Geochemical Behavior of Lanthanides and Actinides in an Old Uranium Mine, Portugal
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Water Samples
4.1.1. Physical–Chemical Parameters
4.1.2. Actinide and Lanthanide Behavior
4.2. Soil and Sediment Samples
4.2.1. Physical–Chemical Parameters
4.2.2. Mineralogy
4.2.3. Actinide and Lanthanide Behavior
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dushyantha, N.; Batapola, N.; Ilankoon, I.; Rohitha, S.; Premasiri, R.; Abeysinghe, B.; Dissanayake, K. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy, and global production. Ore Geol. Rev. 2020, 122, 103521. [Google Scholar] [CrossRef]
- British Geological Survey. Rare Earth Elements. Available online: https://www2.bgs.ac.uk/mineralsuk/download/mineralProfiles/rare_earth_elements_profile.pdf (accessed on 10 November 2022).
- U.S. Geological Survey. Mineral Commodity Summaries 2018. Available online: https://pubs.er.usgs.gov/publication/70194932 (accessed on 10 November 2022).
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, G.; Pan, A.; Chen, F.; Zheng, C. Protecting the environment and public health from rare earth mining. Earths Future 2016, 4, 532–535. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, F.P. Mining industry and sustainable development: Time for change. Food Energy Secur. 2017, 6, 61–77. [Google Scholar] [CrossRef]
- Costis, S.; Mueller, K.K.; Blais, J.F.; Royer-Lavallée, A.; Coudert, L.; Neculita, C.M. Review of recent work on the recovery of rare earth elements from secondary sources. In Natural Resources of Canada Report; Bibliothèque et Archives Canada: Ottawa, ON, Canada, 2019; 63p, ISBN 978-2-89146-926-5. [Google Scholar]
- Costis, S.; Mueller, K.K.; Coudert, L.; Neculita, C.M.; Reynier, N.; Blais, J.F. Recovery potential of rare earth elements from mining and industrial residues: A review and cases studies. J. Geochem. Explor. 2021, 221, 106699. [Google Scholar] [CrossRef]
- Moraes, M.; Murciego, A.; Álvarez-ayuso, E.; Ladeira, A. The role of Al13-polymers in the recovery of rare earth elemens from acid mine drainage through pH neutralization. Appl. Geochem. 2020, 113, 104466. [Google Scholar] [CrossRef]
- Nogueria, E.; Licona, F.; Godoi, L.; Brucha, G. Biological treatment removal of rare earth elements and yttrium (REY) and metals from actual acid mine drainage. Water Sci. Technol. 2019, 80, 1485–1493. [Google Scholar] [CrossRef]
- Carvalho, F.P.; Oliveira, J. Alpha emitters from uranium mining in the environment. J. Radioanal. Nucl. Chem. 2007, 274, 167–174. [Google Scholar] [CrossRef]
- Carvalho, E.; Diamantino, C.; Pinto, R. Environmental Remediation of Abandoned mines in Portugal-Balance of 15 years of Activity and New Perspectives. In Proceedings of International Mine Water Association Symposium 2016, Mining Meets Water-Conflicts and Solutions (IMWA), Leipzig, Germany, 11–15 July 2016; Drebenstedt, C., Paul, M., Eds.; ISBN 9781510827141. [Google Scholar]
- Empresa de Desenvolvimento Mineiro (EDM). Inventory of Abandoned Mining Areas. Available online: https://edm.pt/area-ambiental/inventariacao-de-areas-mineiras/ (accessed on 7 September 2022).
