||||||||
Mela-01 | Oil | 0.5 | 0.5 | 0.12 | 0.73 | 0.58 | 0.58 | 0.99 | |||||||||
Mela-04 | Oil | 0.57 | 0.52 | 0.08 | 0.76 | 0.54 | 0.6 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siyar, S.M.; Ali, F.; Ahmad, S.; Kontakiotis, G.; Janjuhah, H.T.; Jahandad, S.; Naseem, W. Organic Geochemistry of Crude Oils from the Kohat Basin, Pakistan. Geosciences 2023, 13, 199. https://doi.org/10.3390/geosciences13070199
Siyar SM, Ali F, Ahmad S, Kontakiotis G, Janjuhah HT, Jahandad S, Naseem W. Organic Geochemistry of Crude Oils from the Kohat Basin, Pakistan. Geosciences. 2023; 13(7):199. https://doi.org/10.3390/geosciences13070199
Chicago/Turabian StyleSiyar, Syed Mamoon, Fayaz Ali, Sajjad Ahmad, George Kontakiotis, Hammad Tariq Janjuhah, Samina Jahandad, and Waqas Naseem. 2023. "Organic Geochemistry of Crude Oils from the Kohat Basin, Pakistan" Geosciences 13, no. 7: 199. https://doi.org/10.3390/geosciences13070199
APA StyleSiyar, S. M., Ali, F., Ahmad, S., Kontakiotis, G., Janjuhah, H. T., Jahandad, S., & Naseem, W. (2023). Organic Geochemistry of Crude Oils from the Kohat Basin, Pakistan. Geosciences, 13(7), 199. https://doi.org/10.3390/geosciences13070199