- Cabral, M.M.; Silva, M.M.; Neiva, A.M.; Guimarães, F.M.; Silva, P.B. Uranium minerals from a Portuguese variscan peraluminous granite, its alteration, and related uranium-quartz veins. In Uranium: Compounds, Isotopes and Applications; Wolfe, G.H., Ed.; Nova Science: New York, NY, USA, 2009; pp. 287–318. [Google Scholar]
- Trindade, M.J.; Prudêncio, M.I.; Burbidge, C.I.; Dias, M.I.; Cardoso, G.; Marques, R.; Rocha, F. Study of an aplite dyke from the Beira uraniferous province in Fornos de Algodres area (Central Portugal): Trace elements distribution and evaluation of natural radionuclides. Appl. Geochem. 2014, 44, 111–120. [Google Scholar] [CrossRef]
- Trindade, M.J.; Dias, M.; Prudêncio, M. Urânio e outros elementos em argilas residuais de doleritos, granitos e aplito-pegmatitos da região de Fornos de Algodres, Beira Alta. In Revista Electrónica de Ciências da Terra Geosciences On-Line Journal, Proceedings of the VIII Congresso Nacional de Geologia, Braga, Portugal, 9–17 July 2010; e-Terra: Braga, Portugal, 2010; Volume 13. [Google Scholar]
- Dias, M.I.; Prudêncio, M.I.; Waerenborgh, J.C.; Paiva, M.I.; Marques, R.; Vieira, B.J.; Russo, D.; Lobarinhas, D.; Carvalho, E.; Rosa, C. Evaluation of REE potential in portuguese legacy mines. In E3S Web of Conferences Proceedings of the 16th International Symposium on Water-Rock Interaction (WRI-16) and 13th International Symposium on Applied Isotope Geochemistry (1st IAGC International Conference), Tomsk, Russia, 21–26 July 2019; EDP Sciences: Les Ulis, France, 2009. Abstract Number 06003. [Google Scholar] [CrossRef]
- Neiva, A.; Antunes, M.H.; Carvalho, P.; Santos, A.C. Uranium and arsenic contamination in the former Mondego Sul uranium mine area, Central Portugal. J. Geochem. Explor. 2016, 162, 1–15. [Google Scholar] [CrossRef]
- Neves, O.; Matias, M. Focos de poluição na área mineira de Cunha Baixa (Viseu, Portugal). Caderno Lab. Xeolóxico Laxe Coruña 2004, 29, 187–202. [Google Scholar]
- Neves, M.; Figueiredo, V.; Abreu, M. Transfer of U, Al, and Mn in the water-soil-plant (Solanum tuberosum L.) system near a former uranium mining area (Cunha Baixa, Portugal) and implications to human health. Sci. Total Environ. 2012, 416, 156–163. [Google Scholar] [CrossRef]
- Ramalho, E.; Carvalho, J.; Barbosa, S.; Monteiro, F. Using geophysical methods to characterize an abandoned uranium mining site, Portugal. J. Appl. Geophys. 2009, 67, 14–33. [Google Scholar] [CrossRef]
- Empresa de Desenvolvimento Mineiro (EDM). Recuperação Ambiental na Área Mineira da Quinta do Bispo-Fase 1. Available online: https://edm.pt/projetos/remediacao-ambiental-na-area-mineira-da-quinta-do-bispo/ (accessed on 20 March 2023).
- Barbosa, S.; Almeida, J.; Chambel, A. 3D modelling of the transmissivity of granitic rocks surrounding the old Quinta do Bispo mine. Comun. Geológicas 2014, 101, 959–963. [Google Scholar]
- Matos, J.; Costa, C.V. A região uranífera da Cunha Baixa-Quinta do Bispo. Memórias e Notícias. Publicações do Museu e Laboratório de Mineralogia e Geológico da Universidade de Coimbra e do Centro de Estudos Geológicos; Universidade de Coimbra: Coimbra, Portugal, 1972; pp. 26–47. [Google Scholar]
- Dahlkamp, F.J. Uranium Deposits of the World: Europe, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2016; p. 511. ISBN 978-3-540-78553-8. [Google Scholar]
- Trindade, S. Modelação de Atributos Hidrogeológicos do Maciço Envolvente a Antiga Área Mineira de Quinta do Bispo. Ph.D. Thesis, Universidade Nova de Lisboa, Lisboa, Portugal, 2012. [Google Scholar]
- Pereira, R.; Barbosa, S.; Carvalho, F.P. Uranium mining in Portugal: A review of the environmental legacies of the largest mines and environmental and human health impacts. Environ. Geochem. Health 2014, 36, 285–301. [Google Scholar] [CrossRef]
- Brindley, G.W.; Brown, G. Crystal Structures of Clay Minerals, and Their X-ray Identification; Mineralogical Society of Great Britain and Ireland: London, UK, 1980; ISSN 0144-1485. [Google Scholar]
- ICDD. Mineral Powder Diffraction File Databook; International Center for Diffraction Data (ICDD): Newtown Square, PA, USA, 1993. [Google Scholar]
- Schultz, L.G. Quantitative interpretation of mineralogical composition X-ray and chemical data for the Pierre Shale. Geol. Surv. 1964, 391. [Google Scholar] [CrossRef] [Green Version]
- Rocha, F.T. Argilas Aplicadas a Estudos Litoestratigráficos e Paleoambientais na Bacia Sedimentar de Aveiro. Ph.D. Thesis, University of Aveiro, Aveiro, Portugal, 1993. [Google Scholar]
- Galhano, C.; Rocha, F.; Gomes, C. Geostatistical analysis of the influence of textural, mineralogical and geochemical parameters on the geotechnical behavior of the “Argilas de Aveiro” formation (Portugal). Clay Miner. 1999, 34, 109–116. [Google Scholar] [CrossRef]
- Oliveira, A.; Rocha, F.; Rodrigues, A.; Jouanneau, J.; Dias, A.; Weber, O.; Gomes, C. Clay minerals from the sedimentary cover from the Northwest Iberian shelf. Prog. Oceanogr. 2002, 52, 233–247. [Google Scholar] [CrossRef]
- Henderson, P. Rare Earth Element Geochemistry, 1st ed.; Elservier Science Publishers: Amsterdam, The Netherlands, 1983; ISBN 9781483289779. [Google Scholar]
- Worral, F.; Pearson, D.G. Water-rock interaction in an acid mine discharge as indicated by rare earth element patterns. Geochim. Cosmochim. Acta 2001, 65, 3027–3040. [Google Scholar] [CrossRef]
- Nance, W.B.; Taylor, S.R. Rare earth element patterns and crustal evolution-I. Australian post-Archean Sedimentary rocks. Geochim. Cosmochim. Acta 1976, 40, 1539–1551. [Google Scholar] [CrossRef]
- Langmuir, D.; Herman, J.S. The mobility of thorium in natural waters at lower temperatures. Geochem. Cosmochim. Acta 1980, 44, 1753–1766. [Google Scholar] [CrossRef] [Green Version]
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water, and soils by trace metals. Nature 1998, 24, 869–876. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Alpers, C.N. Geochemistry of acid mine waters. In The Environmental Geochemistry of Mineral Deposits; Plumlee, G.S., Logsdon, M.J., Eds.; Society of Economic Geologists: Littleton, CO, USA, 1999; Volume 6A, pp. 133–160. ISBN 978-1629490137. [Google Scholar]
- Johannesson, K.H.; Cortés, A.; Ramos Leal, J.A.; Ramírez, A.G.; Durazo, J. Geochemistry of Rare Earth Elements in Groundwaters from a Rhyolite Aquifer, Central México. In Rare Earth Elements in Groundwater Flow Systems; Johannesson, K.H., Ed.; Water Science and Technology Library: Springer: Dordrecht, The Netherlands, 2005; Volume 51, pp. 187–222. [Google Scholar] [CrossRef]
- Migaszewski, Z.M.; Galuszka, A. The Characteristics, Occurrence, and Geochemical Behavior of Rare Earth Elements in the Environment: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 429–471. [Google Scholar] [CrossRef]
- Dia, A.; Gruau, G.; Olivié-Lauquet, G.; Riou, C.; Molénat, J.; Curmi, P. The distribution of rare earth elements in groundwaters: Assessing the role of source-rock composition, redox changes and colloidal particles. Geochim. Cosmochim. Acta 2000, 64, 4131–4151. [Google Scholar] [CrossRef]
- Braun, J.J.; Pagel, M.; Muller, J.P.; Bilong, P.; Michard, A.; Guillet, B. Cerium anomalies in lateritic profiles. Geochim. Cosmochim. Acta 1999, 54, 781–795. [Google Scholar] [CrossRef]
- De Baar, H.; Bacon, M.P.; Brewer, P.G.; Bruland, K.W. Rare earth elements in the Pacific and Atlantic Oceans. Geochim. Cosmochim. Acta 1985, 49, 1943–1959. [Google Scholar] [CrossRef]
- Leleyter, L.; Probst, J.; Depetris, P.; Haida, S.; Mortatti, J.; Rouault, R.; Samuel, J. REE distribution patterns in river sediments: Partitioning into residual and labile fractions. Comptes Rendus L’académie Sci.-Ser. IIA-Earth Planet. Sci. 1999, 329, 45–52. [Google Scholar] [CrossRef]
- Goldstein, S.J.; Jacobsen, S.B. Rare earth elements in river waters. Earth Planet Sci. Lett. 1988, 89, 35–47. [Google Scholar] [CrossRef]
- Nesbitt, H. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 1979, 279, 206–210. [Google Scholar] [CrossRef]
- Braun, J.; Pagel, M.; Herbilln, A.; Rosin, C. Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: A mass balance study. Geochim. Cosmochim. Acta 1993, 57, 4419–4434. [Google Scholar] [CrossRef]
- Zhiwei, B.; Zhenhua, Z. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol. Rev. 2008, 33, 519–535. [Google Scholar] [CrossRef]
- Wenrich, K.; Cuney, M.; Lach, P. Rare earth elements in uraninite: Breccia pipe uranium district, northern Arizona, USA. In Proceedings of the International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2018), Vienna, Austria, 25–29 June 2018; IAEA: Vienna, Austria, 2020. ISBN 978-92-0-130720-0. [Google Scholar]
- Mercadier, J.; Cuney, M.; Lach, P.; Boiron, M.-C.; Bonhoure, J.; Richard, A.; Leisen, M.; Kister, P. Origin of uranium deposits revealed by their rare earth element signature. Terra Nova 2011, 23, 264–269. [Google Scholar] [CrossRef]
- Göb, S.; Gühring, J.-E.; Bau, M.; Markl, G. Remobilization of U and REE and the formation of secondary minerals in oxidized deposits. Am. Mineral. 2014, 98, 530–548. [Google Scholar] [CrossRef]
- Aubert, D.; Stille, P.; Probst, A. REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim. Cosmochim. Acta 2001, 65, 387–406. [Google Scholar] [CrossRef] [Green Version]
- Pagel, M. The mineralogy and geochemistry of uranium, thorium, and rare-earth elements in two radioactive granites of the Voges, France. Mineral. Mag. 1982, 46, 149–161. [Google Scholar] [CrossRef]
- Bain, D. Plumbogummite-group minerals from Mull and Morvern. Mineral. Mag. 1970, 37, 934–938. [Google Scholar] [CrossRef]
Inside the Mine Area | Outside the Mine Area | ||
---|---|---|---|
QB-4w (Open Pit) | QB-11w (Upstream of the Open Pit) | QB-7w (Downstream of the Open Pit) | |
pH | 5.08 | 7.77 | 6.31 |
Eh (V) | 0.53 | 0.35 | 0.20 |
OD | 9.84 | 10.7 | 5.98 |
EC | 954 | 81.0 | 276 |
Temp | 16.2 | 16.2 | 14.8 |
TDS | 620 | 52.0 | 179 |
U | 404 | 2.73 | 0.63 |
Th | 0.003 | 0.009 | 0.007 |
La | 1.80 | 0.06 | 0.04 |
Ce | 4.49 | 0.07 | 0.05 |
Pr | 0.66 | 0.02 | 0.008 |
Nd | 3.11 | 0.07 | 0.043 |
Sm | 0.96 | 0.03 | 0.01 |
Eu | 0.58 | 0.007 | 0.002 |
Gd | 1.43 | 0.01 | 0.02 |
Tb | 0.29 | 0.005 | 0.002 |
Dy | 1.57 | 0.03 | 0.01 |
Ho | 0.29 | 0.006 | 0.003 |
Er | 0.72 | 0.02 | 0.01 |
Tm | 0.09 | 0.003 | 0.002 |
Yb | 0.50 | 0.02 | 0.02 |
Lu | 0.07 | 0.002 | 0.004 |
Th/U | 7.46 × 10−6 | 0.003 | 0.01 |
(Ce/Ce*)* | 0.947 | 0.54 | 0.64 |
(Eu/Eu*)* | 2.30 | 1.81 | 0.73 |
(La/Sm)N | 0.28 | 0.36 | 0.53 |
(La/Yb)N | 0.27 | 0.24 | 0.13 |
ΣLREE | 10.1 | 0.22 | 0.14 |
ΣMREE | 5.11 | 0.08 | 0.05 |
ΣHREE | 1.37 | 0.04 | 0.04 |
ΣREE | 16.5 | 0.34 | 0.23 |
Soils and Sediments Collected Inside the Mine Area | Soils and Sediments Collected Outside the Mine Area | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Waste Rocks | Surrounding the Open Pit | |||||||||||
Type | Soil Samples | Sediment | Soil Samples | Sediment | Soil Samples | |||||||
QB-1 | QB-2 | QB-3 | QB-10 | QB-4 SED | QB-5 | QB-6 | QB-8 | QB-9 | QB-7 SED | QB-7 | QB-12 | |
pH | 4.79 | 5.12 | 4.58 | 4.60 | 8.58 | 5.61 | 5.07 | 5.95 | 4.22 | 4.73 | 4.91 | 4.94 |
Eh (V) | 0.33 | 0.32 | 0.34 | 0.34 | 0.16 | 0.29 | 0.32 | 0.28 | 0.36 | 0.34 | 0.33 | 0.33 |
U | 139 | 62.1 | 166 | 55.4 | 39.4 | 13.6 | 8.30 | 637 | 22.2 | 12.2 | 17.8 | 53.7 |
Th | 8.80 | 19.6 | 15.9 | 25.1 | 17.9 | 35.3 | 8.70 | 10.1 | 21.2 | 19.8 | 7.80 | 30.4 |
La | 28.1 | 51.0 | 52.4 | 51.1 | 35.6 | 58.8 | 16.7 | 41.4 | 47.7 | 15.8 | 41.5 | 60.2 |
Ce | 61.2 | 103 | 112 | 102 | 75.3 | 119 | 37.8 | 85.5 | 94.3 | 33.1 | 86.0 | 124 |
Pr | 6.90 | 11.6 | 13.0 | 11.8 | 8.50 | 14.0 | 4.00 | 10.3 | 10.6 | 3.70 | 9.50 | 14.0 |
Nd | 27.6 | 44.6 | 53.7 | 44.5 | 32.6 | 54.8 | 15.4 | 42.5 | 40.0 | 13.3 | 36.0 | 54.5 |
Sm | 5.30 | 8.60 | 9.10 | 8.20 | 5.80 | 9.10 | 2.80 | 8.80 | 6.40 | 2.60 | 6.80 | 10.7 |
Eu | 1.09 | 0.90 | 1.80 | 0.96 | 0.67 | 0.86 | 0.38 | 2.58 | 0.86 | 0.41 | 0.74 | 0.85 |
Gd | 4.50 | 6.60 | 7.90 | 6.40 | 4.80 | 7.50 | 2.40 | 10.4 | 5.60 | 2.00 | 5.10 | 7.00 |
Tb | 0.60 | 0.70 | 0.80 | 0.70 | 0.60 | 0.80 | 0.30 | 1.50 | 0.60 | 0.20 | 0.60 | 0.70 |
Dy | 3.20 | 3.80 | 4.00 | 3.70 | 3.00 | 4.80 | 1.70 | 9.10 | 3.30 | 1.20 | 3.00 | 3.80 |
Ho | 0.50 | 0.70 | 0.60 | 0.60 | 0.50 | 0.80 | 0.30 | 1.60 | 0.60 | 0.20 | 0.50 | 0.60 |
Er | 1.40 | 1.50 | 1.40 | 1.50 | 1.30 | 2.20 | 0.90 | 4.00 | 1.40 | 0.60 | 1.30 | 1.60 |
Tm | n.d. | n.d. | n.d. | n.d. | n.d. | 0.30 | n.d. | 0.50 | n.d. | n.d. | n.d. | n.d. |
Yb | 1.30 | 1.40 | 1.20 | 1.40 | 1.30 | 2.00 | 0.90 | 2.90 | 1.30 | 0.60 | 1.20 | 1.50 |
Lu | n.d. | n.d. | n.d. | n.d. | n.d. | 0.30 | n.d. | 0.40 | n.d. | n.d. | n.d. | n.d. |
Th/U | 0.06 | 0.32 | 0.10 | 0.45 | 0.45 | 2.60 | 1.05 | 0.02 | 0.95 | 1.62 | 0.44 | 0.57 |
(Ce/Ce*)* | 1.01 | 0.97 | 0.99 | 0.95 | 0.99 | 0.95 | 1.06 | 0.95 | 0.96 | 0.99 | 0.99 | 0.98 |
(Eu/Eu*)* | 0.98 | 0.53 | 0.94 | 0.58 | 0.56 | 0.46 | 0.65 | 1.19 | 0.63 | 0.55 | 0.79 | 0.43 |
(La/Sm)N | 0.78 | 0.87 | 0.85 | 0.92 | 0.90 | 0.95 | 0.88 | 0.69 | 1.10 | 0.90 | 0.90 | 0.83 |
(La/Yb)N | 1.59 | 2.68 | 3.22 | 2.69 | 2.02 | 2.17 | 1.37 | 1.05 | 2.70 | 1.94 | 2.55 | 2.96 |
ΣREE | 142 | 234 | 258 | 233 | 170 | 275 | 83.6 | 221 | 213 | 73.7 | 192 | 279 |
ΣLREE | 124 | 210 | 231 | 209 | 152 | 247 | 73.9 | 180 | 193 | 65.9 | 173 | 253 |
ΣMREE | 15.2 | 21.3 | 24.2 | 20.6 | 15.4 | 23.9 | 7.88 | 34.0 | 17.4 | 6.61 | 16.7 | 23.7 |
ΣHREE | 2.70 | 2.90 | 2.60 | 2.90 | 2.60 | 4.80 | 1.80 | 7.80 | 2.70 | 1.20 | 2.50 | 3.10 |
Location | Sample | Mineralogical Composition | Sample Type |
---|---|---|---|
Soil and sediment samples collected inside the mine area | QB-1 | K-feldspars, quartz, plagioclase, phyllosilicates, torbenite, uraninite, hematite | Soils collected in the waste rocks |
QB-2 | Quartz, K-feldspars, plagioclase, phyllosilicates | ||
QB-3 | Quartz, phyllosilicates, autunite, plagioclase, K-feldspars, fourmarierite, rutile | ||
QB-10 | K-feldspars, quartz, plagioclase, phyllosilicates, alunite | ||
QB-4 SED | K-feldspars, quartz, plagioclase, phyllosilicates, calcite | Soils and sediment collected surrounding the mine area | |
QB-5 | K-feldspars, quartz, phyllosilicates, plagioclase, plumbogummite | ||
QB-6 | Plagioclase, quartz, K-feldspars, phyllosilicates, calcite | ||
QB-8 | Quartz, K-feldspars, phyllosilicates, plagioclase, thorianite, torbenite | ||
QB-9 | Quartz, K-feldspars, plagioclase, phyllosilicates | ||
Soil and sediment samples collected outside the mine area | QB-7 | Quartz, K-feldspars, plagioclase, phyllosilicates | |
QB-12 | Quartz, K-feldspars, phyllosilicates, plagioclase | ||
QB-7 SED | Quartz, K-feldspars, plagioclase, phyllosilicates, thorogummite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardenas, A.; Dias, M.I.; Diamantino, C.; Carvalho, E.; Russo, D.; Marques, R. Geochemical Behavior of Lanthanides and Actinides in an Old Uranium Mine, Portugal. Geosciences 2023, 13, 168. https://doi.org/10.3390/geosciences13060168
Cardenas A, Dias MI, Diamantino C, Carvalho E, Russo D, Marques R. Geochemical Behavior of Lanthanides and Actinides in an Old Uranium Mine, Portugal. Geosciences. 2023; 13(6):168. https://doi.org/10.3390/geosciences13060168
Chicago/Turabian StyleCardenas, Andrés, Maria I. Dias, Catarina Diamantino, Edgar Carvalho, Dulce Russo, and Rosa Marques. 2023. "Geochemical Behavior of Lanthanides and Actinides in an Old Uranium Mine, Portugal" Geosciences 13, no. 6: 168. https://doi.org/10.3390/geosciences13060168
APA StyleCardenas, A., Dias, M. I., Diamantino, C., Carvalho, E., Russo, D., & Marques, R. (2023). Geochemical Behavior of Lanthanides and Actinides in an Old Uranium Mine, Portugal. Geosciences, 13(6), 168. https://doi.org/10.3390/geosciences13060168